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Abstract

The possible characterization of the heterogeneity of the aperture field in rough frac-
tures by electrical impedance measurement is demonstratedthrough displacement ex-
periments using two miscible fluids of different electrical resistivity. Two model frac-
tures have been used: their complementary rough walls are identical but have different
relative shear displacements creating “channel” or ‘barrier” structures in the void space,
respectively parallel or perpendicular to the mean flow velocity ~U. In the (“channel”)
geometry, the global electrical resistance displays an initial linear variation followed by
a “tail” part reflecting the contrast between slow and fast flow channels. In the (“bar-
rier”) geometry, the existence of a change in the slope between two linear zones sug-
gests the appearance of domains of different permeabilities along the fracture. These
variations are well reproduced theoretically and numerically either by assuming inde-
pendent flow channels parallel to~U (channel case) or an aperture that varies only along
the flow (barrier case). For each configuration, we present a specific inversion proce-
dure that allows one to extract the key features of the heterogeneity from the resistance
variation.
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1. Introduction

Many important industrial processes such as nuclear or chemical waste storage
or water management involve fractured media (NAS, 1996; Neretnieks et al., 1982;
Neretnieks , 2002). While the characteristics of fracture networks is an important ques-
tion, modelling them requires a good knowledge of their individual elements. Single
fractures have often been represented as the space between two parallel-plate surfaces:
however, numerous studies revealed that their flow and transport properties are strongly
influenced by the roughness of the walls and the spatial variations of their local aper-
ture (Oron and Berkowitz, 1998; Keller et al., 1999; Meheustand Schmittbuhl, 2000;
Matsuki et al., 2006; Watanabe et al., 2008; Nemoto et al., 2009). The determination
of the geometrical and transport properties of individual fractures is therefore a key
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issue in view of practical applications: their heterogeneity may, for instance, lead to
the apperance of channeling effects.

Even though elaborate laboratory techniques have been developed to characterize
the heterogeneity of porous media, few methods allow one to characterize in-situ a
single fracture. In the present paper, we demonstrate experimentally at the lab scale
that electrical impedance measurements may provide such information while being
adaptable to field configurations.

In a pioneering work, Brown (Brown, 1989) showed that the electrical impedance
of a fracture saturated by a conducting fluid depends on the geometrical organization
of the void space. The electrical aperture of fractures withfractal wall surfaces was
shown to be lower than that for parallel plane walls of comparable size and distance:
this results from the increased tortuosity of the iso potential lines.

At the scale of a fracture network, Odling et al. (2007) demonstrated that impedance
measurements may be used to determine the effective dispersion coefficient of a small
network of fractures created in a granite plug. After saturating completely the sample
by a fluid of known conductivity, they injected a second fluid of different conductivity
and measured the variations of the impedance of the fracturenetwork with time during
the displacement. The longitudinal dispersion coefficient and the hydrodynamic retar-
dation coefficient were then derived from these variations: their valueswere shown
to depend both on the connectivity of the network and on the spatial distribution and
density of the fractures.

Our objective is here to apply a similar measurement method to single rough frac-
tures. In this latter case, previous studies performed by means of other experimental
techniques have demonstrated that tracer dispersion is largely determined by the spa-
tial organization of the free space between the fracture walls. Neretnieks et al. (1982)
analyzed the motion and spreading of a tracer carried by a fluid flow inside a single nat-
ural fissure in a granitic sample: they observed a non Fickiandispersion even for non
sorbing tracers. This behavior was accounted for by preferential channelling within the
fracture plane. Bauget and Fourar (2008) investigated experimentally the different case
of model fractures with heterogeneities stratified in the direction perpendicular to the
mean flow.

A relative shear displacement of the fracture walls was recently found to be one of
the mechanisms leading to the localization of the flow in preferential paths, particularly
for complementary rough walls with a self-affine geometry (Yeo et al., 1998; Auradou
et al., 2005; Nemoto et al., 2009). In this latter case, the mean effective hydraulic
aperture depends on the relative orientation of the flow and the shear: it increases for
a flow perpendicular to the shear and decreases when it is parallel to it. A statistical
analysis of the aperture field demonstrated that these features are due to structural het-
erogeneities preferentially perpendicular to the shear. In a fracture of similar geometry
saturated by a stagnant conducting solution, electrical measurements in a radial current
configuration demonstrated a variation of the electrical resistance with the orientation
of the relative displacement (Plouraboue et al., 2000).

More recently, Boschan et al. (2009) used a light transmission technique and trans-
parent rough fracture models to measure dispersion for flow either parallel or normal
to the shear. The features of the dispersion process are verydifferent in the two cases.
When flow is normal to the structures created by the shear, theFickian description is
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valid and tracer spreading is characterized by a single dispersion coefficient: this case
is referred to in the following as the “barrier” geometry. When flow is parallel to the
structures induced by the shear, these act as preferential channels, leading to the ap-
pearance of fingers and to a non Fickian dispersion: this casewill be referred to as the
“channel” geometry.

In the present study, the same transparent models as in the previous work of Boschan
et al. (2009) are used to monitor the variations of the globalelectrical impedance of the
fracture during displacement experiments using saline tracers. This allows one to de-
termine relative concentration maps from the light transmission images simultaneously
with the electrical measurements. Also, the aperture field of this fracture may be deter-
mined by comparing images corresponding to a full saturation by the two pure fluids.

After describing the fracture models and the experimental procedure, electrical re-
sistance measurements performed during displacement at different Péclet numbers in
the “channel” and “barrier” geometries are reported. We discuss qualitatively these
observations, and then compare with quantitative theoretical predictions in the simple
case of parallel plates; then, two different simple descriptions of the void space for the
“channel” and “barrier” geometries are presented. The analytical and numerical pre-
dictions in these two configurations are significantly different and are compared to the
corresponding experimental results. Finally, the inversion of the resistance data in or-
der to estimate the aperture distributions is discussed: different approaches are needed
for the barrier and channel geometries.

2. Experimental setup and procedure

The realization of the transparent rough fracture models and the optical technique
for performing dispersion measurements are described in detail by Boschan et al.
(2009).

2.1. Fracture models

The roughness of the fracture walls is obtained by carving plexiglas blocks by
means of a computer controlled milling machine from a self-affine surface map (1360×
360 points): the corresponding value of Hurst’s exponent isζ = 0.8 like for a broad
range of materials (see Poon et al. (1992); Bouchaud (2003)). The length of the mod-
els isL = 350 mm and their widthw = 90 mm (the lengthL is parallel to the mean
flow which corresponds to the axisx). The geometries of the two walls are com-
plementary; they match perfectly when brought in contact and are identical for the
two experimental. A normal displacement (equal to the mean aperture) is then in-
troduced from this contact position together with a relative shear displacement~δ of
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= 0.75 mm, parallel to the lengthL for one of the models and per-
pendicular for the other. In both cases, the mean value of thelocal aperturea(x, y) is
< a(x, y) >x,y= 0.75 mm and its standard deviationσa = 0.14 mm.

Grey level maps of these aperture fields are displayed in Figs. 1 and 2. As can
be observed, the shear displacement~δ introduces “heterogeneity structures” always
normal to~δ (i.e. to y in the first case and tox in the second): the correlation length of
the aperture is larger parallel than perpendicular to them.
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Figure 1: Top right: grey level map of the numerical aperturefield in the “barrier geometry”: white= 1 mm,
black= 0.5 mm. Map size: 1360 by 360 pixels. Bottom: profile of the average a(x) =< a(x, y) >y of the
aperture over the widthw of the model; left: profile of the averagea(y) =< a(x, y) >x over the lengthL.

When the structures are normal to the mean flow (i.e. to x, they may act as barriers
(Fig.2): one refers therefore to this case as the “barrier” geometry. Then, the average
a(x) =< a(x, y) >y of the aperture in they direction (bottom curve in Fig. 2) displays
large variations withx; in contrast, the variations ofa(y) =< a(x, y) >x with y are much
smaller (curve at the left).
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Figure 2: Top right - Grey level map of the numerical aperturein the “channel geometry”: The size of the
map, the grey level code and the meaning of the curves at the bottom and at the left are the same as in Fig. 1.

When the heterogeneity structures are dominantly parallelto the mean flow (and,
therefore, tox), they may act as as preferential channels (Fig.1): for thisreason, this
case is referred to in the following as the “channel” geometry. In the map of Fig. 1,
there is, for instance, a zone of low aperture half way between the lateral sides of
the model and extending along most of its length. These “channels” produce large
variations withy of the averagea(x) =< a(x, y) >x of the aperture (left curve) while
a(y) =< a(x, y) >y varies much less withx (bottom curve).

2.2. Experimental set up and fluids

Figure 3 displays the experimental setup used for the dispersion measurements. The
fracture model is positioned with its length vertical. The corresponding sides (acting
as lateral borders) are sealed while the two horizontal sides are open. The upper side
of the model is connected to a syringe pump sucking the fluids upward out of the
fracture. The lower horizontal side is dipped into a fluid bath which may be moved up
and down: this allows one to replace the fluids conveniently in the initial phase of the
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experiments. The fracture model is transparent and placed between a light panel and a
Roper Coolsnap HQ video camera.

For electrical measurements, two stainless steel grids (90×20×1 mm3) used as the
electrodes are placed in the fluid bath and in the outlet, and connected to a HP 4284A
impedance analyzer with a measurement frequency of 1 kHz.
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Figure 3: Schematic view of the fracture model.

The fluids used here are Non-Newtonian shear thinning solutions with the same
concentration of scleroglucan (1000 ppm) in water. Their rheological characteristics
are discussed by Boschan et al. (2009). One fluid is dyed with 0.3 g/l of Anilin Blue
dye (Handbook of dyes(2002)) while the other contains the same amount ofNaCl (as
a result, the first fluid is dark blue and the second transparent). This allows one to
minimize buoyancy driven instabilities by matching the densities of the two fluids and
also to introduce a contrast between their electrical conductivities and light transmis-
sivities. For clarity and concision, the two solutions are refered to in the following asd
(dye) ands (salt). Their respective electrical conductivities areσs = 2.27 mS/cm and
σd = 2 mS/cm.

Polymer solutions have been selected in these experiments for two reasons. First,
at high velocities, their shear thinning properties enhance the macrodispersion due to
large scale heterogeneities of the flow field (Boschan et al.,2009): this macrodispersion
is reflected by large structures of the displacement front which provide valuable infor-
mation on the heterogeneities. Moreover, at low flow velocities, the effective viscosity
of the solutions is high: this further reduces the development of unwanted buoyancy
driven instabilities due to residual density contrasts.

2.3. Experimental procedure for displacement experiments

The fracture is first saturated by one of the solutionss or d; then, the fluid bath
is moved down, emptied, cleaned, filled with the other fluid, and moved up until the
model is again in contact with the fluid of the bath. Finally, the experiment is initiated
by pumping fluid at the top of the model at a constant flow rate: the mean fluid velocity
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U ranges between 0.0024 and 0.24 mm/s (or 2.8 < Pe< 285 in which the Péclet num-
ber Pe is defined byPe = U 〈a(x, y)〉x,y/Dm). This procedure allows one to obtain a
very flat horizontal displacement front at the initial time.During the experiments, both
light transmission and electrical impedance measurementsare performed at a constant
rate. The time variation of the real (resistance) and the imaginary (reactance) compo-
nents of the impedance are recorded.
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Figure 4: Variation of the resistance (△) and reactance (•) of a rough model fracture as a function of time
during the displacement solutiond by solutionsof lower electrical resistivity .

Figure 4 displays a typical variation of the resistance and reactance as a function
of time when solutiond is replaced by solutions. In this case, the resistance decreases
monotonously from a value corresponding to the more resistive fluid down to a lower
one corresponding to a full saturation of the model by the least resistive solution.

The variation of the reactance is more than two orders of magnitude smaller than
that of the resistance so that the curve is much noisier; moreover, its physical meaning is
not obvious. The rest of the paper deals therefore exclusively with resistance variations.

The electrical conductivity of the plexiglas is negligiblecompared to that of the
fluid conductivity and no absorption of the ions on the fracture surface was detected.
The measured resistance corresponds to that that of the fluidsaturating the slit between
the two walls (the contribution of the resistance of the inlet and outlet which have a far
larger aperture is much lower).

Fig. 4 also shows that the variation of the resistance duringthe experiment is glob-
ally roughly linear between initial and final limiting values: it is shown below that
important information on the flow structure resides in deviations from this linear vari-
ation.

2.4. Resistance measurements for pure solutions.

Before analyzing the time variation during a displacement process of the resistance
of the two fractures, we discuss first their values when they are fully saturated by either
solutionss or d. The objective is to investigate the influence of the conductivity of the
fluids and to compare the values obtained for the two fractures with a same fluid. The
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values of the real part of the electrical impedance measuredfor the two models and the
two solutionssandd are listed in Table 1.

Rs (kΩ) Rd (kΩ) Rs/Rd R/Rpp

Barrier 25.5± 0.2 30.5± 0.2 0.835± 0.01 1.15± 0.03
Channel 21.5± 0.2 26.5± 0.2 0.81± 0.01 0.98± 0.04

Table 1: Rs, Rd, Rs/Rd: values of the electrical resistance of the fracture modelsand ratio of these values
when the models are fully saturated by solutionss or d. R/Rpp: ratio of the measured resistance and of that
corresponding to the parallel plate model (averaged over solutions s andd).

In the range of measurement frequencies and voltages used inthe present work,
the electrical resistance is expected to be proportional tothe resistivity of the saturating
fluid. Under these assumptions, the ratioRs/Rd of the resistivities measured for fluidss
andd should be the same for the two models: the values of these ratios listed in Table 1
are indeed equal to within±2% so that:

Rs

Rd
=
ρs

ρd
= 0.82± 0.02. (1)

As a result, the ratio of the electrical resistances measured for the two models saturated
by a same solution is also independent of the solution with:

Rchannel

Rbarrier
= 0.85± 0.03. (2)

The values of the resistances have been compared to those predicted by the parallel
plate assumption for an effective aperturea equal to the average〈a(x, y)〉x,y = 0.75 mm
(identical for the two models). The corresponding resistances are respectivelyRpp

s =

L/(w aσs) = 22.8kΩ andRpp
d = L/(w aσd) = 26kΩ.

The values of the ratioR/Rpp are listed in Table 1: it is close to one in the channel
geometry and 10% higher in the barrier one. This implies that, in this latter case, the
roughness has a stronger influence on the fracture resistance. The difference reflects the
anisotropy of the aperture field: similar differences between two such configurations, of
even larger amplitude, have been reported for the values of the permeability (Auradou
et al., 2005).

These static measurements confirm the linear variation of the fluid resistance with
the electrical resistivity of the fluid. This suggests to usea normalized variable in order
to eliminate the influence of the values ofσs andσd. The resistanceR is then replaced
by the normalized parameterR∗:

R∗ =
R− Rd

Rs− Rd
(3)

for flows where the dyed fluid displaces the salt solution and by

R∗ =
R− Rs

Rd − Rs
(4)
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in the opposite situation (fluids replacing fluidd). In this way,R∗ is always equal to
1 at the beginning of the experiments and to 0 when the injected fluid has completely
replaced the displaced one. In order to compare more easily experiments performed at
different mean flow velocitiesU, the timet is also replaced by the reduced variable:
t∗ = Ut/L. Note thatt∗ = 1 corresponds to an injected volume equal to the pore volume
of the fracture.

3. Displacement experiments: measurements results.

In this section we discuss the experimental variations ofR∗(t) as a function of the
reduced timet∗ in the channel and barrier geometry; values of the Péclet number rang-
ing from 28 to 285 have been investigated.

In both figures 5 and 6, the data correspond to experiments in which fluid s dis-
places fluidd. Inverse experiments in which the dyed fluid displaces theNaClsolutions
have also been performed. The variations ofR∗(t∗) obtained in the two cases are the
same: this demontrates that no gravitational instabilities due to residual density con-
trasts appear and that the displacement is not influenced by other differences between
the two solutions.

3.1. Channel geometry.
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Figure 5: Variation of the normalized resistanceR∗ as a function of the reduced timet∗ in the channel
geometry. Experimental data for (◦): Pe = 28, (△): Pe= 142, (�): Pe= 285. Dotted line: parallel plate
model, solid (resp. dashed dotted) lines: predictions of analytical and numerical models from Sec. 4.2 for
n = 0.26; dashed line: theoretical model forn = 1. Inset: enlarged view of bottom right of the main graph.

The resistanceR∗ decreases at first linearly witht∗ with a constant slope up to
t∗ ≃ 0.7 (Fig. 5). Fort∗ ≥ 0.7, one observes a tail-like variation and the slope decreases
continuously to zero.R∗ becomes zero only for values oft∗ significantly larger than 1.
This indicates that a sizable fraction of the displaced fluidis located in slow flow paths
and leaves the model significantly after the mean transit time (t∗ = 1) corresponding to
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the injection of one pore volume. The variations ofR∗(t∗) with t∗ at the different Péclet
numbers are qualitatively similar: the slope at short times(and therefore the efficiency
of the displacement) increases withPe. At long times, the full displacement (R∗ = 0)
is obtained roughly at the same normalized time at allPevalues (i.e. t∗ ∼ 1.5− 1.7).

3.2. Barrier geometry.
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Figure 6: Variation of the normalized resistivityR∗ (see Eqs. (3) and (4)) as a function of the reduced time
t∗ in the barrier geometry. The symbols used for the experimental data are the same as in Fig. 5. Dotted
line: parallel plate model (Eq.(10)), solid (resp. dashed dotted) lines: predictions of analytical and numerical
models from Sec. 4.3. Vertical dashed line: value oft∗ at the transition between variations ofR∗(t∗) with
different slopes. Inset: enlarged view of bottom right of the main graph.

Unlike the previous case (Fig. 5), the full saturation by thedisplacing fluid (i.e.
R∗ = 0) is nearly reached fort∗ = 1 (injection of one pore volume) at all Péclet numbers
and the tail-like features are barely visible (Fig. 6). Thisindicates that no continuous
slow or fast flow paths are present in the model.

Moreover, unlike in the channel case, the slopedR∗/dt∗ does not vary monotonously
with time: it is lower than the average trend for 0< t∗ < 0.5 and higher for 0.5 < t∗ <
0.8 (the transition is marked by the vertical dashed line in Fig. 6). Moreover, the varia-
tions of the slope witht∗ are significantly larger at the two lowest Péclet numbers than
for Pe= 285.

The observations in the channel and barrier geometries and the differences between
them confirm therefore that, in both configurations, the variation ofR∗ with t∗ provides
information on the structure of the flow field.

4. Displacement experiments: models

In this section, the resistance variation curves are modeled first in the simplest case
of a parallel plate approximation and then using two different simplified representations
of the flow field for the parallel and perpendicular cases.
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4.1. Parallel plates geometry.

The description assuming two parallel plane surfaces at a distancea provides a
reference curve for determining the deviations induced by different kinds of hetero-
geneities of the flow field. Also, this assumption will be usedto evaluate the influence
of the conductivity contrast between the two solutions and of the mixing zone which
develops between the two fluids after the flow is established.

Regarding this latter issue, at large enough times, the combination of advection and
transverse molecular diffusion leads to a diffusive spreading regime often called Taylor
dispersion (Taylor, 1953; Boschan et al., 2003). The averagecd of the concentration of
fluid d over the aperture satisfies then :

cd(ζ) =
1
2

(1± Er f (ζ)); (5)

whereζ = (x − Ut)/(2
√

Dt), x is the distance from the fracture inlet,U the mean
flow velocity, t the time andD the dispersion coefficient. In this equation, the plus
(respectively minus) sign corresponds to the situation in which the fracture is initially
saturated by the dyed (respectively transparent) fluid.

For flow between parallel plates, the local resistivityρ(x, y, t) is constant in they
direction, so that the overall electrical resistance is related to the variation along the
lengthL of the fracture by:

R(t) =
1

aw

∫ L

0
ρ(x, t)dx (6)

in whichρ(x, y, t) = ρ(x, t) is related to the local relative concentrationcd of dyed fluid
by: 1/ρ(x, t) = cd(x, t)σd + (1− cd(x, t))σs. Eq. (6) then becomes:

R(t) =
1
σsaw

∫ L

0

1
1− χcd(x, t)

dx (7)

whereχ = 1− σd/σs. Due to the small contrast between the conductivitiesσs andσd

(χ = 0.12), one can assume thatχcd ≪ 1: Eq. (7) may then be approximated by:

R(t) ≃ 1
σsaw

(

L + χ
∫ L

0
cd(x, t)dx

)

. (8)

The integral at the right is the ratio of the volume of dyed fluid inside the fracture by
the sectiona w transverse to the mean flow. For a fracture initially saturated by the salt
solution, mass conservation requires that this integral beequal toQt/aw in which Q is
the volume flow rate. Then, Eq. (8) becomes:

R(t) ≃ 1
σsw

(L
a
+ χ

Q
a2w

t
)

. (9)

Since the ratioQ/(aw) is equal to the mean velocityU which is also that of the front,
the resistance varies linearly fromRs = L/(awσs) to Rd = L/(awσd). In the other flow
configuration (dyed fluid displaced by salt solution),Qt must be replaced byawL−Qt.
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Figure 7: Variation of the resistance with time in the parallel plate model. Solid line: prediction from
Eq. (10). Dotted and dashed lines: normalized resistivity variationR∗(t∗) computed by integrating Eq. (7)
for χ = 0.12 and, respectively,α/a = 1 andα/a = 10. Dash-dotted line: variation ofR∗(t∗) computed for
α/a = 10 andχ = 0.7. Inset: enlarged view of bottom right of the main graph.

Using the normalized variablesR∗ andt∗ defined in Sec. 2.4, Eq. (9) becomes:

R∗ = 1− t∗. (10)

This variation is represented by a straight dotted line as a reference in Figs. 5 and 6.
Due to the normalization, the slope is always negative (= −1) while it may be of either
sign for the variation ofR(t).

The variation from Eq. (10) does not depend on the dispersioncoefficientD: this
is however only valid as long as the upstream part of the concentration variation front
has not reached the end of the fracture and all the injected fluid has remained within it.

In order to evaluate the influence of this latter effect, as well as of the approxima-
tion made by replacing Eq. (7) by Eq. (8), Eq. (7) has been integrated directly, using
Eq. (5) in order to estimatecd(x, t). The dispersion coefficientsD (or equivalently the
normalized dispersivitiesα/a = D/(Ua)) are taken equal to the upper and lower values
determined previously from sequences of images of the displacement front (Boschan
et al., 2009). The result of this computation is compared in Fig. 7 to the linear variation
from Eq. (10).

For χ = 0.12 (value used in the present experiments), the curves computed from
Eq. (7) are, at first, only slightly below the linear variation from Eq. (10). When the
forward part of the displacement front reaches the end of themodel, there is an upward
curvature of the variation andR∗ becomes larger than the value predicted by the parallel
plate model ast∗ → 1 (see inset). This occurs earlier forα/a = 10 (t∗ ≃ 0.75) than
for α/a = 1 (t∗ ≃ 0.92): this difference reflects the broader width of the front due to
dispersion forα/a = 10. The value ofR∗ differs still significantly from 0 att∗ = 1: this
shows that the saturation of the fracture by the displacing fluid is incomplete.

For the larger conductivity ratioχ = 0.7, the curve derived from Eq. (7) (dash-
dotted line) is clearly below the linear variation predicted by Eq. (10): this implies that
the first order approximation used to obtain Eq. (8) is not valid any more. Even when
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Figure 8: Schematic view of the front geometry with the aperture and velocity distributions for the channel
(left) and barrier (right) models. Grey (white) zones: portions of the fracture saturated with the displacing
(respectively displaced) fluid. For the channel model, discretized channels are shown for simplicity but the
aperturea(y) and the velocityu(y) are actually continuous functions ofy.

the deviation from the linear variation is large, none of thecurves obtained for different
values ofα/a andχ displays abrupt slope variations comparable to those observed on
the experimental curve of Fig. 6.

The above results demonstrate that the variation of the electrical resistance is mainly
determined by the overall translation of the displacement front separating regions sat-
urated by solutions of different electrical conductivities. The hydrodynamic dispersion
only adds a tail feature to the curves fort∗ values close to 1. In the following models,χ
is always taken small and the variation of the resistance areassumed to be determined
exclusively by convective processes (i.e. the effect of local dispersion is neglected).

We shall now take into account the effect of the heterogeneities of the flow field by
means of two different models specifically adapted to either the perpendicular or the
parallel case.

4.2. Channel geometry

Velocity field and front displacement.In this case, the fracture is described as a set
of independent channels parallel to the mean flow (see Fig. 8a) and of aperturea(y)
constant withx: a previous study (Boschan et al., 2009), has indeed shown that this
model reproduces well the large scale geometry of the displacement front (defined as
the isoconcentration linec = 0.5). As in Fig. 1,a(y) is equal to the average〈a(x, y)〉x.

In order to compute explicitely the profile of the front separating the two fluids, the
polymer solutions used in the present experiments are assumed to be power law shear
thinning fluids of rheological exponentn at the highest Péclet numbers (the effective
viscosityµ is related to the shear rate ˙γ by : µ ∝ γ̇−n). The valuen = 0.26 has
been obtained by means of independent rheological measurements (see Boschan et al.
(2009)). The velocityu(y) is then :

u(y) =
u a(y)(n+1)/n

< a(y)(n+1)/n >y
(11)
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in which u =< u(y) >y is the mean fluid velocity across the fracture. The front profile
xf (y, t) is then given by:

xf (y, t) = u(y)t (12)

The resulting profiles display large structures with an amplitude increasing linearly
with time (Boschan et al., 2009).

A low Pevalues (low velocities), the solutions behave like Newtonian fluids with
µ = cst., corresponding ton = 1.

Analytical computation of the resistance.Since local dispersion is neglected, a local
element of the fracture is assumed to be fully saturated by one of the pure fluidss or
d: the displacement front is therefore the boundary between two regions occupied by
each pure fluid.

In a first step, the variation with time of the effective resistance of the fracture
is computed by assuming that, like for mass flow, there is no transverse transport of
electrical current. Then, Eq. (7) is applied to each elementary channel by replacinga
by its local valuea(y) and taking into account the variation ofcd(c, y, t) with y. The
elementary channels are in parallel so that their conductances add up. Using again a
first order approximation with respect toχ ≪ 1 provides the following expression of
the global effective conductance:

1
R(t)
=
σs

L

∫ w

0
a(y)

(

1− χ
L

∫ L

0
cd(x, y, t)dx

)

dy. (13)

For an elementary channel at a distancey, the integral ofcd with respect tox is either
equal toL if the front has reached the end of the model (u(y)t ≥ L) or tou(y)t otherwise
(u(y)t ≤ L). Therefore:

1
R(t)
=
σs

L

∫

u(y)t≤L
a(y)

(

1− χ
L

u(y)t
)

dy+
σs

L

∫

u(y)t≥L
a(y)(1− χ)dy. (14)

At early times such thatu(y)t ≤ L for all y, 1/Rvaries linearly witht with:

1
R(t)
=
σs

L

∫ w

0
a(y)dy− σsχ t

L2

∫ w

0
a(y)u(y)dy (15)

Again using a first order approximation forχ ≪ 1, Eq. (15) may be rewritten in the
following form equivalent to Eq. (9):

R(t) =
L

σs

∫ w

0
a(y)dy

















1+
χt
L

∫ w

0
a(y)u(y)dy

∫ w

0
a(y)dy

















(16)

This expression becomes identical to Eq. (10) forR∗ defined from Eq. 3 andt∗ taken
equal toUt/L (U is here the arithmetic mean

∫ L

0
a(y)u(y)dy/

∫ L

0
a(y)dy).

This initial linear regime is left fort∗1 = U/UM ≤ 1 in whichuM is the maximum of
the velocitiesu(y).

At longer times, the full equation (14) must be used. Then, the value:R∞ ≃ (1+
χ)R(0) of the resistance corresponding to a full saturation by the displacing fluid is
reached fort∗2 = U/um ≥ 1 (um is the minimum velocity).
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The result of the computation forn = 0.26 is plotted in Fig. 5 as a solid line. The
predicted variation corresponds well to the experiments, particularly forPe= 285: in
this case, the experimental and theoretical curves coincide precisely in both the linear
and in the “tail” parts of the curves.

At lower Péclet numbers, the absolute value of the slope becomes lower: this may
be due to the transverse diffusion of fluid between the fastest flow paths and the slower
ones.

Replacing the power law fluid by a Newtonian one (dashed line in Fig. 5) strongly
reduces the tail effect: the linear variation is retained during a longer timet∗ than for the
shear thinning solution. This reflects the lower value of thevelocity contrasts between
the fast and slow slow paths for the Newtonian solution (n = 1) than forn = 0.26. The
slope of the linear variation is however the same. The reduced value of the experimental
slope at lowerPe’s is therefore not accounted for by the vicinity of a Newtonian plateau
of the rheological curve at lower shear rates.

Numerical2D computation of the resistance.In the above model, transverse electrical
transport in they direction is neglected. It will however be present since theaperture
field a(x, y) is bidimensional even though it is strongly anisotropic.

In order to estimate its influence, numerical simulations have been performed: the
full 2D aperture fielda(x, y) is used for computing the electrical resistance while, at
all times, the frontxf (y, t) is computed in the same way as above. The fractured is
modelled as a two dimensional array of resistors with mesh sizesδl andδw respectively
alongx andy. The resistance of a node of coordinates (x, y) is taken equal to:

r(x, y) =
δl

σa(x, y) δw
(17)

in whichσ is equal toσs orσd depending on the fluid saturating the node.
The array is considered as a set of bonds linking two nodes of the array and with a

resistance equal to the mean of that of the nodes. At each timestep, the computation of
the equivalent resistance by writing Ohm’s law for every bond leads to a set of linear
equations solved by means of a conjugate gradient method. Like for the analytical
model, the predicted variation ofR∗(t∗) with t∗ is independent ofPe (local dispersion
and molecular diffusion are again neglected).

The variationR∗(t∗) obtained in this way is represented by a dashed-dotted linein
Fig. 5. The values obtained are very similar to the predictions of the simpler analytical
model (dashed dotted line). This shows that the transverse electrical currents have
almost no influence on the electrical resistance, at least inthe channel geometry. This
justifies therefore the use of the analytical model in the inversion tests discussed below.

4.3. Barrier geometry

Velocity field and front displacement.In this geometry, corresponding to the aperture
field of Fig. 2, we assume that the front between the two fluids remains flat at all
times; however, its velocitydxf /dt = u(x) varies with distance so that the flow rate
Q = u(x)a(x)w remains constant while the mean aperturea(x) varies (see Fig. 8b). The
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transit timet(xf ) of the front fromx = 0 to x = xf is:

t =
∫ xf

0

dx
u(x)

=
w
Q

∫ xf

0
a(x) dx (18)

In contrast with the channel case, this relation does not depend on the rheology of
the fluid (the latter influences only the local velocity profile between the walls of the
fracture and is therefore not relevant in the present model).

Analytical and numerical computation of the resistance.In this barrier geometry, the
global effective resistance is obtained by summing the resistances ofthe slices corre-
sponding to different distancex and which are, this time, in series. In the case in which
solutions is replaced by solutiond, this leads to:

R(t) =
1
σsw

(∫ L

0

dx
a(x)
+ χ

∫ xf (t)

0

dx
a(x)

)

. (19)

The slopedR/dt of the variation is not constant with time like in the case of the parallel
plates but is given by:

dR(t)
dt
=
χ

σsw
Q

a2(x)
. (20)

in which Q = a(x)w dxf/dt is (as above) the flow rate.
Eq. (19) may be rewritten using the dimensionless variablesR∗ defined by Eq. (3)

andt∗ defined by:

t∗ =
t(xf )

t(L)
=

∫ xf

0
a(x) dx

∫ L

0
a(x) dx

=
U t
L

(21)

in which whichU is the harmonic mean of the velocitiesu(x) over the distance L. The
variation ofR∗ as a function oft∗ is plotted in Fig. 6 as a solid line and does not depend
on Pe.

Like for the experimental data (symbols) and unlike for the channel geometry,
no tail is observed but the slope varies significantly duringthe displacement: from
Eq. (20), this reflects the variations of the aperturea(x). Quantitatively, the values ob-
tained are closer to data from the experiments corresponding to the two lowest Péclet
numbers (Pe= 28 andPe= 142) but slightly higher. This may reflect the increase of
the longitudinal dispersion at high flow rates.

Like in the channel geometry, the influence of transverse electrical current on the
value of the resistance is verified by computing the electrical resistance by means of
a 2D numerical computation based on the full aperturea(x, y). In contrast, the front
is still assumed to be flat and its displacement is computed asabove. The numerical
procedure for computing the resistance at a given time is thesame as for the channel
geometry and the result is plotted in Fig. 6 as a dashed-dotted line.

The values are again very similar to those predicted by the simpler analytical model
which is therefore always used for computing the electricalresistance in the inversion
procedures below. Globally, the results reported here demonstrate that the barrier and
channel structures of the aperture field induce very different deviations from the lin-
ear variation of the resistance with time corresponding to aparallel plate model. We
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demonstrate now that the resistance measurement may be usedto obtain quantitative
information on the fracture heterogeneity (this represents indeed a key issue in view of
practical applications).

5. Inversion of experimental resistance variation data

Two different approaches are used in this part depending on the occurence of tailing
or of variations of the slope in the plots of the resistance asa function of time.

Practically we seek to determine from the variation of the resistance with time the
parameters of the simplified theoretical description from Secs. 4.2 or 4.3 suitable in the
case considered.

5.1. Inversion of the data for the channel geometry
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Figure 9: a) Variation of the derivatived/dt(1/R) as a function of time for the experiment atPe = 285 in
the channel geometry. b) Compared variations of the distribution q(u) of the flow rate as a function of the
velocity u for the same experiment (solid line) and ofa2p(a) as a function ofa(n+1)/n (crosses).

16



In this case, the resistance variation curves display a roughly linear part and a tail
one. Most of the information on the distribution of the apertures and flow velocities
is provided by the tail: it corresponds to the transition between the breakthrough of
the front at the end of the model (x = L) in the fastest channels and in the slowest
ones. This is clearly seen by differentiating Eq. (14) with respect to time. Only the first
integral contributes to the derivative since the second corresponds to channels already
fully saturated with the displacing fluid. This leads to:

d
dt

(

1
R(t)

)

= −σsχ

L2

∫

u(y)t≤L
a(y)u(y)dy. (22)

The variation ofd(1/R)/dt with time is plotted in Fig. 9a. The Péclet numberPe= 285
has been selected because it corresponds to the best fit of thetheoretical models with
the experimental variation. After a transient initial rising part, a plateau value is reached
(dashed line) and, then, the slope decreases in the tail partof the curveR(t) (here for
t ≥ 800s): in the following, this will be the range of times of interest. The initial rise
likely corresponds to the time required for the homogeneization of the distribution of
the fluids over the distance between the fracture walls afterthe initial injection.

Actually, the integral in Eq. (22) represents the cumulative flow rateQ(uc) =
∫ uc

0
q(u)du in the channels of velocityu(y) ≤ uc = L/t: at short times, this condi-

tion is met for all channels andQ(u) = Q. The derivativeq(u) = dQ/du characterizes
therefore the distribution of the flow in the model between the channels of different
velocities. Derivating Eq. (22) with respect to time leads to:

d2

dt2

(

1
R(t)

)

= −σsχ

L2

du
dt

q(u). (23)

with u = L/t so that, replacingdu/dt as a function oft,

t2
d2

dt2

(

1
R(t)

)

=
σsχ

L
q(u). (24)

The distributionq(u) for values ofu such that the corresponding timeL/u is in the tail
region is displayed in Fig. 9b.

The functionq(u) may also be related to the normalized probability distribution
p(a) of the apertures of the channels. This distributionp(a) has been determined from
the mean aperture profilea(y) (see Fig. 1). The functionq(a) is then given byq(a) =
w a u(a) p(a) and related toq(u) by q(u) = q(a) da/du. Also, from Eq. (11), the velocity
u(a) in a region of local aperturea is proportional toa(n+1)/n. Combining these relations
leads toq(u) ∝ a(u)2p(a(u)) (the order of magnitude of the proportionality coefficient
may be roughly estimated but its precise value depends on thegeometry of the rough
surfaces). These two estimations ofq(u) are compared in Fig. 9; the scales have been
adjusted and the variablea(n+1)/n is used for the horizontal (upper) axis in order to make
the comparison easier.

Both distributions have a double peaked shape and the valuesof ratio between the
values ofu corresponding to these peaks are also similar. This confirmsthat informa-
tion on the flow probability distributions can be obtained from the resistance variation
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curves. Obtaining information on the spatial distributionof the flow (particularly in the
directiony) is however of course not possible for such global measurements averaged
over the widthw. Local sensors with some spatial resolution in the direction y would
be useful for that purpose.

5.2. Inversion of the data for the barrier geometry

-20x10
-3

-15

-10

-5

0

d
R

/d
t (o

h
m

/s) (ex
p

erim
en

tal)

0.80.70.60.50.40.30.20.1
x/L (adim.)

-3.0

-2.0

-1.0

0.0

1.00.80.60.40.20.0

-1
/a

(x
)2

  
  
(m

m
)-

2

t*

Figure 10: Barrier geometry: compared variations of the experimental time derivativedR∗/dt∗ of the resis-
tance for 3 Péclet numbers and of the inverse of the squared aperture 1/a(x)2 (continuous line) as a function
of the reduced timet∗ = Ut/L and of the distancex/L respectively. The values of the experimental param-
eters and the symbols used for the experimental data are the same as in Fig. 6 and the vertical scales have
been selected to make comparisons easier.

In this configuration in which heterogeneities are barriersperpendicular to the mean
flow, the variations of the resistance with time allow one to determine the variations of
the aperture with distance. Assuming that the aperture has avaluea(x) independent
of the transverse distancey, Eq. (20) predicts indeed thatdR∗(t∗)/dt∗ ∝ 1/a(x)2. This
relation is applicable if local dispersion is negligible: practically, the width of the front
must remain small compared to the characteristic distancesof variation of the aperture
alongx.

The validity of Eq. (20) is tested in Fig. 5.2: the variationsof dR∗(t∗)/dt∗ and
1/a(x)2 respectively as a function of the normalized variablest∗ andx/L are compared
(using these two different horizontal scales amounts to neglect the small deviations
of the front velocity from a constant value). One observes anexcellent correlation
between the large and medium scale variations of both quantities, particularly at the
two lowest Péclet numbers.

More globally, we also compared the mean slopes of the variations ofR∗(t∗) in the
first and second half of the displacement (0≤ t∗ ≤ 0.5 and 0.5 ≤ t∗ ≤ 1) to the square
a2

2/a
2
1 of the ratio of the mean apertures in the corresponding regions of the model

(0 ≤ x ≤ L/2 andL/2 ≤ x ≤ L). The aperture map of Fig. 2 leads toa1 ≃ 0.83 mm and
a2 ≃ 0.66 mm so thata2

2/a
2
1 ≃ 0.68 while the ratio of the slopes of the resistance curve

has a comparable value of the order of 0.75.
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These results show that, in the “barrier” configuration, quantitative information on
the variationa(x) of the mean aperture is readily obtained from the variationof the
resistance with time through a simple derivation.

6. Discussion and conclusions

The experimental results reported here demonstrate that measurements of the vari-
ation with time of the global electrical resistance during amiscible displacement ex-
periment provides quantitative information on the large and medium scale variations of
the local velocity and aperture in rough fractures.

We have found that, in order to make the interpretation simpler, the contrast be-
tween the electrical conductivities of the two fluids must bemoderate. Practically,
information is provided by the deviation of the variation ofthe resistance from that for
a parallel plate system of same effective aperture. It has also been verified that using
shear thinning fluids enhances the velocity contrasts between the different flow paths
and may help detecting the heterogeneities.

Preferential channels parallel to the mean flow (channel geometry) lead to devi-
ations from the parallel plate variation due to early breakthrough at the outlet of the
fracture; slow channels delay instead the full saturation of the medium. The velocity
contrasts between these different channels as well as the distribution of the aperture
may be estimated from the values of these early and late arrival times.

Barrier type features extending over a large fraction (or all) the fracture width in-
duce deviations of the derivativedR/dt of the variation of the resistance with time from
its average value: the variations of this derivative were shown to vary as the inverse of
the square of the local aperture (at least for large and medium scale variations).

Local dispersion and/or heterogeneities also influence the variation of the resis-
tance, particularly when the front width is not negligible compared to the length of the
sample. Deviations associated to the longitudinal dispersion take then place mostly
when the displacement front leaves the fracture. Transverse dispersion is also observed
to influence the resistance: it reduces for instance the derivative of its variation with
respect to time: such effects may be used to characterize this process.

The measurements described in the present paper are applicable to natural fractured
rocks like those encountered in the granitic field sites usedpreviously for hydrome-
chanical experiments (Cornet et al., 2003). In such cases the surface conductivity of
the rocks (due for instance to clay minerals) often needs to be taken into account (Ruffet
et al., 1995): the analysis of the frequency dependence of the real and imaginary parts
of the impedance may then provide useful complementary information. In the case of
fractured porous rocks, retardation effects due to solute exchange between the pores
and the fracture must also be taken in consideration. Finally additional information
may be obtained by using several local electrodes at the inlet and outlet of the sample
in order to achieve some lateral resolution in the directiontransverse to the flow.
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