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EEG sensor selection by sparse spatial filtering in P300 speller

brain-computer interface

Bertrand Rivet, Hubert Cecotti, Ronald Phlypo, Olivier Bertrand, Emmanuel Maby and Jérémie Mattout

Abstract— A Brain-Computer Interface (BCI) is a specific
type of human-machine interface that enables communication
between a subject/patient and a computer by direct control from
decoding of brain activity. This paper deals with the P300-
speller application that enables to write a text based on the
oddball paradigm. To improve the ergonomics and minimize
the cost of such a BCI, reducing the number of electrodes is
mandatory. We propose a new algorithm to select a relevant
subset of electrodes by estimating sparse spatial filters. A l1-
norm penalization term, as an approximation of the l0-norm,
is introduced in the xDAWN algorithm, which maximizes the
signal to signal-plus-noise ratio. Experimental results on 20
subjects show that the proposed method is efficient to select
the most relevant sensors: from 32 down to 10 sensors, the loss
in classification accuracy is less than 5%.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are new kinds of devices,

which enable direct communication between the user’s brain

and a computer [1], [2]: such systems allow people to

communicate through direct measurements of brain activity,

without requiring any movement. BCIs usually exploit cere-

bral activities measured by electroencephalography (EEG)

and could thus be useful to patients who suffer from severe

neuromuscular disorders (e.g. “locked in” patients). Current

BCIs determine the user’s intent from different electrophys-

iological signals: for instance the user may actively control

some brain waves (e.g., mu or beta rhythms) or the BCI

may exploit natural passive response of the brain to external

stimuli (e.g., event related potentials) [1].

The BCI problem addressed in this paper concerns the

P300-speller [3], [4] which enables people to write a text on

a computer. It is based on the oddball paradigm: the task is

to discriminate between epochs containing a P300 potential

evoked by a (rare) target stimulus and epochs associated

with the (frequent) non-target stimuli. To gather enough ev-

idence and yield robust classification, each symbol/stimulus

is presented/flashed several times. However, this is done at

the expense of reducing the speed of the system: e.g., with

15 repetitions, about two symbols can be spelt per minute

only [3]. Moreover, the signal-to-noise ratio (SNR) of EEG

signals is very low, and signals often contain muscular and/or

ocular artifacts. To increase SNR and hence classification

accuracy, several methods based on spatial filtering have been
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proposed such as those based on independent component

analysis (ICA) [5], [6] or, more recently, the xDAWN algo-

rithm [7], [8]. These studies have shown that enhancing the

P300 response using spatial filters enables to reduce the size

of the required training set in order to reach a certain level of

classification accuracy in the test phase. As a consequence,

the ergonomics is improved as the training phase becomes

shorter. Yet to further improve the BCI ergonomics, a crucial

need is to reduce the number of electrodes. Indeed, using a

large number of electrodes is undesirable since it increases

the discomfort of the patient, the time needed to install the

whole system as well as its global cost. However, only a

few studies have focused on sensor selection so far. Some

studies did compared a priori selected subsets in terms of

subsequent classification performance (e.g., [9], [10]) while

others have applied by blind approaches to select the most

relevant sensors (e.g., [11]). The major drawback of the latter

is its need for K-fold cross validation, which requires a large

number of training symbols. In [12], we proposed a faster

and efficient sensor selection approach based on backward

elimination. In the current study, the xDAWN algorithm is

modified by supplementing the SNR criterion with a l1-

norm penalization term which leads to estimate sparse spatial

filters, that is with only a few non-zero coefficients.

This paper is organized as follows. Section II describes the

P300 subspace estimation and the associated classification

issue. Section III presents the obtained results on empirical

data from twenty subjects. Finally Section IV concludes the

paper with comments and perspectives for future work.

II. METHODOLOGY

A. Data description and preprocessing

The P300-speller enables the user to select symbols (let-

ters, digits, images). The target plays the role of an oddball

and thus elicits a P300 response each time it is emphasized

on screen. In our setting, a 6× 6 matrix that contains all the

available symbols is displayed on a computer screen (Fig. 1).

To spell one symbol, the user has to focus on the one s/he

wants to spell. When the user focuses his attention on a

cell of the matrix, it is possible to detect a P300 (a positive

deflection in voltage at a latency of about 300 ms in the EEG)

after the cell was intensified. Symbols are not intensified

or flashed individually but together with the symbols that

belong to the same matrix row or column. Row and column

intensification is randomized by blocks of 12 (6 rows and 6

columns). The sets of 12 intensifications is repeated Nepoch

times for each symbol. Therefore, 2Nepoch P300 responses

might be detected for to identify the target recognition: each



(a) P300-Speller Graphical User
Interface

(b) Typical responses to tar-
get/rare (P300) and non-target/
frequent stimuli

Fig. 1. P300-Speller BCI application. Fig. 1(a): screen display, Fig. 1(b):
average responses on sensor location Cz

symbol is uniquely defined by the intersection of one row

and one column.

Data were recorded from 20 healthy subjects [13]. Two

sessions were considered: one for training the classifier, the

other for testing. For the training and test sessions, the subject

had to write 50 and 60 predetermined symbols respectively.

Each row and column in the spelling matrix was randomly

intensified for 100ms and the delay between two consecutive

intensifications was 80ms, leading to an interstimulus interval

(ISI) of 180ms. For each symbol there was 10 consecutive

epochs (Nepoch = 10).

The EEG signals were initially sampled at 100Hz. Data

preprocessing included a fourth order bandpass filter between

1Hz and 20Hz. Finally, each sensor signal was centered and

reduced so that they had a zero mean value and a standard

deviation equal to one.

B. xDAWN algorithm to enhance P300 potentials

In this section, the principle of the xDAWN algorithm is

briefly reprised [7], [8]. Its goal is to enhance the signal

to signal-plus-noie (SSNR). This method relies on two

assumptions: i) signal is made of two typical responses,

one evoked by the targets and one evoked by all stimuli

(target and non-target ones); ii) responses evoked by the

target stimuli could be enhanced by spatial filtering. Let

X ∈ R
Nt×Ns denote the recorded signals, where Nt and

Ns are the number of samples and sensors, respectively.

We denote the responses synchronized with the target and

non-target stimuli by A1 ∈ R
N1×Ns and A2 ∈ R

N2×Ns ,

respectively. Thus,

X = D1A1 +D2A2 +N, (1)

where D1 ∈ R
Nt×N1 and D2 ∈ R

Nt×N2 are Toeplitz

matrices whose first column entries are set to zero except

for those that correspond to target stimuli and all stimuli,

respectively. N1 and N2 indicate the number of samples in

responses A1 and A2, respectively. N ∈ R
Nt×Ns denotes

the residual noise.

The aim of the xDAWN algorithm is to estimate Nf spatial

filters U1 ∈ R
Ns×Nf so that the SSNR defined by

g(U) =
Tr
(

UT Σ̂1U
)

Tr
(

UT Σ̂XU
) (2)

is maximum

Û1 = argmax
U1

, g(U1) (3)

where Tr(·) is the trace operator and Σ̂1 = ÂT
1 D

T
1 D1Â1,

Σ̂X = XTX . Note that Â1 is the least mean square

estimation of the unknown target evoked response A1. Since

D1A1 and D2A2 could overlap, Â1 is estimated from
(

Â1

Â2

)

=
(

DTD
)−1

DTX, (4)

with D = [D1, D2]. To estimate the spatial filters Û1,

one computes the QR decompositions X = QXRX and

D1 = Q1R1 [14]. Spatial filters then obtains from Û1 =
R−1

X Ψ1:Nf
, where Ψ1:Nf

is the concatenation of the Nf sin-

gular vectors Ψi associated with the Nf maximum singular

values λi provided by the singular value decomposition of

R1B
T
1 QX = ΦΛΨT . Φ and Ψ are unitary matrices, Λ is a

diagonal matrix [14] and Â1 = BT
1 X . Finally, the enhanced

signals are given by

Ŝ1
△
= XÛ1 = D1A1Û1 +D2A2Û1 +NÛ1. (5)

C. Sparse estimation of spatial filters to select sensors

A substantial drawback of the xDAWN algorithm (3) is

that it provides a non-sparse spatial filters Û1, leading thus

to consider that all the sensors are necessary to achieve a

suitable enhancement of response A1 evoked by the target.

However we have already shown that based on this approach,

the number of sensors could still be reduced (e.g., from

32 down to 8 sensors) while keeping a high classification

accuracy (85% instead of 92%) [12]. Nevertheless, in this

study, we describe and evaluate a more generic and simpler

method to select relevant sensors. It consists of introducing

a l1-norm penalization term in the xDAWN criterion (3) as

follows:

v̂1 = arg max
‖v1‖2=1

f(v1, λ), (6)

with f(v1, λ) defined by

f(v1, λ) = g(v1)− λ
‖v1‖1
‖v1‖2

, (7)

where hyperparameter λ ≥ 0 is a penalization multiplier

adjusted to control the sparsity of the spatial filter v1.

Indeed, the l1-norm penalization is well known to be a good

candidate to solve sparse problem as it could be seen as an

approximation of the l0-norm which is the number of non-

zero elements of a vector [15], [16]. Note that the constraint

‖v1‖2 = 1 is required since the Rayleigh quotient (first

term in criterion (7)) is invariant by a scaling factor. To

maximize (6), a gradient method is used:

v
(k+1)
1 =

v
(k)
1 + ρ(k)∂v1

f(v
(k)
1 , λ)

‖v
(k)
1 + ρ(k)∂v1

f(v
(k)
1 , λ)‖2

, (8)

where ∂v1
f(v

(k)
1 , λ) is a subgradient of f(v1, λ) defined by

∂v1
f(v

(k)
1 , λ) =

∂

∂v1

(

v
T
1 Σ̂1v1

v
T
1 Σ̂Xv1

)

− λ∂v1

(

‖v1‖1
‖v1‖2

)

,



with

∂

∂v1

(

v
T
1 Σ̂1v1

v
T
1 Σ̂Xv1

)

=
2

v
T
1 Σ̂Xv1

(

Σ̂1v1 −
v
T
1 Σ̂1v1

v
T
1 Σ̂Xv1

Σ̂Xv1

)

and

∂v1

(

‖v1‖1
‖v1‖2

)

=
S(v1) 1Ns

‖v1‖2
−

‖v1‖1

(vT
1 v1)3/2

v1,

where 1Ns
∈ R

Ns is a vector of ones and S(v1) is a diagonal

matrix such that

S(v1)ii =











1, if v1(i) > 0

0, if v1(i) = 0

−1, if v1(i) < 0.

Note that i) this is only a subgradient since the l1-norm is

undifferentiable; ii) the division of ‖v1‖1 by the l2-norm

‖v1‖2 in the penalization term in criterion (7) is to ensure

that iteration v
(k)
1 +ρ(k)∂v1

f(v
(k)
1 , λ) has a l2-norm as close

as possible to one before projection onto the l2-ball of unit

radius in order to speed up the convergence of the gradient

algorithm. In this study, parameter λ that controls the sparsity

of the estimated spatial filter v̂1 is chosen manually based on

the number Nss of selected sensors. Finally, the Nss selected

sensors corresponding to the non-zero entries in v̂1 (6). The

final sparse spatial filters v̂
∗
i are then computed by applying

the classical (unconstrainted) xDAWN algorithm (3) to those

selected sensors only.

D. Classification

Among the proposed classifiers that are considered for

BCIs, Bayesian linear discriminant analysis (BLDA) [9] is

chosen since it has proved efficient and is fully automated

(i.e. no need to adjust some hyperparameter) [9]. BLDA

consists of finding a discriminant vector w such that wT
p

is as close as possible to the class index t associated

with the corresponding feature vector p obtained from the

concatenation of time-course samples of enhanced signals.

The discriminant vector w is estimated from the set of pairs

{pj , tj}1≤j≤12NcNepoch
obtained from the Nc symbols of the

training database.

III. RESULTS

In this section we present the results obtained from the

above described experiment using the proposed new ap-

proach for sparse spatial filtering, in comparison with clas-

sical filtering using the xDAWN algorithm. We considered

epochs of 1s duration for the target response A1 and .180s

for non-target response A2. Moreover, in this preliminary

study, the penalization parameter λ was optimized manually

and independently for each subject.

As λ increases, the sparsity of the estimated spatial filters

v̂1 (6) grows (Fig. 2). This penalization parameter must

thus be chosen carefully with respect to the desired number

of sensors to be kept. On figure 2, we see the interesting

evolution of the SSNR as a function of hyperparameter λ.

The sparse SSNR corresponds to g(v̂1), where v̂1 are the
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Fig. 2. Influence of penalization parameter λ on the SSNR.

10 20 30
−1

0

1

i

u 1(i)

(a) Non-sparse spatial filter

10 20 30
−0.5

0

0.5

1

i

v 1(i)

(b) Sparse spatial filter

Fig. 3. Illustration of the sparse spatial filtering: Fig. 3(a) classical xDAWN,
Fig. 3(b) sparse xDAWN (λ = 0.4).

sparse spatial filters computed using the penalized criterion.

The classical SSNR refers to g(v̂∗
1), where v̂

∗
1 are the spatial

filters computed using the unconstrained criterion, once the

sensors have been selected. We observe that the sparse SSNR

follows a continuous decrease, while the classical SSNR

follows a step-wise decrease where each step corresponds

to a drop of one or several sensors. For the latter, the more

sensors have been dropped simultaneously, the larger the

drop in SSNR. This clear relationship suggests that one could

fairly easily adjust the penalization parameter given a desired

final number of sensors.

Fig. 3 shows an example of spatial filters esti-

mated by classical xDAWN (Fig. 3(a)) and by sparse

xDAWN (Fig. 3(b)), respectively. With λ = 0.4, only 5 out

of 32 sensors ends up with non-zero entries. Importantly,

it appears that the remaining sensors do not necessarily

correspond to those with the largest entries in û1. Hence

simple projection onto the l1-ball or soft/hard-thresholding

would not have resulted in the same optimum set of sensors.

Figure 4 depicts the classification accuracy as a function of

the number of selected sensors (Nss). As expected, the more

sensors, the higher the accuracy. However, from 10 to 32

sensors the gain in average classification accuracy is smaller

than 5%. The same effect obtains when only considering

5 epochs per symbol. Finally, we observed that for about

75% of the subjects, reducing the number of electrodes

down to 8 has not a profound impact on classification

accuracy (Fig. 4(b)). This is highly promising in the aim

of improving the ergonomics of such BCIs.

Although the selected electrodes are specific to each

subject, preliminary comparisons between subjects show that
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Fig. 4. Average classification accuracy of the P300 speller versus the
number of selected sensors.
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Fig. 5. Selected sensors: each number corresponds to the total times this
sensor is part of the 10 most relevant sensors for a specific subject.

several sensors are common to a majority of subjects. For

instance, with 10 selected sensors, five of them appear to be

common to more than 10 subjects (Fig. 5). These electrodes

are mainly located over occipital areas, confirming previous

findings that suggested those sites sites were relevant [17],

[18].

IV. CONCLUSION AND PERSPECTIVES

In this preliminary study, a new and promising sensor

selection procedure was introduced. It is based on a global

criterion defined by the maximization of the signal to

signal-plus-noise ratio (SSNR) penalized by a l1-norm term

to favour sparse estimates. The selected sensors are then

spatially filtered by the unconstrained xDAWN algorithm

leading to the largest SSNR. We established that the choice

of a penalization parameter value allows to select a specific

reduced subset of relevant electrodes. Namely, reducing the

number of sensors by 66% yields only a slight decrease

in classification accuracy (by less than 5%). Importantly,

this new method entails a global optimization approach

compared to backward elimination as introduced in [12].

Further works will include a deeper analysis of the influence

of the penalization parameter λ on the criterion to propose

a fully automated scheme. Then we will be able to focus

on the identification of universal sensor subsets that could

ensure high accuracy for every subject.
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