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Rate of decay to 0 of the solutions to a
nonlinear parabolic equation
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Résumé: On étudie 'ordre de convergence vers 0, quand t — 400 de la

solution de I'équation vy — A + |¢[P~1p = 0 avec les conditions aux limites

de Neumann dans un ouvert connexe borné de R"™ ot p > 1. On montre

que soit 1 (t, -) converge vers 0 exponentiellement, soit (¢, -) décroit comme
1

t -1,

Abstract: We study the decay rate to 0, as ¢ — 400 of the solution
of equation vy — At + |1|P71) = 0 with Neumann boundary conditions in a
bounded smooth open connected domain of R™ where p > 1. We show that

either (¢, -) converges to 0 exponentially fast or ¥ (t, -) decreases like s
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1 Introduction and main results.

In this paper we consider the following nonlinear parabolic equation

{wt—Aerg(w):o in Rt xQ,

o (1.1)

8_n:0 on RT x 00.

where ) is a bounded smooth open connected domain of R” and g € C*(R)
satisfies

9(0) =0 (1.2)
and for some p > 1
de > 0,Vs € R, 0<g(s) <clsP™. (1.3)
From (1.2)-(1.3)we deduce that g(s) has the sign of s and
vseR,ngyggbw (1.4)

We define the operator A by

D(A) = {¢ € H*(Q), g—:ﬁ =0 on 00}

and

Vi € D(A), Ay =—AyY
On the other hand the operator B defined by

D(B) = {¢ € L*(Q), — Ay + g(¥)) € L*(Q) and g—zﬁ =0 on 00}

and
V¢ € D(B), By =-AY+g(y)

is well-known to be maximal monotone in L?*(2). As a consequence of [1, 2]
for any 1y € L*(f2) there exists a unique weak solution of the equation

Y +Byp=0 on RY;, (0,z)=1. (1.5)

In addition it is well known that if ¢y € L*°(€2), 9(t, -) remains in L>°(€2) for
all ¢ > 0. Finally [8] contains an estimate of the solution in C'(Q2) and C*(Q)
for t > 0, which is valid for any sufficiently regular domain.



Concerning the behaviour for ¢ large, in [5], A.Haraux established in the
case of a pure power nonlinearity the exponential convergence to 0 of the pro-
jection on the range of A of the solution of equation (1.1). Moreover in [4],
the study of the equation v’ + v — Au + g(u) = 0 with Neumann boundary
conditions and where g satisfies 3C,c > 0,Vs € R, c|s[P7 < ¢/(s) < C|s|P~!
for some p > 1, showed that either u(t) converges to 0 exponentially fast, or
||u(t)HH&(Q) > 4t~ Y@= with v > 1 for t > 1.

Several authors have treated some variants of equation (1.1), for example
in [6] with g(u) = cJu[P"'u — A\ju and with Dirichlet boundary conditions,
was studied the decay rate at the infinity of solutions to (1.1), where A\; > 0
is the first eigenvalue of —A in Hj(f2). The result obtained there is optimal
for positive solutions.

According to La Salle’s invariance principle, cf. [3, 7|, any solution ¢ of
(1.1), having a precompact range on Rt with values to L>(2), converges to
a continuum of stationary solutions of equation (1.1), which reduces here to
the constants of some sub-interval of ¢g~1(0). By monotonicity, it is in fact
known that v converges to some constant a € g~*(0).

Our first result is valid without any additional hypothesis on g

Theorem 1.1. Let g satisfy (1.2) and (1.3). Then any solution ¢ of (1.1)
satisfies the following alternative as t — oo: either

10, oo < Ce, (1.6)

or

A > 0,Vt > 1, ‘/@D(t,x)dx‘ > T, (1.7)
Q
where Ay > 0 is the second eigenvalue of A in D(A).

Our second result provides a more accurate estimate when g(1)) = [P~ 1)

Theorem 1.2. Let us consider the nonlinear parabolic problem (1.1) with
g(¥) = |[Y[P~4p, then any solution ¢ of (1.1) satisfies the following alterna-
tive as t — oo: either

9t oo < Ce™, (1.8)

or
vt > 1, ot ) = ((p = Dt) 7 floo < K@D, (1.9)

where K,C >0, p> 1 and \y > 0 is the second eigenvalue of A in D(A).
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In the following Proposition, we consider two special cases showing that
both possibilities in the second result in the Theorem 1.1 can actually happen.

Proposition 1.3. Let g satisfy (1.2) and (1.3). Then we have

(i) If Q2 is symmetric around 0, g is odd and ¥(0,-) is an odd function in

Q, then any solution of (1.1) satisfies (1.6).

(22) If1(0,-) > 0 and ¢ does not vanish a.e in ), then any solution of (1.1)

satisfies (1.7).

Finally, our last result shows that the second possibility is sharp for a

class of functions g more general than the pure power

Proposition 1.4. Under the additional hypothesis
ey > 0,5 € R, [g(s)| > i s]?

for any solution ¢ of (1.1), we have

1

1 T
Vi> 1 o) e < {m} Lo

2 Proof of Proposition 1.4.

(1.10)

(1.11)

Proof. It ¢(0,-) = 0, we have 1(¢,-) = 0 and the result is obvious. Other-

wise let z be defined by
1 =
T A —
[0, Mo + Fa(p — 1)t
Then z is a solution of the following nonlinear ODE problem

{ 2+ k2P =0,
2(0) = [[4(0, )| oo-

(2.1)

Under the additional condition(1.10), we will show that z is a super solution

of (1.1). Indeed, we have

a— Az +g(2) = =k (2(0) 7 + ki (p — 1)) 7T + g(2)
— e (2(0) 7 + ka(p — 1)) 7T + k2P
0.
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Since ¥(0,-) < z(0) we deduce, by standard comparison principle, that
w(t,-) < z(t) vt > 1.

A similar calculation shows that ¢ (t,-) > —=z(t), V¢t > 1 which concludes
the proof. [ |

3 A general result on the range component.
Defining the orthogonal projection P : H — N, where
1
H = I(©).N = ker(4) and PUt.") = o / Ot )dz,
Q

as already mentioned in the introduction, [5] showed that for g(¢) = [P~ 14,
the following estimate holds

[ (t) = Po(t)ll2i0) < Ke™™,

for some constant K > 0. In this section, we will show that we have the
same result for any function ¢ satisfying (1.3).

Proposition 3.1. Let ¢y € C(RT, L™®) be any solution of (1.1). Assume that
g 1s a locally Lipschitz non-decreasing function. Then we have ,

1 (t) = Pe(t)]l2 < [9(0) = Py(0)]ls e, (3.1)

where ||.||2 denotes the norm in L*(Q) and Ay > 0 is the second eigenvalue
of —A in L?(Q) with Neumann boundary conditions .

Proof. We denote by (u,v) the inner product of two functions u, v of L%().
Since g is a nondecreasing function, for all ) € L*>°(Q2), we have a.e. in x € Q

(9(¢) = g(P)) (¢ — Py) = 0
and then by integrating over 2
(9(¥), ¥ = Py) = (9(PY), v — Py) = 0. (3.2)

Since g(P1) is a constant and (¢p — Py) € N+, we deduce that (g(Pv), 1 —
P1)) = 0. Hence from (3.2),

(9(v), ¥ — Py) > 0.



Setting
w=1 - Py,
we have since APy = PAy =0
w = Aw = ¢ = A = Py + AP = (I = P)(@/ = M) = (I = P)g(v).

Thl;is 7dsince (w, I=P)g(¥)) = (I=P)w,g(¢)) = (w,g(¢)) = (g(¥), v—Py)

1d
5 w3 = (w, Aw) — (9), & — P¥) < ~oful?.
By integrating we obtain (3.1). n

4 Proof of Theorem 1.1.

We set ¢ = u+ w, where u = Pt and w = (I — P)v. By projecting (1.1) on
N we obtain

o + Plg(1)) =0, (4.1
where we have used that P(Ay) = 0, since R(A) C Nt. Noticing that

u'+ Pg(u) + P(g(¥) — g(u)) = v’ + g(u) + P(g(¢) — g(u)),
we can rewrite the equation (4.1) as
u' 4 g(u) = =P(g(¥) — g(u)).

By the assumption (1.3), we deduce that

|mww—wmns§1

But ¢ and w are uniformly bounded and from Proposition 3.1 we have the
estimate ||w(t)||; < Ke 2! Therefore

[P(9(¥) — g(w)| < K'e™*",
with K’ > 0. Which leads us to study the equation:

lg(¥) = g(u)lh < |—5|(||¢H’2’;12 + llullg, 2 l[wllz.

v +g(u)=f(t) in R, (4.2)

where

and
f(t)] < K'e™",

Using the same method as in [5], we show the following result:
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Lemma 4.1. Let ¢ > 0, v > 0, p > 1 and g satisfying (1.2) and (1.3) Let
M > 0 such that

M < (210) =3 (4.3)

c1 > 0 with
¢ <

N |2

M

Y

then for every function f satisfying
f(t)] < cre™™,

there exists a unique function v € CY(RT) satisfying

Vi >0, v +gv)=f(t) (4.4)
and
sup  {e"|u(t)|} < M. (4.5)
t€(0,+00)

Proof. Since any solution of (4.4).(4.5) satisfies the integral equation

vwz—[WU@—wmww. (4.6)

We look for a solution of (4.6). Tt is then natural to introduce the following
function space :

X ={v e C(0,+0); sup e"|v(t)] < M},
te(0,400)

equipped with the distance associated to the norm

Joll, = sup e"[u(t)]. (4.7)
te(0,+00)

We consider the operator 7 : X — C/(0, +00) defined by

Tww:5[m0@—mwmw.

From (1.4), we have the estimate

C

Vs €RT; [g(u(s))] < ];IU(S)I”-



First we will show that 7(X) C X. Let v € X, then for all t > 0,
+o00 +oo
Tl < [ 1@ds+ [ lotels)lds
t t
+oo c +oo
<[ ilds S [ e
t t

p
a1, C oo
< —e "+ —MP e P7%ds
Y p t
S (C_l + ijp) e—vt
Y Py
M Mpr—1
< (Gl )e
Py
< M ﬂ et
—\2  2p?

Since p > 1, it follows that
[ To(t)| < Me™ .
Hence by (4.5), we obtain that 7v € X, with
[Tw()ll, < M.

Secondly, we will prove that 7 is a contraction on X. In fact, for z,z € X
and for all ¢ >0

“+oo
Ta(t) — Ta(t)) < / l9(a(s)) — g(@(s))ds

+oo
< ch_l/ e P |x(s) — z(s)|ds
t

cMP—1
Py

<

|2 _f||76_7t-

Then we have
cMpP1
Py
Therefore, since MP~1 satisfies (4.3), we conclude that Vz,7 € X

|Tz(t) — Tz(t)|e" <

Iz = 25

_ 1 _
H'Tx - T:E||7 < §||5E - x||7
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Thus 7 is a %—Lipschitz functional on the complete metric space X and the
result follows from the Banach fixed point theorem. From (4.6) it follows eas-
ily that v satisfies (4.4). Then the uniqueness of v follows from the uniqueness
of the solution of (4.6) ( 7 is a contraction) and the fact that any solution of
(4.4) satisfies (4.6). The existence comes from the fact that conversely any
solution of (4.6) satisfies (4.4). n

Proof of Theorem 1.1 continued. Consequently, we have a solution v
that satisfies the equation (4.4) and for all t > Tj,

o(t)] < Me, (48)
where M = M'e¥0 and M’ > 0. If we subtract (4.4) from (4.2) we obtain

(u—v)' +g(u) = g(v) = 0.

Setting z = u — v, we complete the proof analyzing two cases.

1% case: If z(Ty) = 0, then for all ¢ > Ty, z(t) = 0. Hence u = v and
from (4.8) it follows that
lu(t)| < Me 2,

Then, using (3.1), we obtain

[ (@)ll2 < Me".
Finally by reasoning as in [5], [6] we obtain (1.6).

274 case: If z(Ty) # 0 then Vt > Ty, z(t) # 0 and we have

(u(t)) —g(v@®) .\
wh) —op D=0

Z(t) + J

Since ¢ is a monotonic function,

_ 9(u(®)) —g(v(t))
alt) = u(t) — v(t)

is a strictly positive function. Moreover, 36 €]0, 1],

a(t) = ¢ (Ou(t) + (1 — 0)o(t)) < clfu(t) + (1 — O)u(t)|P~! (4.9)

We distinguish 2 cases:
— p > 2 then by convexity of the pth power we have
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[Ou(t) + (1 = O)o(t)[P~! < OlufP=t + (1 = ) o ~" < fulP~" + [vP~".

—1 < p < 2 we study the function (z+y)*—2z* for 0 <a < 1 and z,y > 0
we prove that X — (14 X)* — X is a decreasing function on (0, +00),
we deduce 0 < (1 4+ X)* — X* < 1 and it follows by homogeneity that
(z +y)* < a”+y* by letting X = 7. Then we conclude that |fu(t) + (1 —
O)v(t)[P~! < |u|P~! + |v|P~L. Consequently we obtain

Vp>1, aft) <c(juff~t+|vff™). (4.10)
Setting y = |z|, we have that
y +alt)y > 0.
Then the estimate (4.10) implies that
y' > —c(lul ™ + Ty > =z + o+ oy
Hence there exists some constants ¢, c3 > 0 such that
Y = =2y — eslvlP My

Since y = |z],
Y = —oy’ = eslol”ly.

Putting a(t) = c3|v|P~!, we deduce that
Y 4 a(t)y > —cayP. (4.11)

We set e
Alt) = —¢ / Plds,  w(t) = A0y
t

and by replacing w in (4.11), we obtain

1

1 1
w(0)1=7 + (p — 1)c4t}

w(t) > {

. (1)
with ¢; = (f0+ a(s)ds) " Then for ¢ large enough we have

w(t) > Kt .

Since t — e4® is a bounded function, we conclude (1.7) by observing that
u =z + v and v tends to 0 exponentially at infinity.



5 Proof of Theorem 1.2.

Considering g(¢) = |[¢[P7%) , g satisfies (1.2) and (1.3) with ¢ = p. Hence
Lemma 4.1 is applicable with ¢ = p, therefore we assume

In (4.2), we replace g(v) = [|P~'¢ , we can subtract (4.4) from (4.2), we
deduce:

(u—v) + |ulPtu — Jv|P~ o = 0. (5.1)
We will study two cases.

1% case: If 2(Ty) = 0 then for all ¢t > T, z(t) = 0. Hence u = v and from
(4.8) it follows that
lu(t)| < Me 2,

Moreover, using (3.1), we obtain (1.8).

274 case: if 2(Tp) # 0 then for all ¢t > Ty 2(¢) # 0 and we have

() + (@) ut) — @) o(t) = 2'() + alt)z(t) = 0.

with
u(t) P u(t) — [o(Opo()
olt) = ult) o)
L)+ o ) + o(0) — e o(t)
z(t)
2P L+ 29 (a(0) + 0(t)) — [P o)

2(t)

In that case a(t) > 0, indeed t — |u(t)|[P~u(t) is non decreasing function.
By applying Taylor’s formula, we obtain

a(t) = =) + B(t), (5.2)

with |5(t)| < Be™™, where ) > 0 is any positive number smaller than (p—1) s
and B > 0. Replacing « by its expression in (5.2), equation (5.1) becomes

24 |z|P 2 4 B(t)z = 0. (5.3)
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Let y = |z|, we obtain

v +y’+ Bty =0. (5.4)
Setting £(t) = ey (t), with A(t) = — joo B(s)ds we find
A0l< [ el < 2o 5.5

By Taylor’s formula we have
Vh e [-1,1], |e" —1] <2|hl, (5.6)

we can give the following estimate
A(t) 2B —nt
[€(t) —y(0)] < y(B)]e™ — 1] < 2[A(H)[y(t) < THyHoo@ ,

we conclude
() = y(t)] < ke, (5.7)
where § =n and k = %Hy”oo :
Replacing £(t) in (5.3), we have
— e‘A(t)g’(t) — e—pA(t)gp(t)
&) aepa
&r(t)
1

d

=

' — (p— 1)e(I—PA®M)
fp_l(t)) - (p 1)6 b :

t — e~ @=DA® is bounded and tends to 1 at infinity, £ is given by

1

p—1 _
O T o ) e oS

we set

D(t) = £(to) ™"+ (p— 1) [y, e P D4ds and  h(t) = —(p — 1)A(1),

to

then we show that D(t) — (p — 1)t is bounded.

From (5.5), we know that ¢ — h(t) is an integrable function, then by
(5.6), (e~ P~DA® — 1) is also integrable. In order to show (1.9), we proceed
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as follows

ID() ~ (= 1)1 = I60)" 7+ (1) [ D405 — p -

to

= 16007+ (p = 1) [ (e 0D~ 1yas — (- 1)

to

Using (5.6) we obtain
t
ww—@—nﬂsmua@—w/WMﬂw
to
B
< My = K|+ 20— 172

with K = &(tg)'™P — (p — 1)to. Setting d(t) = D(t) — (p — 1)t, we obtain

1

()™ 1 () ()

1
Since | (pd(t) |< 1 for t large enough. Let n(t) = (1 + (pdftl))t> "~V by the

—1yt
mean value Theorem and if we suppose that |(pd_—t1))t| < %, we obtain




Therefore

(1 10

=51

d(t)

% 21+p7i1|
(p—1)t

As we have seen above, d(t) is bounded by M; then we conclude

}»s(t)—( : )(M\ <Ot

(p— 1)t

With € = (;47)7°T x 2771 M.

We recall that z has a constant sign on [Ty, +oo[ and z and u have the
same sign. As in Section 4, we set u = v + z and ) = u + w, we distinguish
two cases

- If z > 0, this implies that for ¢ large enough u > 0 and |¢| = .
Then

1 1
||¢|_< 1 ><p,1) ‘ < |u_< 1 )(P*l) ’ +|w| Sthlfp—il‘

(p—1)t (p—1)t

Indeed,

1 \&7D . 1 \&D
()| el (o) T

< Me 2t 4 ke o + Ctilfﬁ.

i)

Since we have (5.7), we obtain (1.9).

- If we suppose that z < 0, then implies that v < 0. By similar calcula-
tions we obtain the same result.

Indeed, |¢| = —1, and we have
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1 1

1 =y 1 (=)
_u_((p—l)t) | S‘u_z‘ﬂ_z_ﬂﬂg_((p—l)t> |

< Me™2t 4 ke 4 0t o

Also since we have (5.7), finally we obtain (1.9).

6 Proof of Proposition 1.3

(4)

(i)

If ¢ is an odd function, then (0, —x) = —¢(0,z). It implies for all

In that case
u(t) = Py(t,x) = ﬁ/ﬁ@[)(t,x)dx = 0.

Moreover, we know that 1) = u+w, where w(t) € N+ for all t > 0 and
(cf. Proposition 3.1) we have

Jw(t)|| ze) < Ke ',

hence the solution ¢ satisfies (1.8).

If ¥(0,2) > 0 and v does not vanish a.e in €, then for all ¢ > 0
W(t,x) > 0, it implies that

/ Y(t, x)dx > 0. (6.1)

14



We suppose that we have [|[¢(t,)]lc < Ce 2! and we consider the
problem (1.1) then we integrate on ), we obtain

Am@@@:—éﬂmmm@. (6.2)

An elementary calculation shows that we have
c
[ otwttands <& [ o.a)pas
Q P Ja
gf/m@@ww@@m
PJa
c _
<2 [ otta)l vt 0o
P Ja
< EC'p_le_(”_l))‘Qt/ Y(t, x)dx
p Q
Now we set y(t) = [, ¥(t,z)dz. From (6.2), we deduce

y'(t) > —Me°y(t) (6.3)

with M = iC’p_l and 0 = (p — 1)Aa.
Since y(t) > 0 by (6.1), we can integrate in the interval [0, ], we obtain

y(t) > y(0) exp {—M/Ot e—5Sds} > y(0) exp {—%} >0. (6.4)

Hence y does not tend to 0 for ¢ large, this contradicts our hypothesis
and we conclude that y satisfies (1.7).
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