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Abstract : We consider Darcy’s equations with piecewise continuous coefficients in a boun-
ded two-dimensional domain. We propose a spectral element discretization of this problem wich
relies on the mortar domain decomposition technique. We prove optimal error estimates. We
also performe numerical analysis of the discrete problem and present numerical experiments.
They turn out to be in good coherency with the theoretical results.

Résumé : Les équations de Darcy modélisent l’écoulement d’un fluide visqueux incompres-
sible dans un milieu poreux rigide. Un des paramètres dépend de la perméabilité du milieu et,
lorsqu’il n’est pas homogène, les variations de ce paramètre peuvent être extrêmement impor-
tantes. Pour traiter ce phénomène, nous proposons une discrétisation du modèle par éléments
spectraux avec joints, l’idée étant de construire une décomposition du domaine telle que la
perméabilité soit constante sur chaque élément de la partition. Nous effectuons l’analyse a
priori de cette discrétisation et présentons quelques expériences numériques qui confirment les
résultats de l’analyse.
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1 Introduction

This paper is devoted to the analysis of the mortar spectral element discretization of the
problem introduced by Darcy [14],





αu + grad p = αf , in Ω,

div u = 0, in Ω,

u · n = g, on ∂Ω,

(1)

in a bounded two-dimensional domain Ω with a Lipschitz-continuous boundary ∂Ω, and let n

denote the unit outward normal vector to Ω on ∂Ω. The function α is given with positive values.
We are interested in the case where this function is not globally continuous but only piecewise
smooth and also such that the ratio of the maximal value to its minimal value is large. This
models, for instance, the flow of a viscous incompressible fluid in a rigid porous inhomogeneous
medium.
In a first step, we consider the key situation where the function α is piecewise constant. The
discretization of this problem by mortar finite element discretization is studied in [9], and opti-
mal a priori and a posteriori error estimates are proven. But the idea of this paper is different :
the discretization rely on a domain decomposition such that, on each subdomain, the function
α is constant. To this end, the mortar element technique, introduce in [11], seems especially ap-
propriate since it allows for working with noncorforming decompositions, i.e. the intersection of
two subdomains is not restricted to be a corner or a whole edge of both of them. A consequence
of this property, in the present situation, is that the number of subdomains in order to take
into account the discontinuities of α can be highly reduced. We refer to [17, Subsec. 1.5] for a
first application of this method to discontinuous coefficients in the finite element framework.
Here, on each subdomain, we consider a spectral discretization. As is well known, spectral and
spectral element methods rely on the approximation by high degree polynomials and on the
use of tensorized bases of polynomials. For these reasons, the basic geometries are rectangles.
Even if these methods can easily be extended to convex or curved quadrilaterals, the arguments
for such an extension are very technical, so we have rather avoid them in this paper. For this
reasons, the subdomains that we consider are only rectangles, and we refer the reader to [16]
for the treatment of more complex geometries for a simpler problem. It was extended [3] to
the bilaplacian equation where the variational space is the standard space H2(Ω) of functions
with square-integrable first-order and second-order derivatives and also to the Stokes problem
which is of saddle-point type, however it still involves usual Sobolev spaces. We also quote
[2] for an application of the mortar technique to weighted Sobolev spaces, in order to handle
discontinuous boundary conditions for the NavierStokes equations.
Another advantage of the mortar method is that it allows for working with independent discre-
tization parameters on the subdomains. Our idea here is to use different degrees of polynomials
on these subdomains, in order to take into account the different values of α. Indeed, in prac-
tical situations, even the ratio of the values of α on adjacent subdomains can be high, and
the intuitive idea is to take higher degrees of polynomials in the subdomains where α is large.
We perform the numerical analysis of this discretization, in order to optimize the choice of
the degrees of polynomials on each subdomains as a function of the value of α and also of the
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geometry of the domain, since the geometrical singular functions issued from the non-convex
corners of the domains interfere with the singularities issued from the discontinuities of α.
We also present the extension of the discretization to the case of a piecewise smooth function
α : this comes either from the thermic properties of the medium where the permeability coef-
ficient can depend on the density or from transformation of the geometry, for instance if the
coefficients are piecewise constant on convex quadrilaterals. Since handling smooth coefficient
is standard in spectral methods, the only difficulty here is to preserve the efficiency of the
algorithm for solving the corresponding discrete system.
Finally, the implementation of the mortar technique mainly relies on an appropriate treatment
of the matching conditions on the interfaces that we briefly describe (we refer to [4] for another
way of handling these conditions). We describe some numerical experiments, which are in good
coherency with the analysis and justify the choice of a domain decomposition technique and
the use of different degrees of polynomials.
The outline of this paper is as follows. In Section 2, we briefly recall some properties of the
continuous problem. Section 3 is devoted to the numerical analysis of the mortar spectral ele-
ment discretization of the problem in the case where the function α is piecewise constant. Error
estimates between the exact and discrete solutions are established in Section 4.These results are
extended to the case of piecewise smooth functions in Section 4. In Section 5, we present some
numerical experiments in order to compare the present method with the spectral discretization
without domain decomposition or a conforming spectral element discretization.
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2 The continuous problem

Let Ω be a bounded connected open set in R
2, with a Lipschitz-continuous boundary ∂Ω.

Throughout the paper, we make the following assumptions on the function α : there exists a
finite number of domains Ω∗

k, 1 ≤ k ≤ K∗, such that
• they form a partition of Ω without overlapping

Ω = ∪K∗

k=1Ω
∗

k and Ω∗
k ∩ Ω∗

k′ = ∅, 1 ≤ k < k′ ≤ K∗, (2)

• the restriction of α to each Ω
∗

k, 1 ≤ k ≤ K∗, is continuous on Ω∗
k,

• the restriction of α to each Ω
∗

k, 1 ≤ k ≤ K∗, is bounded and positive, i.e. there exist
constants αmax

k and αmin
k such that

αmax
k = sup

x∈Ω
∗

k

α(x) < +∞, and αmin
k = inf

x∈Ω
∗

k

α(x) > 0. (3)

We set
αmax = max

1≤k≤K∗

αmax
k and αmin = min

1≤k≤K∗

αmin
k . (4)

We define H
1
2 (∂Ω) as the space of traces of functions of H1(Ω) on ∂Ω, provided with the trace

norm, and H− 1
2 (∂Ω) as its dual space. As usual, L2

0(Ω) stands for the space of functions in
L2(Ω) with a null integral on Ω. Finally, we consider the space C∞(Ω) of infinitely differentiable
functions on Ω and its subspace D(Ω) of functions with a compact support in Ω.
As now well-known (see [13, XIII.1]), system (1) admits several variational formulations. We
have chosen the formulation which seems the more convenient in view of the spectral element
discretization. So, we consider the variational problem

Find (u, p) in L2(Ω)2 × (H1(Ω) ∩ L2
0(Ω)) such that





∀v ∈ L2(Ω)2, aα(u,v) + b(v, p) =
K∗∑

k=1

∫

Ω∗

k

α(x)f(x) · v(x) dx,

∀q ∈ H1(Ω) ∩ L2
0(Ω), b(u, q) = 〈g, q〉∂Ω,

(5)

where 〈., .〉∂Ω denotes the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω), while the bilinear

forms aα(., .) and b(., .) are defined by

aα(u,v) =
K∗∑

k=1

∫

Ω∗

k

α(x)u(x) · v(x) dx, b(v, q) =

∫

Ω

(grad q)(x) · v(x) dx. (6)

In order to optimize the constants in all that follows, we introduce the α-dependent norms

‖v‖α =

(
K∗∑

k=1

∫

Ω∗

k

α(x)|v(x)|2 dx
) 1

2

, |q|α∗ =

(
K∗∑

k=1

∫

Ω∗

k

1

α(x)
|grad q(x)|2 dx

) 1
2

. (7)
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The fact that the semi-norm ||α∗
is a norm onH1(Ω)∩L2

0(Ω) results from a generalized Bramble-
Hilbert inequality and can easily be derived thanks to the Peetre-Tartar lemma, see [15, Chap.
I, Thm 2.1].
The well-posedness of this problem was established in [9].

Proposition 1 For any data (f , g) in L2(Ω)2 × H− 1
2 (∂Ω), problem (5) has a unique solution

(u, p) in L2(Ω)2 × (H1(Ω) ∩ L2
0(Ω)). Moreover, this solution satisfies

‖u‖α + |p|α∗ ≤ 3(
√
αmax‖f‖L2(Ω)2 + ‖g‖

H−
1
2 (∂Ω)

). (8)

We are also interested with the regularity properties of this solution. We recall a result witch
is proven in Prop. 2.5 of [9].

Proposition 2 There exists a real number sα, 0 < sα <
1
2
, such that the mapping : (f , g) 7−→

(u, p), where (u, p) is the solution of problem (1), is continuous from Hs(Ω)2 ×Hs− 1
2 (∂Ω) into

Hs(Ω)2 ×Hs+1(Ω), pour tout s ≤ sα.

Remark 3 We can exhibit a maximal value sα only limited by

sα < min{1

2
, cΩ| log (1 − αmin

αmax

)|}, (9)

where the constant cΩ depends only on the geometry of Ω.
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3 Analysis of the Mortar Spectral Element Discretiza-

tion

Throughout this section, we work with a piecewise constant function α. We introduce a new
partition of the domain without overlapping

Ω =
K⋃

k=1

Ωk and Ωk ∩ Ωk′ = ∅, 1 ≤ k < k′ ≤ K, (10)

such that the function α is constant on each Ωk, 1 ≤ k ≤ K (so, each Ωk is contained in an
Ω∗

k), and also that the Ωk, 1 ≤ k ≤ K, are rectangles. Note that K can be much larger than
K∗ in order to take into account the geometry of the discontinuities of α.
The decomposition is conforming said to be means that the intersection of two different Ωk, if
not empty, is a corner or a whole edge of both of them. For simplicity, we denote by αk the
constant value of α on each Ωk, 1 ≤ k ≤ K.
We make the further (and non restrictive) assumption that the intersection of each ∂Ωk with
∂Ω is a corner or a whole edge of Ωk. Thus, the skeleton S of the decomposition, equal to⋃K

k=1 ∂Ωk\∂Ω, admits a decomposition without overlapping into mortars

S =
M⋃

m=1

γm tel que γm ∩ γm′ = ∅, pour m 6= m′, (11)

where each γm is a whole edge of one of the Ωk, which is then denoted by Ωk(m). Note that the
choice of this decomposition is not unique, however it is decided a priori for all the discretizations
we work with.
In order to describe the discrete problem, we introduce the discretization parameter δ, which
is here a K-tuple of positive integers Nk, 1 ≤ k ≤ K. Indeed, the local discrete space on each
Ωk is the space PNk

(Ωk) of restrictions to Ωk of polynomials with degree ≤ Nk with respect to
each variable. In all that follows, c stands for a generic constant which may vary from one line
to the other but is always independent of δ.
The Γk,j, 1 ≤ j ≤ 4 are the corners of Ωk, 1 ≤ k ≤ K.
We now introduce the discrete spaces. For each k, 1 ≤ k ≤ K, the discrete space of velocities
Xδ is defined by

Xδ =
{
vδ ∈ L2(Ω)2; vδ|Ωk

∈ PNk
(Ωk)

2, 1 ≤ k ≤ K
}
. (12)

According to the standard mortar element approach [11, Sec. 2] and [10], we associate with
each piecewise regular function q its mortar function Φm(q) : On each γm, 1 ≤ m ≤ M , the
restriction of Φm(q) to γm is equal to the trace of q|Ωk(m)

. The discrete space of pressures is the
space Mδ of functions qδ
(i) which belong to L2

0(Ω),
(ii) such that their restriction to each Ωk, 1 ≤ k ≤ K, belongs to PNk

(Ωk),
(iii) such that the following matching condition holds on all subdomains Ωk, 1 ≤ k ≤ K, and
for all edges Γk,j of Ωk that are not contained in ∂Ω,

∀ϕ ∈ PNk−2(Γ
k,j),

∫

Γk,j

(qδ|Ωk
− Φ(qδ))(τ)ϕ(τ) dτ = 0, (13)
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where PNk−2(Γ
k,j) is the space of polynomials with degree ≤ Nk − 2 on Γk,j, and τ denotes the

tangential coordinate on Γk,j. Note that the quantity qδ|Ωk
− Φ(qδ) represents the jump of qδ

through Γk,j, where Γk,j is not one of the γm.
Note that condition (13) is obviously satisfied on all Γk,j which coincide with a γm and also
that, except for some rather special decomposition, the space Mδ is not contained in H1(Ω),
which means that the discretization is not conforming.
We recall the Gauss-Lobatto formula on the interval ]− 1, 1[ : for each positive integer N , with
the notation ξN

0 = −1 and ξN
N = 1, there exists a unique set of nodes ξN

j , 1 ≤ j ≤ N − 1, and
weights ρj, 0 ≤ j ≤ N , such that

∀Φ ∈ P2N−1(−1, 1),

∫ 1

−1

Φ(ζ) dζ =
N∑

j=0

Φ(ξN
j )ρN

j . (14)

The ξN
j are equal to the zeros of the first derivative of the Legendre polynomial of the degree

N and the ρN
j are positive. Moreover, the following positivity property holds (sse [13])

∀ϕN ∈ PN(−1, 1), ‖ϕN‖2
L2(−1,1) ≤

N∑

j=0

ϕ2
N(ξN

j )ρN
j ≤ 3‖ϕN‖2

L2(−1,1). (15)

Next, on each Ωk, we take N equal to Nk and, by homothety and translation, we construct
from the ξNk

j and ρNk

j , 0 ≤ j ≤ Nk, the nodes and the weights ξ
(x)
kj and ρ

(x)
kj , resp. ξ

(y)
kj and ρ

(y)
kj ,

in the x-direction, resp. in the y-direction (the exponent Nk is omitted for simplicity). This
leads to a discrete product on all functions u and v which have continuous restrictions to all
Ωk, 1 ≤ k ≤ K :

((u,v))δ =
K∑

k=1

((u,v))k
Nk
, (16)

with

((u,v))k
Nk

=

Nk∑

i=0

Nk∑

j=0

u(ξ
(x)
ki , ξ

(y)
kj )v(ξ

(x)
ki , ξ

(y)
kj )ρ

(x)
ki ρ

(y)
kj .

It follows from the exactness property (14) that the product ((., .))δ coincides with the scalar
product of L2(Ω) whenever the restriction of the product uv to all Ωk belong to P2Nk−1(Ωk).
Also, we defined the global scalar product on ∂Ω

((uδ,vδ))
∂Ω
δ =

∑

{Γk,j⊂∂Ω}

(uδ,vδ)
Γk,j

Nk
, (17)

where

(uδ,vδ)
∂Ω
N =

2d∑

j=1

∑

x∈ΞN∩Γj

uδ(x)vδ(x)ρx, (18)

We assume that the functions f and g has continuous restrictions to all Ωk, 1 ≤ k ≤ K and
∂Ω respectively. Then, the discrete problem reads :
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Find (uδ, pδ) ∈ Xδ × Mδ such that





∀vδ ∈ Xδ, a
δ
α(uδ,vδ) + bδ(vδ, pδ) = ((αf ,vδ))δ,

∀qδ ∈ Mδ, bδ(uδ, qδ) = ((g, qδ))
∂Ω
δ ,

(19)

where the bilinears forms aδ
α(., .) and bδ are defined by

aδ
α(uδ,vδ) =

K∑

k=1

αk((uδ,vδ))
k
Nk
, bδ(vδ, qδ) =

K∑

k=1

((vδ,grad qδ))
k
Nk
. (20)

Several steps are needed for proving the well-posedness of this problem.

Lemma 4 The form aδ
α(., .) satisfies the following properties of continuity

∀uδ ∈ Xδ, ∀vδ ∈ Xδ, a
δ
α(uδ,vδ) ≤ 9‖uδ‖α‖vδ‖α, (21)

and of ellipticity

∀uδ ∈ Xδ, a
δ
α(uδ,uδ) ≥ ‖uδ‖2

α. (22)

Proof. Thanks to a double Cauchy-Schwarz inequality, we have

aδ
α(uδ,vδ) ≤ aδ

α(uδ,uδ)
1
2aδ

α(vδ,vδ)
1
2 ,

so that it suffices to bound aδ
α(uδ,uδ). Thanks to the positivity property (15), we have

K∑

k=1

αk‖uδ‖2
L2(Ωk)2 ≤ aδ

α(uδ,uδ) ≤
K∑

k=1

9αk‖uδ‖2
L2(Ωk)2 .

So, the desired results.
Since Mδ is not contained in H1(Ω), we prove that the “broken” energy norm defined by

‖q‖α∗ =

(
K∑

k=1

α−1
k |q|2H1(Ωk)

) 1
2

, (23)

is still a norm on Mδ.

Lemma 5 The quantity ‖.‖α∗ defined in (23) is a norm on Mδ. Moreover, there exist a constant

C independent of δ such that the following property holds :

∀q ∈ N(Ω) ∩ L2
0(Ω),

K∑

k=1

‖q‖2
L2(Ωk) ≤ C

√
αmax‖q‖2

α∗ . (24)

We suppose that NK ≥ ND − 2, when ND denote the maximal number of the set of all vertices

of Ωk that are inside en edge of another subdomains.
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For the proof see [10].

From now on, we work with the norm ‖.‖α∗, and we suppose that NK ≥ ND − 2 is checked.
The following continuity property is obvious :

∀vδ ∈ Xδ,∀qδ ∈ Mδ, bδ(vδ, qδ) ≤ ‖vδ‖α‖qδ‖α∗ . (25)

Moreover, we note that, for any qδ in Mδ, the function vδ defined by

vδ|Ωk
= α−1

k grad (qδ|Ωk
), ∀1 ≤ k ≤ K, (26)

belongs to Xδ. So, the following inf-sup condition is derived by taking vδ as in (26).

Lemma 6 The form bδ(, ) satisfies the inf-sup condition

∀qδ ∈ Mδ, sup
vδ∈Xδ

bδ(vδ, qδ)

‖vδ‖α

≥ ‖qδ‖α∗. (27)

We introduce the Lagrange interpolation operator Ik
δ , 1 ≤ k ≤ K, operator on all nodes

(ξ
(x)
ki , ξ

(y)
kj ), 0 ≤ i, j ≤ Nk, with values in PNk

(Ωk), and finally the global operator Iδ by

(Iδv)|Ωk
= Ik

δ v|Ωk
, 1 ≤ k ≤ K. (28)

We are now in position to prove the well-posedness of problem (5).

Theorem 7 For any data (f , g) such that each f |Ωk
, 1 ≤ k ≤ K, and g are continuous on

Ωk and on ∂Ω respectively, problem (19) has a unique solution (uδ, pδ) in Xδ × Mδ. Moreover,

there exists a constant c independent of δ suvh that this solution satisfies

‖uδ‖α + ‖pδ‖α∗ ≤ c
√
αmax(‖Iδf‖L2(Ω)2 + ‖I∂Ω

δ g‖
H−

1
2 (∂Ω)

), (29)

Proof. We establish successively the existence and uniqueness of the solution.
1) It follows from the Lax-Milgram lemma, combined with Bramble-Hilbert inequality and the
lemma 5, that there exists a unique ϕδ in Mδ such that

∀ψδ ∈ Mδ, ((gradϕδ,gradψδ))δ = ((g, ψδ))
∂Ω
δ ,

Thus, the function ub
δ = gradϕδ, satisfies

‖ub
δ‖α ≤ c‖I∂Ω

δ g‖
H−

1
2 (∂Ω)

. (30)

On the other hand, it follows for the standard results on saddle-point problems, see [15, Chap.
I, Cor. 4.1], combined with (22), (27) and the inf-sup condition (27), that the problem

Find (u0
δ , pδ) ∈ Xδ × Mδ such that





∀vδ ∈ Xδ, aδ
α(u0

δ ,vδ) + bδ(vδ, pδ) =
∑K∗

k=1 αk((f ,vδ))δ − aδ
α(ub

δ,vδ),

∀qδ ∈ Mδ, bδ(u
0
δ , qδ) = 0,

(31)
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has a unique solution (u0
δ , pδ) which moreover satisfies

‖u0
δ‖α + ‖pδ‖α∗ ≤ c

√
αmax(‖Iδf‖L2(Ω)d + ‖ub

δ‖α). (32)

Then, the pair (uδ, pδ), with uδ = u0
δ + ub

δ, is a solution of problem (19), and estimate (29)
follows from (30) and (32).
2) Let (uδ, pδ) be a solution of problem (19) with data (f , g) equal to zero. Taking vδ equal to
uδ in (19) and using (22) yields that uδ is zero. Then, the fact that pδ is zero follows from (27).
This proves the uniqueness of the solution (uδ, pδ).

To conclude, we introduce the discrete kernel

Vδ = {vδ ∈ Xδ;∀qδ ∈ Mδ, bδ(vδ, qδ) = 0} . (33)

As usual, it plays a key role in the numerical analysis of problem (19).

4 Error estimates

This section is devoted to the proof of an error estimate, first for the velocity, second for the
pressure. We intend to prove an error estimate between the solution (u, p) of problem (5) and
the solution (uδ, pδ) of problem (19). So we announce the following theorem and we describe
their proof.

Theorem 8 Assume that the function α is constant on each Ωk, 1 ≤ k ≤ K. If the solution

(u, p) of problem (5) is such its restriction to each Ωk, 1 ≤ k ≤ K, belongs to Hsk(Ωk)
2 ×

Hsk+1(Ωk), sk ≥ 1
2
, and if the function f is such that its restriction to each Ωk, 1 ≤ k ≤ K,

belongs to Hσk(Ωk), σk > 1, the following error estimate holds between this solution (u, p) and

the solution (uδ, pδ) of problem (19)

‖u − uδ‖α

≤ c

(
(1 + µ+ µδ)

1
2

K∑

k=1

N−sk

k

(
α

1
2
k (logNk)‖u|Ωk

‖Hsk (Ωk)2 + α
− 1

2
k ‖p|Ωk

‖Hsk+1(Ωk)

)

+
√
αmax

( K∑

k=1

N−2σk

k ‖f |Ωk
‖2

Hσk (Ωk)2

)1/2
)

(34)

where the constant c is independent of the parameter δ and the function α.

Proof. For a proof we need a several steps and lemmas. Let wδ be any function in the kernel
Vδ. Multiplying the first line of (19) by wδ gives

K∑

k=1

αk

∫

Ωk

u0 · wδ dx + b(wδ, p) =
K∑

k=1

αk

∫

Ωk

f · wδ dx − aα(ub,wδ),

using the definition of Vδ thus implies, for any qδ in Mδ,

K∑

k=1

αk

∫

Ωk

u0 · wδ dx + b(wδ, p− qδ) =
K∑

k=1

αk

∫

Ωk

f · wδ dx − aα(ub,wδ). (35)
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So, we deduce from ellipticity property (22), that we have for any vδ in Vδ

‖u0
δ − vδ‖2

α ≤ aδ
α(u0

δ − vδ,u
0
δ − vδ).

Adding (35) with wδ = u0
δ − vδ and subtracting the first line of (19) leads to

‖u0
δ − vδ‖2

α ≤
K∑

k=1

αk

∫

Ωk

(u0 − vδ)(x) · (u0
δ − vδ)(x) dx

+
K∑

k=1

αk

∫

Ωk

vδ(x) · (u0
δ − vδ)(x) dx − ((αvδ,u

0
δ − vδ))δ

+

∫

Ω

(u0
δ − vδ)(x) · grad (p− qδ)(x) dx

+ ((αf ,u0
δ − vδ))δ −

K∑

k=1

αk

∫

Ωk

f(x) · (u0
δ − vδ)(x) dx,

− aδ(u
b
δ,u

0
δ − vδ) + aα(ub,u

0
δ − vδ).

By combining property of continuity (25) and triangle inequality, we derive that the error
‖u − uδ‖α is bounded, up to a multiplicative constant, by the sum of five terms :

• the approximation error in Xδ

inf
vδ∈Vδ

‖u0 − vδ‖α, (36)

• the error approximation in Mδ

inf
qδ∈Mδ

‖p− qδ‖α∗
, (37)

• three terms issued from numerical integration

sup
wδ∈Xδ

(aα − aδ
α)(vδ,wδ)

‖wδ‖α

, (38)

sup
wδ∈Xδ

aα(ub,wδ) − aδ
α(ub

δ,wδ)

‖wδ‖α

, (39)

and

sup
wδ∈Xδ

((αf ,wδ))α −∑K
k=1 αk

∫
Ωk

f(x) · wδ(x) dx

‖wδ‖α

. (40)

Estimating the terms issued from numerical integration is easy since they can be evaluated
separately on each Ωk. For each k, 1 ≤ k ≤ K, let ΠNk−1 denote the orthogonal projection
operator from L2(Ωk) onto PNk−1(Ωk). For any wδ in Xδ, since each product of ΠNk−1u by wδ

belongs to P2Nk−1(Ω), it follows from the exactness property (14) that

(aα − aδ
α)(vδ,wδ) =

K∑

k=1

αk

( ∫

Ωk

(vδ − ΠNk−1u0) · wδ dx − ((vδ − ΠNk−1u0,wδ))
k
Nk

)
.
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So, we deduce from the continuity property (21) that

sup
wδ∈Xδ

(aα − aδ
α)(vδ,wδ)

‖wδ‖α

≤ 10

(
K∑

k=1

αk‖vδ − ΠNk−1u0‖2
L2(Ωk)d

) 1
2

≤ 10‖u0 − vδ‖α + 10

(
K∑

k=1

αk‖u0 − ΠNk−1u0‖2
L2(Ωk)d

) 1
2

.

The approximation properties of the operator ΠNk−1 are well known (see, for example, Theorem
7.3 of [7] and Proposition 2.6 of [8]), they lead to the following estimate : if the solution u0 is
such that each u0|Ωk

belongs to Hsk+1(Ωk)
2, sk ≥ 0

sup
wδ∈Xδ

(aα − aδ
α)(vδ,wδ)

‖wδ‖α

≤ 4‖u0 − vδ‖α + c

(
K∑

k=1

αkN
−2sk

k ‖u0|Ωk
‖2

Hsk (Ωk)2

) 1
2

. (41)

Similarly, for any wδ in Xδ, we have

((αf ,wδ))δ −
K∑

k=1

αk

∫

Ωk

f(x) · wδ(x) dx

=
K∑

k=1

αk

(
((Iδf − ΠNk−1f ,wδ))

k
Nk

−
∫

Ωk

(f − ΠNk−1f)(x) · wδ(x) dx

)
.

So, using (14) yields

((αf ,wδ))δ −
K∑

k=1

αk

∫

Ωk

f(x) · wδ(x) dx

≤ √
αmax


10

(
K∑

k=1

‖f − ΠNk−1f‖2
L2(Ωk)2

) 1
2

+ 9‖f − Iδf‖L2(Ωk)2


 ‖wδ‖L2(Ω)2 .

To bound ‖wδ‖L2(Ω)2 as a function of ‖wδ‖α and the approximation properties of the operators
Iδ et ΠNk−1 (Theorem 7.1 of [7] and Theorem 14.2 of [8]), we derive that, if the function f is
such that each f |Ωk

belongs to Hσk(Ωk)
2, σk > 1,

sup
wδ∈Xδ

((αf ,wδ))δ −
∑K

k=1 αk

∫
Ωk

f(x) · wδ(x) dx

‖wδ‖α

≤ c
√
αmax

(
K∑

k=1

N−2σk

k ‖f |Ωk
‖2

Hσk (Ωk)2

) 1
2

.

(42)
By analogy, we estimate the term (39), and by (30), we have

sup
wδ∈Xδ

aα(ub,wδ) − aδ
α(ub

δ,wδ)

‖wδ‖α

≤ c
√
αmax

(
K∑

k=1

N−2sk

k ‖ub|Ωk
‖2

Hsk (Ωk)2

) 1
2

. (43)

To estimate the term (36), we need a lemma.

12



Lemma 9 There exists a constant c independent of δ such that

inf
vδ∈Vδ

‖u0 − vδ‖α ≤ c

(
inf

zδ∈Xδ

‖u0 − zδ‖α + sup
qδ∈Mδ

∫
S
(u0 · n)[qδ] dτ

‖qδ‖α∗

)
. (44)

Proof. Let zδ be an arbitrary element of Xδ. The inf-sup condition (27) and [15] prove there
exists a unique tδ ∈ V ⊥

δ such that

bδ(tδ, qδ) = bδ(zδ, qδ) and ‖tδ‖α ≤ 1

β
sup

qδ∈Mδ

bδ(zδ, qδ)

‖qδ‖α∗

.

Thus, if we set vδ = zδ − tδ, then by combining the exactness property (14) and the integration
by parties, we have

bδ(u0, qδ) =
K∑

k=1

∫

Ωk

u0 · grad qδ dx =
K∑

k=1

∫

∂Ωk

(u0 · n)qδ dτ =

∫

S

(u0 · n)[qδ] dτ ,

therefore

‖tδ‖α ≤ C

(
sup

qδ∈Mδ

bδ(u0 − zδ, qδ) −
∫

S
(u0 · n)[qδ] dτ

‖qδ‖α∗

)
.

This inequality and triangle inequality implies

‖u0 − vδ‖α ≤ ‖u0 − zδ‖α + ‖tδ‖α

≤ c

(
‖u0 − zδ‖α + sup

qδ∈Mδ

∫
S
(u0 · n)[qδ] dτ

‖qδ‖α∗

)
.

As zδ is arbitrary, this implies (44).
Estimating the approximation error in Xδ is derived simply by taking wδ equal to the

orthogonal projection operator ΠNk−1u0 on each Ωk.

Lemma 10 Assume that the solution (u, p) of problem (5) is such that each u|Ωk
belongs to

Hsk(Ωk)
2 for a real number sk, sk > 0. The following estimate holds

inf
zδ∈Xδ

‖u0 − zδ‖α ≤ c
( K∑

k=1

αkN
−2sk

k ‖u|Ωk
‖2

Hsk (Ωk)2

) 1
2 . (45)

Now, we evaluate the consistency error. It involves the quantity µ, defined as the largest
ratio

µ = max
1≤m≤M

max
ℓ∈E(m)

(
α−1

ℓ

α−1
k(m)

) 1
2

, (46)

where, for each m, 1 ≤ m ≤M , E(m) is the set of indices k, 1 ≤ k ≤ K, such that ∂Ωk∩γm has
a positive measure. Note that this constant depends on the decomposition and on the choice
of the mortars but not on the discretization parameter.
In order to evaluate the consistency error, we introduce the orthogonal projection operator
πΓk,j

Nk−2 from L2(Γk,j) onto PNk−2(Γ
k,j). We recall the following properties of this operator (see

[11]) : For any nonnegative real numbers s and t, and for any function ϕ in Hs(Γk,j),

‖ϕ− πΓk,j

Nk−2ϕ‖H−t(Γk,j) ≤ cN s+t
k ‖ϕ‖Hs(Γk,j). (47)
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Lemma 11 Assume that the solution (u, p) of problem (5) is such that each u|Ωk
, 1 ≤ k ≤ K,

belongs to Hsk(Ωk)
2 for a real number sk, sk ≥ 1

2
, the following estimate holds

sup
qδ∈Mδ

∫
S
(u0 · n)[qδ] dτ

‖qδ‖α∗

≤ c(1 + µ)

(
K∑

k=1

αkN
−2sk

k (logNk)‖u|Ωk
‖2

Hsk (Ωk)d

)1/2

. (48)

Remark 12 In fact, the (logNk)
1
2 in (48) disappears when all the edges of ∂Ωk which are not

mortars are contained either in ∂Ω or in one mortar, however it is negligible in comparison

with the N sk

k when Nk is large enough.

Estimating the approximation error in Mδ is more complex. See [11] for the proof.

The lemma gives a bound for the approximation error. Here, we introduce the quantity

µδ = max
1≤m≤M

max
ℓ∈E(m)

(
α−1

ℓ N−1
ℓ

α−1
k(m)N

−1
k(m)

) 1
2

, (49)

which now depends on δ.

Lemma 13 Assume that the solution (u, p) of problem (5) is such that each p|Ωk
, 1 ≤ k ≤ K,

belongs to Hsk+1(Ωk) for a real number sk, sk > 0. The following estimate holds

inf
qδ∈Mδ

‖p− qδ‖α∗ ≤ c(1 + µ+ µδ)

(
K∑

k=1

α
− 1

2
k N−2sk

k ‖p|Ωk
‖2

Hsk+1(Ωk)

) 1
2

. (50)

For the proof we refer to [12].
From the previous remarks, and the reference [5], the following improved estimate holds for

a conforming decomposition.

Corollary 14 If the decomposition (10) is conforming and if the assumptions of Theorem 8

are satisfied, the following error estimate holds between the solution (u, p) of problem (5) and

the solution (uδ, pδ) of problem (19)

‖u − uδ‖α

≤ c

(
(1 + µ)

1
2

K∑

k=1

N−sk

k

(
α

1
2
k ‖u|Ωk

‖Hsk (Ωk)2 + α
− 1

2
k ‖p|Ωk

‖Hsk+1(Ωk)

)

+
√
αmax

( K∑

k=1

N−2σk

k ‖f |Ωk
‖2

Hσk (Ωk)2

)1/2
)
, (51)

where the constant c is independent of the parameter δ and the function α.
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Estimate (51) is fully optimal, at least for a geometrically conforming decomposition, and the
possibly high ratios between the different values of the αk are correctly taken into account by
the weighted norms.
Also, the constant

√
αmax seems unavoidable, however this is negligible since the data are most

often much more regular than the solution due to the discontinuity of α.

Estimating the error on the pressure is now easy.

Theorem 15 If the assumptions of Theorem 8 are satisfied, the following error estimate holds

between the pressure p of problem (5) and the pressure pδ of problem (19) :

‖p− pδ‖α∗

≤ c

(
(1 + µ+ µδ)

1
2

( K∑

k=1

N−sk

k

(
α

1
2
k (logNk)‖u|Ωk

‖Hsk (Ωk)2 + α
− 1

2
k ‖p|Ωk

‖Hsk+1(Ωk)

))

+
√
αmax

(( K∑

k=1

N−2σk

k ‖f|Ωk
‖2

Hσk (Ωk)2

) 1
2

+
( K∑

k=1

N−2τ
k

4∑

j=1

‖g‖2
Hτ (∂Ω)

)1/2
))

,

(52)
where the constant c is independent of the parameter δ and the function α.

Proof. From the inf-sup condition (27), we derive that, for any qδ in Mδ,

β ‖pδ − qδ‖α∗ ≤ sup
vδ∈Xδ

bδ(vδ, pδ − qδ)

‖vδ‖α

. (53)

we first use the discrete problem (19) :

bδ(vδ, pδ − qδ) = ((αf ,vδ))δ + aδ(uδ,vδ) − bδ(vδ, qδ).

Next, we apply equation (5) to the function vδ, integrate by parts and add it to the previous
line. This yields

bδ(vδ, pδ − qδ) =
K∑

k=1

αk

∫

Ωk

(u − uδ)(x) · vδ(x) dx

+
K∑

k=1

αk

∫

Ωk

uδ(x) · vδ(x) dx − ((αuδ,vδ))δ

+

∫

Ω

vδ(x) · grad (p− qδ)(x) dx

+ ((αf ,vδ))δ −
K∑

k=1

αk

∫

Ωk

f(x) · vδ(x) dx

+ b(vδ, qδ) − bδ(vδ, qδ) (54)
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Using the same arguments as in the estimation of terms issued from numerical integration
together with a triangle inequality yields

‖p− qδ‖α∗ ≤ c

(
‖u − uδ‖α + sup

vδ∈Xδ

(aα − aδ
α)(uδ,vδ)

‖vδ‖α

+ ‖p− qδ‖α∗ + sup
vδ∈Xδ

((αf ,vδ))δ −
∑K

k=1 αk

∫
Ωk

f(x) · vδ(x) dx

‖vδ‖α

+ sup
vδ∈Xδ

b(vδ, qδ) − bδ(vδ, qδ)

‖vδ‖α

)
. (55)

All the terms in the right-hand side have been estimated previously.
A more explicit estimate can be deduced from the previously quoted regularity results. We

refer to [6] for proof.

Corollary 16 Assume the datum f such that each f |Ωk
, 1lek ≤ K, belongs to Hσk(Ωk)

2,

σk > 1, and the datum g belong to Hτ (∂Ω), τ > 1
2
. Then, the following error estimate holds

between the solution (u, p) of problem (5) and the solution (uδ, pδ) of problem (19) :

‖u − uδ‖α + ‖p− pδ‖α∗ ≤ cEk

K∑

k=1

(‖f |Ωk
‖Hσk (Ωk)2 +

4∑

j=1

‖g‖Hτ (∂Ω)), (56)

with

Ek =





sup{N−4
k (logNk)

3
2 , N−σk

k }, if Ωk contains a corner but no nonconvex corner of Ω,

sup{N− 4
3

k (logNk)
1
2 , N−σk

k }, if Ωk contains a nonconvex corner of Ω,

N−σk

k , if Ωk contains no corner of Ω.
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5 Extension to piecewise smooth coefficients

We are now interested in the case where the αk are no longer constants but are smooth
functions. From now on, we do not take into account the local ratios αk

max/α
k
min, where αk

min

and αk
max, 1 ≤ k ≤ K, are introduced in (9), but only the global one αmax/αmin.

The discrete problem relies on the same space Xδ and Mδ, and on the same discrete product
((., .))δ.
If the function f has continuous restrictions to all Ωk, 1 ≤ k ≤ K, and the datum g fas conti-
nuous restrictions to ∂Ω, it reads

Find (uδ, pδ) ∈ Xδ × Mδ such that





∀v ∈ Xδ, a
δ
α(uδ,vδ) + bδ(vδ, pδ) = ((αf ,vδ))δ,

∀qδ ∈ Mδ, bδ(uδ, qδ) = ((g, qδ))
∂Ω
δ ,

(57)

where the bilinear form aδ(., .) is now defined by

aδ
α(uδ,vδ) =

K∑

k=1

((αkuδ,vδ))
k
δ , (58)

we conserve the bilinear form bδ(., .), and we define

((αf ,vδ))δ =
K∑

k=1

((αkf ,vδ))
k
δ .

We decide here to define the “broken”energy norm by

‖q‖α∗ =

(
K∑

k=1

(αk
max)

−1|q|2H1(Ωk)

) 1
2

. (59)

The statements of Lemmas 5 and 4 are still valid in this case (with the constants 9 in (21)
and 1 in (22) replaced by appropriate constants only depending on the ratios αk

max/α
k
min. This

yields the well-posedness of problem (57).

Proposition 17 For any datum f such that each f |Ωk
, 1 ≤ k ≤ K, is continuous on Ωk,

and the datum g is continuous on ∂Ω, problem (57) has a unique solution (uδ, pδ) in Xδ ×Mδ.

Moreover, there exists a constant c independent of δ such that this solution satisfies

‖uδ‖α + ‖pδ‖α∗ ≤ c
√
αmax(‖Iδf‖α + ‖I∂Ω

δ g‖L2(∂Ω)). (60)

Proving the error estimates is slightly more complex. Only the term

sup
wδ∈Xδ

(aα − aδ
α)(vδ,wδ)

‖wδ‖α

,
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and

sup
wδ∈Xδ

((αf ,wδ))α −∑K
k=1

∫
Ωk
αkf(x) · wδ(x) dx

‖wδ‖α

,

requires some further attention.
Let Zδ′ be the analogue of the space Zδ introduced in (??), for the K-tuple δ′ made of the N ′

k,
where each N ′

k is equal to the integral part of (Nk − 1)/2.

Lemma 18 If the functions αk, 1 ≤ k ≤ K, belong to Hςk(Ωk), ςk > 3/2, the following estimate

holds for any vδ in Xδ

sup
wδ∈Xδ

(aα − aδ
α)(vδ,wδ)

‖wδ‖α

≤ c

(( K∑

k=1

(αk−2
max)

−1N
2(1−ςk)
k (logNk)‖αk‖2

Hςk (Ωk)

)1/2(
‖u‖α + ‖u − vδ‖α

)

+‖u − vδ‖α + infzδ′∈Zδ′
‖u − zδ′‖α

)
.

Proof. For any functions vδ and wδ in Xδ, we have

(aα − aδ
α)(vδ,wδ) =

K∑

k=1

(∫

Ωk

αk(x)vδ(x) · wδ(x) dx − (((Iδαk)vδ,wδ))
k
Nk

)
.

On each Ωk, we introduce the image zkδ′ of u by the orthogonal projection operator from
H1(Ωk) onto PN ′

k
(Ωk), together with an approximation αkδ′ of αk in PN ′

k
(Ωk). By adding and

subtracting the term

∫

Ωk

αkδ′(x)zkδ′(x) · wδ(x) dx = (((Iδαkδ′)vkδ′ ,wδ))
k
Nk
,

we have to bound the quantities

(αk−1/2
max )−1‖αkvδ − αkδ′zkδ′‖L2(Ωk)d and (αk−1/2

max )−1‖Iδ((Iδαk)vδ − αkδ′zkδ′)‖L2(Ωk)d .

The first is bounded by

c(α
k−1/2
max )−1(‖u − vδ‖L2(Ωk)d + ‖u − vkδ′‖L2(Ωk)d)

+c′(αk−1/2
max )−1‖αk − αkδ′‖L∞(Ωk)‖u‖L2(Ωk)d . (61)

Moreover let us recall from [7, Eq. (13.28)] that

∀vM ∈ PM(Ωk), ‖IδvM‖L2(Ωk) ≤ c

(
1 +

M

Nk

)2

‖vM‖L2(Ωk).
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So, since the restriction of (Iδαk)vδ −αkδ′zkδ′ to each Ωk belongs to P2Nk
(Ωk), the second term

is bounded by a constant times the quantities in (61) plus

c′′(αk−1/2
max )−1‖αk − Iδαk‖L∞(Ωk)(‖u‖L2(Ωk)2 + ‖u − vδ‖L2(Ωk)2).

So, when taking αkδ′ = (Iδ′α)|Ωk
(with obvious notation), the desired estimate follows from

|αk − Iδαk‖L∞(Ωk) ≤ cN1−τk

k (logNk)
1/2‖αk‖Hτk (Ωk),

which can be derived from [7, Sec. 14] combined with Gagliardo-Nirenberg inequality.
We can now conclude with the error estimates, which are the same as in Section 3 with a

further term involving the regularity of the αk.

Theorem 19 Assume that the functions αk, 1 ≤ k ≤ K, belong to Hτk(Ωk), τk > 3/2. If the

solution (u, p) of problem (5) is such that its restriction to each (u|Ωk
, p|Ωk

), 1 ≤ k ≤ K belongs

to Hsk(Ωk)
2 ×Hsk+1(Ωk), sk ≥ 0, and if the function f is such that its restriction to each f |Ωk

,

belongs to Hσk(Ωk), for integer σk > 1, the following error estimate holds between this solution

and the solution (uδ, pδ) of problem (57)

‖u − uδ‖α + ‖p− pδ‖α∗

≤ c

(
(1 + µ+ µδ)

K∑

k=1

N−2sk

k

(
αk(logNk)‖u|Ωk

‖2
Hsk (Ωk) +N−2sk

k α−1
k ‖p|Ωk

‖2
Hsk+1(Ωk)

)1/2

+

( K∑

k=1

αk−2
minN

2(1−ςk)
k (logNk)‖αk‖2

Hςk (Ωk)

)1/2

‖u‖α

+
√
αmax

( K∑

k=1

N−2σk

k ‖f |Ωk
‖2

Hσk (Ωk)2 +
K∑

k=1

N−2τ
k

4∑

j=1

‖g‖2
Hτ (∂Ω)

)1/2
)
, (62)

where the constant c is indépendent of parameter δ and the function α.

There the following improved estimate also holds for a conforming decomposition.

Corollary 20 If the decomposition (10) is conforming and if the assumptions of Theorem 19

are satisfied, the following error estimate holds between the solution (u, p) of problem (5) and

the solution (uδ, pδ) of problem (57)

‖u − uδ‖α + ‖p− pδ‖α∗

≤ c

(
(1 + µ)

( K∑

k=1

N−2sk

k

(
αk‖u|Ωk

‖2
Hsk (Ωk)2 + α−1

k ‖p|Ωk
‖2

Hsk+1(Ωk)

)1/2

+

( K∑

k=1

(αk−2
minN

2(1−ςk)
k (logNk)‖αk‖2

Hςk (Ωk)

)1/2

‖u‖α

+
√
αmax

( K∑

k=1

N−2σk

k ‖f|Ωk
‖2

Hσk (Ωk)2 +
K∑

k=1

N−2τ
k

4∑

j=1

‖g‖2
Hτ (∂Ω)

)1/2
)
, (63)

where the constant c is independent of parameter δ and the function α.
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Since the functions αk are assumed to be smooth, the convergence order is exactly the same as
in Section 3.

20



6 Numerical experiments

First, we briefly describe the implementation of the discrete problem. The unknowns are the
values of the solution (uδ, pδ) at the nodes (ξ

(x)
ki , ξ

(y)
kj ), 0 ≤ i, j ≤ Nk, 1 ≤ k ≤ K, which either

are inside the Ωk or are corners of the Ωk that do not belong to ∂Ω or are inside the mortars
γm. Let (U, P ) denote the vector made of these values. Then conditions (13) can be expressed

in the following way : there exists a rectangular matrix Q such that the vector P̃ = QP is made
of K blocks Pk, 1 ≤ k ≤ K, and each Pk is made of the values of pδ at all nodes (ξ

(x)
ki , ξ

(y)
kj ),

0 ≤ i, j ≤ Nk, 1 ≤ k ≤ K.
The problem (19) is now equivalent to the following square linear





AU +BQP̃ = F,

QTBTU = QTG,
(64)

where QT stands for the transposed matrix of Q. The matrix A is fully diagonal, its diagonal
terms are the ρ

(x)
ik ρ

(y)
jk according to the dimension. The matrix B is only block-diagonal, with

K blocks Bk on the diagonal, one for each Ωk. Since, system (64) is solved via the conjugate
gradient algorithm.
Our first experiments concern the simple geometry where Ω is a rectangle divided into two
squares

Ω =] − 1, 1[×]0, 1[, Ω1 =] − 1, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[,

when the corresponding pair (α1, α2) of values of α runs through (1, 10) and (102, 103).
In Fig. 1, the error are presented for the discretization without domain decomposition.

Figure 1 – Error curves

We now consider the case of non-conforming decomposition see Figure 2. The domain is

Ω =] − 1, 1[2,

partitioned into three subdomains

Ω1 =] − 1, 0[×]0, 1[, Ω2 =]0, 1[×]0, 1[, Ω3 =] − 1, 1[×] − 1, 0[.

The mortars are chosen as

γ1 = {0}×]0, 1[, γ2 =] − 1, 1[×{0}.

21



Figure 2 – The nonmatching grids for a nonconforming decomposition with N1 = 24, N2 =
22, N3 = 20.

The coefficients αk are equal to

α1 = 1, α2 = 10, α3 = 100.

We use our spectral method to coppute an approximation of the analytical solution (u, p) given
by

u(x, y) =




cos(πx) sin(πy)

− sin(πx) cos(πy)


 , p(x, y) = sin(πx) cos(πy). (65)

In Figure 3 are plotted, the curves of the errors ‖u − uδ‖α and ‖p − pδ‖α∗ for both cases as
a function of N. For the smooth solution, a linear or logarithmic scale is used and we observe
that the exponential decaying of the error is preserved despite the nonconforming domain
decompsotion. For the nonsmooth soution rather a full logarithmic scale is adopted, we observe
the good convergence of the discretization. This solution is given by

u(x, y) =




cos(πx) sin(πy)

− sin(πx) cos(πy)


 , p(x, y) = ((x− 1)2 + (y − 1)2)

5
4 .

The slopes of the curves are −2.1 and −4.5, so they are better than the theoretical prediction
(we refer to [1] for the first observation of this superconvergence phenomenon).
We represente in Figure 4 and 5 the solution with N equal to 80.
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Figure 3 – The error curves for an analytical solution (left panel) and a nonsmooth solution
(right panel).

Figure 4 – The isovalues of the two components of the velocity.

Figure 5 – The isovalues of the pressure.
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