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Long runs under point conditioning. The real case

This paper presents a sharp approximation of the density of long runs of a random walk conditioned on its end value or by an average of a functions of its summands as their number tends to infinity. The conditioning event is of moderate or large deviation type. The result extends the Gibbs conditional principle in the sense that it provides a description of the distribution of the random walk on long subsequences. An algorithm for the simulation of such long runs is presented, together with an algorithm determining their maximal length for which the approximation is valid up to a prescribed accuracy.

Introduction and notation 1.Context and scope

This paper explores the asymptotic distribution of a random walk conditioned on its final value as the number of summands increases. Denote X n 1 := (X 1 , .., X n ) a set of n independent copies of a real random variable X with density p on R and S n 1 := X 1 + ...+X n . We consider approximations of the density of the vector X k 1 = (X 1 , .., X k ) on R k when S n 1 = n a n √ V arX + EX and a n is either fixed different from 0 or tends slowly to 0 and k := k n is an integer sequence such that 0 ≤ lim sup

n→∞ k/n ≤ 1 (1) 
together with lim

n→∞ n -k = ∞. (2) 
Therefore we may consider the asymptopic behavior of the density of the trajectory of the random walk on long runs. For sake of applications we also address the case when S n 1 is substituted by U n 1 := f (X 1 ) + ... + f (X n ) for some real valued measurable function f when U n 1 = n a n V arf (X) + Ef (X) . The interest in this question stems from various sources. When k is fixed (typically k = 1) this is a version of the Gibbs Conditional Principle which has been studied extensively for fixed a n , therefore under a large deviation condition. Diaconis and Freedman [START_REF] Diaconis | Conditional limit theorems for exponential families and finite versions of de Finetti's theorem[END_REF] have considered this issue also in the case k/n → θ for 0 ≤ θ < 1, in connection with de Finetti's Theorem for exchangeable finite sequences. Their interest was related to the approximation of the density of X k 1 by the product density of the summands X i 's, therefore on the permanence of the independence of the X i 's under conditioning. Their result is in the spirit of van Camperhout and Cover [START_REF] Van Campenhout | Maximum entropy and conditional probability[END_REF] and to be paralleled with Csiszar's [START_REF] Csiszár | Sanov property, generalized I-projection and a conditional limit theorem[END_REF] asymptotic conditional independence result, when the conditioning event is S n 1 > n a n √ V arX + EX with a n fixed and positive. In the same vein and under the same large deviation condition Dembo and Zeitouni [START_REF] Dembo | Refinements of the Gibbs conditioning principle[END_REF] considered similar problems. This question is also of importance in Statistical Physics. Numerous papers pertaining to structural properties of polymers deal with this issue, and we refer to [START_REF] Hollander | On the range of a constrained random walk[END_REF] and [START_REF] Hollander | A note on configurational properties of constrained random walks[END_REF] for a description of those problems and related results. In the moderate deviation case Ermakov [START_REF] Ermakov | The importance sampling method for modeling the probabilities of moderate and large deviations of estimates and tests[END_REF] also considered a similar problem when k = 1. Although out of the scope of the present paper the result which is presented here is a cornerstone in the development of fast Importance Sampling procedures for rare event simulation; see a first attempt in this direction in [START_REF] Broniatowski | Importance Sampling for rare events and conditioned random walks[END_REF]. In Statistics, M -estimators have the same weak behavior as the empirical mean of their influence functions on the sampling points in the moderate deviation zone. Simulating samples under a given value of the M -estimator leads to improved test procedures under small p-values.

We exhibit the change in the dependence structure of the X i 's under the conditioning as k/n → 1 and provide an explicit and constructive solution to the approximation scheme. The approximating density is obtained as an adaptive change in the classical tilting argument combined with an adaptive change in the variance. Also when k = o(n) our result improves on existing ones since it provides a sharp approximation of the conditional density. The present result is optimal in the sense that it coincides with the exact conditional density in the gaussian case.

The crucial aspect of our result is the following. The approximation of the density of X k 1 is not performed on the sequence of entire spaces R k but merely on a sequence of subsets of R k which bear the trajectories of the conditioned random walk with probability going to 1 as n tends to infinity; therefore the approximation is performed on typical paths. The reason which led us to consider approximation in this peculiar sense is twofold. First the approximation on typical paths is what is in fact needed for the applications of the present results in the field of simulation and of rare event analysis; second it avoids a number of technical conditions which are necessary in order to get an approximation on all R k and which are indeed central in the above mentioned works; those conditions pertain to the regularity of the characteristic function of the underlying density p in order to get a good approximation in remote regions of R k . Since the approximation is handled on paths generated under the conditional density of the X i 's under the conditioning, much is known on the region of R k which is reached with large probability by the conditioned random walk, through the analysis of the large values of the X i 's.

For sake of numerical applications we provide explicit algorithms for the generation of such random walks together with a number of comments for the practical implementation. Also an explicit rule for the maximal value of k compatible with a given accuracy of the approximating scheme is presented and numerical simulation supports this rule; an algorithm for its calculation is presented.

Notation and hypotheses

In the context of the point conditioning

E n := S n 1 = n a n √ V arX + EX
the hypotheses are as below. The case when S n 1 is substituted by U n 1 and (EX, V arX) by (ET, V arT) is postponed to Section 3, together with the relevant hypotheses and notation.

We assume that X satisfies the Cramer condition, i.e. X has a finite moment generating function Φ(t) := E exp tX in a non void neighborhood of 0; denote

m(t) := d dt log Φ(t) and s 2 (t) := d dt m(t).
The values of m(t) and s 2 are the expectation and the variance of the tilted density

π α (x) := exp tx Φ(t) p(x) (3) 
where t is the only solution of the equation m(t) = α when α belongs to the support of X. Denote Π α the probability measure with density π α . We also assume that the characteristic function of X is in L r for some r ≥ 1 which is necessary for the Edgeworth expansions to be performed.

The probability measure of the random vector X n 1 on R n conditioned upon E n is denoted P n . We also denote P n the corresponding distribution of X k 1 conditioned upon E n ; the vector X k 1 then has a density with respect to the Lebesgue measure on R k for 1 ≤ k < n ,which will be denoted p n , which might seem ambiguous but recalls that the conditioned distribution pertains to the value of S n 1 , from which the density of X k 1 is obtained.

This paper is organized as follows. Section 2 presents the approximation scheme for the conditional density of X k 1 under the point conditioning sequence E n . In section 3, it is extended to the case when the conditioning family of events writes U n 1 = n a n V arf (X) + Ef (X) . The value of k for which this approximation is fair is discussed; an algorithm for the implementation of this rule is proposed. Section 4 presents an algorithm for the simulation of random variables under the approximating scheme. We have kept the main steps of the proofs in the core of the paper; some of the technicalities is left to the Appendix.

Random walks conditioned on their sum

We introduce a positive sequence n which satisfies

lim n→∞ n √ n -k = ∞ (E1) lim n→∞ n (log n) 2 = 0. (E2)
It will be shown that n (log n) 2 is the rate of accuracy of the approximating scheme.

We denote a the generic term of the bounded sequence (a n ) n≥1 , which we assume positive, without loss of generality . The event E n is of moderate or large deviation type, since we assume that

lim n→∞ a 2 n (log n) 2 = ∞. (A)
The case when a does not depend on n satisfies (A) for any sequence n under (E1,2). Conditions (A) and (E1,2) jointly imply that a cannot satisfy √ na → c for some fixed c; the Central Limit zone is not covered by our result. In order that there exists a sequence n such that the approximation of p n holds with rate n (log n)

2 → 0, a sufficient condition on a n is

lim n→∞ √ na 2 (log n) 2 = ∞ (4) 
which covers both the moderate and the large deviation cases. Under these assumptions k can be fixed or can grow together with n with the restriction that n-k should tend to infinity; when a is fixed this rate is governed through (E1) (or reciprocally given k , n is governed by k) independently on a. In the moderate deviation case for a given sequence a close to 0, n has rapid decrease, which in turn forces n -k to grow rapidly.

In this section we assume that X has expectation 0 and variance 1. For clearness the dependence in n of all quantities involved in the coming development is omitted in the notation.

Approximation of the density of the runs

Let a = a n denote the current term of a sequence satisfying (A). Define a density g a (y k 1 ) on R k as follows. Set

g 0 ( y 1 | y 0 ) := π a (y 1 )
with y 0 arbitrary, and for 1 ≤ i ≤ k -1 define g i ( y i+1 | y i 1 ) recursively. Set t i the unique solution of the equation

m i := m(t i ) = n n -i a - s i 1 n (5) 
where s i 1 := y 1 + ... + y i . The tilted adaptive family of densities π mi is the basic ingredient of the derivation of approximating scheme. Let

s 2 i := d 2 dt 2 (log E π m i exp tX) (0)
and

µ i j := d j dt j (log E π m i exp tX) ( 
0) , j = 3, 4 which are the second , third and fourth centered moments of π mi . Let

g i ( y i+1 | y i 1 ) = C i p(y i+1 )n (a + αβ, α, y i+1 ) (6) 
where n (µ, τ, x) is the normal density with mean µ and variance τ at x. Here

α = s 2 i (n -i -1) (7) 
β = t i + µ i 3 2s 2 i (n -i -1) (8) 
and the C i is a normalizing constant. Define

g a (y k 1 ) := k-1 i=0 g i ( y i+1 | y i 1 ). (9) 
We then have Theorem 1 Assume that (E1,2) holds together with (A). Let Y n 1 be a sample with distribution P n . Then

p n Y k 1 := p( X k 1 = Y k 1 S n 1 = na) = g a (Y k 1 )(1 + o Pn ( n (log n) 2 )). ( 10 
)
Proof. The proof uses Bayes formula to write p(

X k 1 = Y k 1 S n 1 = na)
as a product of k conditional densities of individual terms of the trajectory evaluated at Y k 1 . Each term of this product is approximated through an Edgeworth expansion which together with the properties of Y k 1 under P n concludes the proof. This proof is rather long and we have differed its technical steps to the Appendix.

Denote Σ 0 1 = 0, Σ 1 1 := Y 1 and Σ i 1 := Σ i-1 1 + Y i . It holds p( X k 1 = Y k 1 S n 1 = na) = p( X 1 = Y 1 | S n 1 = na) (11) k-1 i=1 p( X i+1 = Y i+1 | X i 1 = Y i 1 , S n 1 = na) = k-1 i=0 p X i+1 = Y i+1 | S n i+1 = na -Σ i 1 using independence of the r.v's X i s.
We make use of the following property which states the invariance of conditional densities under the tilting: For 1 ≤ i ≤ j ≤ n, for all a in the range of X, for all u and s p

S j i = u S n 1 = s = π a S j i = u S n 1 = s . ( 12 
)
Define t i through

m(t i ) = n n -i a - Σ i 1 n a function of the past r.v's Y i 1 , m i := m(t i ) and s 2 i := s 2 (t i ). By (12) p X i+1 = Y i+1 | S n i+1 = na -Σ i 1 = π mi X i+1 = Y i+1 | S n i+1 = na -Σ i 1 = π mi (X i+1 = Y i+1 ) π mi S n i+2 = na -Σ i+1 1 π mi S n i+1 = na -Σ i 1
where we used the independence of the X j 's under π mi . A precise evaluation of the dominating terms in this lattest expression is needed in order to handle the product [START_REF] Jensen | Saddlepoint approximations[END_REF]. Under the sequence of densities π mi the i.i.d. r.v's X i+1 , ..., X n define a triangular array which satisfies a local central limit theorem, and an Edgeworth expansion. Under π mi , X i+1 has expectation m i and variance s 2 i . Center and normalize both the numerator and denominator in the fraction which appears in the last display. Denote π n-i-1 the density of the normalized sum

S n i+2 -(n -i -1)m i / s i √ n -i -1 when the summands are i.i.d. with common density π mi . Accordingly π n-i is the density of S n i+1 -(n -i)m i / s i √ n -i under i.i.d. π mi sampling. Hence, evaluating both π n-i-1 and its normal ap- proximation at point Y i+1 , p X i+1 = Y i+1 | S n i+1 = na -Σ i 1 (13) = √ n -i √ n -i -1 π mi (X i+1 = Y i+1 ) π n-i-1 (m i -Y i+1 ) /s i √ n -i -1 π n-i (0) := √ n -i √ n -i -1 π mi (X i+1 = Y i+1 ) N i D i
The sequence of densities π n-i-1 converges pointwise to the standard normal density under (E1) which implies that n -k tends to infinity, and an Edgeworth expansion to the order 5 is performed for the numerator and the denominator.

The main arguments used in order to obtain the order of magnitude of the envolved quantities are (i) a maximal inequality which controls the magnitude of m i for all i between 0 and k -1 (Lemma 13), (ii) the order of the maximum of the Y i s (Lemma 14). As proved in the Appendix, under (A)

N i = n -Y i+1 / s i √ n -i -1 .A.B + O Pn 1 (n -i -1) 3/2 (14) 
where

A := 1 + aY i+1 s 2 i (n -i -1) - a 2 2s 2 i (n -i -1) + o Pn ( n log n) n -i -1 (15) 
and

B :=   1 - µ i 3 2s 4 i (n-i-1) (a -Y i+1 ) - µ i 3 -s 4 i 8s 4 i (n-i-1) - 15(µ i 3 ) 2 72s 6 i + O Pn ((log n) 2 ) (n-i-1) 2   (16) 
The O Pn

1 (n-i-1) 3/2 term in (14) is uniform upon (m i -Y i+1 ) /s i √ n -i -1.
Turn back to [START_REF] Taylor | Limit theorems for sums of exchangeable random variables[END_REF] and do the same Edgeworth expansion in the demominator, which writes

D i = n(0) 1 - µ i 3 -s 4 i 8s 4 i (n -i) + O Pn 1 (n -i) 3/2 . ( 17 
)
The terms in g i ( Y i+1 | Y i 1 ) follow from an expansion in the ratio of the two expressions ( 14) and (17) above. The gaussian contribution is explicit in ( 14) while the term exp

µ i 3 2s 4 i (n-i-1) Y i+1 is the dominant term in B.
Turning to [START_REF] Taylor | Limit theorems for sums of exchangeable random variables[END_REF] and comparing with (10) it appears that the normalizing factor

C i in g i ( Y i+1 | Y i 1 ) com- pensates the term √ n-i Φ(ti) √ n-i-1 exp -aµ i 3 2s 2 i (n-i-1)
, where the term Φ(t i ) comes from π mi (X i+1 = Y i+1 ) . Further the product of the remaining terms in the above approximations in ( 14) and (17) turn to build the 1 + o Pn n (log n) 2 approximation rate, as claimed. Details are differed to the Appendix. This yields

p( X k 1 = Y k 1 S n 1 = na) = 1 + o Pn n (log n) 2 k-1 i=0 g i ( Y i+1 | Y i 1 )
which closes the proof of the Theorem.

Remark 2 When the X i 's are i.i.d. with a standard normal density, then the result in the above approximation Theorem holds with k = n -1 stating that p( X n-1

1 = x n-1 1 S n 1 = na) = g a x n-1 1 for all x n-1 1 in R n-1
. This extends to the case when they have an infinitely divisible distribution. However formula [START_REF] Feller | An introduction to probability theory and its applications[END_REF] holds true without the error term only in the gaussian case. Similar exact formulas can be obtained for infinitely divisible distributions using [START_REF] Jensen | Saddlepoint approximations[END_REF] making no use of tilting. Such formula is used to produce Tables 1 and2 in order to assess the validity of the selection rule for k in the exponential case.

Remark 3 The density in ( 6) is a slight modification of π mi . The modification from π mi to g i is a small shift in the location parameter depending both on a n and on the skewness of p, and a change in the variance : large values of X i+1 have smaller weigth for large i, so that the distribution of X i+1 tends to concentrate around m i as i approaches k.

Remark 4 In the previous Theorem, as in Lemma 14, we use an Edgeworth expansion for the density of the normalized sum of the n-th row of some triangular array of row-wise independent r.v's with common density. Consider the i.i.d. r.v's X 1 , ..., X n with common density π a (x) where a may depend on n but remains bounded. The Edgeworth expansion pertaining to the normalized density of S n 1 under π a can be derived following closely the proof given for example in [START_REF] Feller | An introduction to probability theory and its applications[END_REF], pp 532 and followings substituting the cumulants of p by those of π a . Denote ϕ a (z) the characteristic function of π a (x). Clearly for any δ > 0 there exists q a,δ < 1 such that |ϕ a (z)| < q a,δ and since a is bounded, sup n q a,δ < 1. Therefore the inequality (2.5) in [START_REF] Feller | An introduction to probability theory and its applications[END_REF] p533 holds. With ψ n defined as in [START_REF] Feller | An introduction to probability theory and its applications[END_REF], (2.6) holds with ϕ replaced by ϕ a and a by s(t a ); (2.9) holds, which completes the proof of the Edgeworth expansion in the simple case. The proof goes in the same way for higher order expansions.

Sampling under the approximation

Applications of Theorem 1 in Importance Sampling procedures and in Statistics require a reverse result. So assume that Y k 1 is a random vector generated under G a with density g a . Can we state that g a Y k 1 is a good approximation for p n Y k 1 ? This holds true. We state a simple Lemma in this direction. Let R n and S n denote two p.m's on R n with respective densities r n and s n .

Lemma 5 Suppose that for some sequence ε n which tends to 0 as n tends to infinity

r n (Y n 1 ) = s n (Y n 1 ) (1 + o Rn (ε n )) ( 18 
)
as n tends to ∞. Then

s n (Y n 1 ) = r n (Y n 1 ) (1 + o Sn (ε n )) . ( 19 
) Proof. Denote A n,εn := {y n 1 : (1 -ε n )s n (y n 1 ) ≤ r n (y n 1 ) ≤ s n (y n 1 ) (1 + ε n )} .
It holds for all positive δ

lim n→∞ R n (A n,δεn ) = 1. Write R n (A n,δεn ) = 1 A n,δεn (y n 1 )
r n (y n 1 ) s n (y n 1 )

s n (y n 1 )dy n 1 . Since R n (A n,δεn ) ≤ (1 + δε n )S n (A n,δεn ) it follows that lim n→∞ S n (A n,δεn ) = 1,
which proves the claim. As a direct by-product of Theorem 1 and Lemma 5 we obtain Theorem 6 Assume (A), (E1,2). Then when Y n 1 is generated under the distribution G a it holds

p n Y k 1 = g a (Y k 1 )(1 + o Ga ( n (log n) 2 ))
with p n defined in [START_REF] Feller | An introduction to probability theory and its applications[END_REF].

Random walks conditioned by the mean of a function of their summands

This section extends the above results to the case when the conditioning event writes

U n 1 := f (X 1 ) + ... + f (X n ) = n (σa + µ) . ( 20 
)
The function f is real valued, Ef (X) = µ and V arf (X) = σ 2 . The characteristic function of the random variable f (X) is assumed to belong to L r for some r ≥ 1. As previously a is assumed positive. Let p X denote the density of the r.v. X.

Assume φ f (t) := E exp tf (X) < ∞
for t in a non void neighborhood of 0. Define the functions m f (t), s 2 f (t) and µ f,3 (t) as the first, second and third derivatives of log φ f (t). Denote

π α f (x) := exp tf (x) φ f (t) p X (x)
with m f (t) = α and α belongs to the support of P f , the distribution of f (X) , with density p f . Assume that (A) holds and the sequence n satisfies (E1,2).

Approximation of the density of the runs

Define a density h σa+µ (y k 1 ) with c.d.f. H σa+µ on R k as follows. Set

h 0 ( y 1 | y 0 ) := π σa+µ f (y 1 )
with y 0 arbitrary and for 1 ≤ i ≤ k -1 define h i ( y i+1 | y i 1 ) recursively. Set t i the unique solution of the equation

m i := m f (t i /σ) = n n -i σa + µ - u i 1 n (21) 
where

u i 1 := f (y 1 ) + ... + f (y i ) . Define h i ( y i+1 | y i 1 ) = C i p X (y i+1 )n (αβ + a, α, (f (y i+1 ) -µ) /σ) (22) 
where C i is a normalizing constant. Here

α = σ -2 s 2 f (t i /σ) (n -i -1) (23) 
β = t i + σ 4 µ f,3 (t i /σ) 2σ 3 s 4 f (t i /σ) (n -i -1)
.

Set

h σa+µ y k 1 := k-1 i=0 h i ( y i+1 | y i 1 ). ( 25 
)
Denote P f n the distribution of X n 1 conditioned upon (U n 1 = n (σa + µ)) and p f n its density when restricted on R k ; therefore

p f n X k 1 = Y k 1 := p( X k 1 = Y k 1 U n 1 = n (σa + µ)). (26) 
Theorem 7 Assume (A) and (E1,2) . Then (i)

p f n X k 1 = Y k 1 = h σa+µ (Y k 1 )(1 + o P f n ( n (log n) 2 ))
and (ii)

p f n X k 1 = Y k 1 = h σa+µ (Y k 1 )(1 + o Hσa+µ ( n (log n) 2 )).
Proof. We only sketch the initial step of the proof of (i), which rapidly follows the same track as that in Theorem 1. Denote

U j i := f (Y i ) + ... + f (Y j ).
As in the proof of Theorem 1 evaluate

P X i+1 = Y i+1 | U n i+1 = n (σa + µ) -U i 1 = P (X i+1 = Y i+1 ) P U n i+2 = n (σa + µ) -U i+1 1 P U n i+1 = n (σa + µ) -U i 1 = A.B.
with

A := P (X i+1 = Y i+1 ) p f (f (Y i+1 ))
and

B := p f (f (Y i+1 )) P U n i+2 = n (σa + µ) -U i+1 1 P U n i+1 = n (σa + µ) -U i 1 .
Use the tilting invariance under π mi in B leading to

P X i+1 = Y i+1 | U n i+1 = n (σa + µ) -U i 1 = Aπ mi f (f (Y i+1 )) Π mi f U n i+2 = n (σa + µ) -U i+1 1 Π mi f T n i+1 = n (σa + µ) -U i 1 = P (X i+1 = Y i+1 ) e tif (Yi+1) φ f (t i ) Π mi f U n i+2 = n (σa + µ) -U i+1 1 Π mi f U n i+1 = n (σa + µ) -U i 1
and proceed through the Edgeworth expansions in the above expression, following verbatim the proof of Theorem 1. We omit details. The proof of (ii) follows from Lemma 5

How far is the approximation valid?

This section provides a rule leading to an effective choice of the crucial parameter k in order to achieve a given accuracy bound for the relative error. The generic r.v. X has density p X and f (X) has mean µ and variance σ 2 . The density p f n is defined in (26). The accuracy of the approximation is measured through

RE(k) := V ar hσa+µ 1 D k Y k 1 p f n Y k 1 -h σa+µ Y k 1 p f n Y k 1 ( 27 
)
thus when the Y k 1 are sampled under h σa+µ . Note that the density p f n is usually unknown; obtaning a graph of k → RE(k) requires some development.

In (27), D k is the subset of R k where h σa+µ (Y k 1 )/p f n Y k 1 -1 < δ n with n (log n) 2 /δ n → 0 and δ n → 0; therefore H σa+µ (D k ) → 1.
The argument is somehow heuristic and unformal; nevertheless the rule is simple to implement and provides good results. Let δ denote an acceptance level for RE(k). The graph of RE(k) provides the upper value k δ such that the relative accuracy of the approximation of p f n by h σa+µ is less than δ :

k δ := sup (k : RE(k) ≤ δ) .
The calculation of RE(k) should be done as follows.

Write

RE(k) 2 = E p X 1 D k Y k 1 h 3 σa+µ Y k 1 p f n Y k 1 2 p X Y k 1 (28) -E p X 1 D k Y k 1 h 2 σa+µ Y k 1 p f n Y k 1 p X Y k 1 2 (29) =: A -B 2 . ( 30 
)
By Bayes formula

p f n Y k 1 = p X Y k 1 np U n k+1 /(n-k) (m f (t k /σ)) (n -k) p U n 1 /n (σa + µ) . ( 31 
)
The following Lemma holds; see [START_REF] Jensen | Saddlepoint approximations[END_REF] and [START_REF] Rihter | Local limit theorems for large deviations[END_REF].

Lemma 8 Let X 1 , ..., X n be i.i.d. random variables with common density p on R and satisfying the Cramer conditions with m.g.f. φ. Then with Introduce

(log φ) (t) = u, p S n 1 /n (u) = √ nφ n (t) exp -ntu s(t) √ 2π (1 + o(1)
D := π a f (a) p X (a) n and N := π m k f (m k ) p X (m k ) (n-k)
with m k defined in (21). Define t by m f (t/σ) = σa + µ. By (31) and Lemma 8 it holds

p f n Y k 1 = n n -k p X Y k 1 N D s f (t/σ) s f (t k /σ) (1 + o P X (1)) .
The approximation of A is obtained through Monte Carlo simulation. Define

A Y k 1 := n -k n h σa+µ Y k 1 p X Y k 1 3 D N 2 s 2 f (t k /σ) s 2 f (t/σ) (32) 
and simulate L i.i.d. samples Y k 1 (l) , each one made of k i.i.d. replications under p X ; set

A := 1 L L l=1 A Y k 1 (l) .
We use the same approximation for B. Define

B Y k 1 := n -k n h σa+µ Y k 1 p X Y k 1 2 D N s f (t k /σ) s f (t/σ) (33) 
and

B := 1 L L l=1 B Y k 1 (l)
with the same Y k 1 (l) s as above. Set

RE(k)

:= A -B 2 (34)
which is a fair approximation of RE(k).

Numerical results specialized to f (x) = x are as follows. The case when p is a centered exponential distribution with variance 1 allows for an explicity evaluation of RE(k) making no use of Lemma 8. The conditional density p n is calculated analytically, the density g a is obtained through [START_REF] Ermakov | The importance sampling method for modeling the probabilities of moderate and large deviations of estimates and tests[END_REF]. The terms A and B are obtained by Monte Carlo simulation following the algorithm presented hereunder. Tables 1 and2 show the increase in δ w.r.t. k in the moderate deviation range, with a such that P (S n 1 > na) 10 -2 . In Table 3 and4, a is such that P (S n 1 > na) 10 -8 corresponding to a large deviation case. The Monte Carlo approximation of the function RE(k) is in solid line; in usual cases p n is unknown and RE(k) is substituted by RE(k). This function is in dot line in the same Tables. We have considered two cases, when n = 100 and when n = 1000. The relative error is less than 80% when k is less than 80 when n = 100 and less than 800 when n = 1000, which is a fairly good approximation for densities in such large spaces. The accuracy of the approximation in the moderate and the large deviation setting is similar. The fact that the two curves are fairly close to each other indicates that RE(k) is a good candidate for the choice of k, since for a given δ the true value of k as read on the solid line is larger than the once indicated on the dot line. We present a series of algorithms which produces the curve k → RE(k) in the case when f (X) has expectation µ and variance σ 2 .

Algorithm 1 Evaluates the function h

σa+µ INPUT vector x k 1 , integer n, density p X , level a OUTPUT h σa+µ x k 1 INITIALIZATION t 0 := σm -1 f (σa + µ) h 0 ( x 1 | x 0 1 ) := π σa+µ f (x 1 ) Σ 1 1 := x 1 PROCEDURE For i from 1 to k -1 m i :=(21) t i := σm -1 f (m i ) α :=(23) β :=(24) Calculate C i in (22) through MonteCarlo h i ( x i+1 | x i 1 ) :=(22) endFor Compute h σa+µ x k 1 :=(25) Return h σa+µ x k 1 Remark 9 Solving t i := σm -1
f (m i ) might be difficult, even through a Newton Raphson technique and time consuming in simple cases. It may happen that the reciprocal function of m f is at hand, as is assumed in Dupuis and Wang [START_REF] Dupuis | Importance sampling, large deviations, and differential games[END_REF], but even in such current situation as the Weibull distribution and f (x) = x, such is not the case. An alternative computation is presented in Algorithm 1', following an expansion in m f (t i /σ), which is a good update since s f (t i-1 /σ) is stable around varf (X) in the case when a tends to Ef (X) or to s 2 f (t) when a tends to 0 or for fixed a, as follows from a variant of Lemma 13.

Algorithm 1'

Similar to Algorithm 1 with t i := σm -1 f (m i ) substituted by

t i := t i-1 + σ m f t i-1 σ -xi (n-i)s 2 f t i-1 σ . Algorithm 3 : Simulates a sample Y k 1 with density h σa+µ INPUT integer n, density p X , level a , accuracy δ OUTPUT Vector Y k 1 INITIALIZATION Set k:= k δ with Algorithm 2 t 0 := σm -1 f (σa + µ) PROCEDURE Simulate Y 1 with density π σa+µ f Σ 1 1 := Y 1 For i from 1 to k -1 m i :=(21) t i := σm -1 f (m i ) α :=(23) β :=(24) Simulate Y i+1 with density h i ( y i+1 | y i 1 ) Σ i+1 1 := Σ i 1 + Y i+1 endFor Return Y k 1 Algorithm 3' Similar to Algorithm 3 with t i := σm -1 X (m i ) substituted by t i := t i-1 + σ m f t i-1 σ -xi (n-i)s 2 f t i-1 σ
Remark 10 The r.v. Y 1 can be obtained through Metropolis-Hastings algorithm; see also [START_REF] Barbe | Simulation in exponential families[END_REF] which uses a truncated approximation.

The following algorithm provides a simple acceptance/rejection simulation tool for Y i+1 with density h i ( y i+1 | y i 1 ); it does not require any estimation of the normalizing factor. Metropolis-Hastings may also be useful in complex cases.

Denote N the c.d.f. of a normal variate with parameter µ, σ 2 ,and N -1 its inverse. 

K such that p N -1 (x) ≤ Kf (x) for all x in [0, 1] PROCEDURE Do Simulate X with density f Simulate U uniform on [0, 1] independent of X Z := KU f (X) While Z < p N -1 (X) endDo Return Y := N -1 (X)
Tables 5,6,7 and 8 present a number of simulations of random walks conditioned on their sum with n = 1000 when f (x) = x. In the gaussian case, when the aproximating scheme is known to be optimal up to k = n -1, the simulation is performed with k = 999 and two cases are considered: the moderate deviation case is when P (S n 1 > na) = 10 -2 (Table 5) and the large deviation pertains to P (S n 1 > na) = 10 -8 (Table 6). The centered exponential case with n = 1000 and k = 900 is presented in Tables 7 and8, under the same events. In order to check the accuracy of the approximation, Tables 9,10 (normal case, n=1000, k=999) and Tables 11,[START_REF] Rihter | Local limit theorems for large deviations[END_REF] (centered exponential case, n=1000, k=900) present the histograms of the simulated X i s together with the tilted densities at point a which are known to be the limit density of X 1 conditioned on E n in the large deviation case, and to be equivalent to the same density in the moderate deviation case, as can be deduced from [START_REF] Ermakov | The importance sampling method for modeling the probabilities of moderate and large deviations of estimates and tests[END_REF]. The tilted density in the gaussian case is the normal with mean a and variance 1; in the centered exponential case the tilted density is an exponential density on (-1, ∞) with parameter 1/(1 + a). Consider now the case when f (x) = x 2 . Table 13 presents the case when X is N (0, 1), n = 1000, k = 800, P U n 1 = n a √ 2 + 1 10 -2 . We present the histograms of the X i s together with the graph of the corresponding titlted density; when X is N (0, 1) then X 2 is χ 2 . It is well known that when a is fixed larger than 1 then the limit distribution of X 1 conditioned on

U n 1 = n a √ 2 + 1 tends to N 0, 1 + a √ 2 
which is the Kullback-Leibler projection of N (0, 1) on the set of all probability measures Q on R with x 2 dQ(x) = a √ 2 + 1. Now this distribution is precisely h 0 ( y 1 | y 0 ) defined hereabove. Also consider (22); expansion using the definitions (23) and (24) prove that as n → ∞ the dominating term in h i ( y i+1 | y i 1 ) is precisely N 0, 1 + a √ 2 , and the terms including y 4 i+1 in the exponential stemming from n (αβ + a, α, (f (y i+1 ) -µ) /σ) are of order O (1/ (n -i)); the terms depending on y i 1 are of smaller order. The fit which is observed in the tables is in concordance with the above statement in the LDP range (fixed a), and with the MDP approximation following Ermakov; see [START_REF] Ermakov | The importance sampling method for modeling the probabilities of moderate and large deviations of estimates and tests[END_REF] .

Remark 11

The statistics U n 1 may be substituted by any regular M-estimator when a = a n defines a moderate deviation event, namely when (A) holds together with a n → 0. In this case it is well known that the distribution of any regular Mestimator is similar to that of the mean of its influence function evaluated on the sample points; this allows to simulate samples under a given model conditionally on an observed value of a statistics, when observed in a rare area under the model.

Conclusion

We have obtained an extended version of Gibbs conditional principle in the simple case of real valued independent r.v's conditioned on the value of their mean or on an average of their images through some real valued function. The approximation of the density of long runs is shown to be quite accurate and can be controlled through an explicit rule. Algorithms for the simulation of these runs are presented, together with numerical examples. Applications to Importance Sampling procedures for rare event simulation is a first application of this scheme; it mainly requires to consider conditioning events of the form (S n 1 > n (σa n + µ)) instead of (S n 1 = n (σa n + µ)); first numerical results obtained in [START_REF] Broniatowski | Importance Sampling for rare events and conditioned random walks[END_REF] show a net gain in the variance for IS estimators using an extension of the present scheme. Extension to the multivariate setting is obtainable, requiring slight modifications. The case when the conditioning event is in the CLT zone deserves attention due to its interest to statistics. Simulation of X n 1 under a given p θ0 in a model (p θ , θ ∈ Θ) may lead to conditional test when a is substituted by the observed value of a given statistics. The present case when conditioning under a moderate deviation event is of interest for accurate assesment when the observed statistics has small p-value under a given hypothesis. Some other potential application to statistics is related to test procedures in presence of nuisance parameter, considering conditional tests under a sufficient statistics for the nuisance.

A Three Lemmas pertaining to the partial sum under its final value

We state three lemmas which describe some functions of the random vector X n 1 conditioned on E n . The r.v. X is assumed to have expectation 0 and variance 1.

Lemma 12 It holds E Pn (X 1 ) = a, E Pn (X 1 X 2 ) = a 2 + 0 1 n . E Pn X 2 1 = s 2 (t) + a 2 + 0 1 n where m(t) = a. Proof. Using P n (X 1 = x) = p S n 2 (na -x) p X1 (x) p S n 1 (na) = π a S n 2 (na -x) π a X1 (x) π a S n 1 (na)
normalizing both π a S n 2 (na -x) and π a S n 1 (na) and making use of a first order Edgeworth expansion in those expressions yields the asymptotic expressions for E Pn X 2 1 = s 2 (t) + a 2 + 0 1 n here above. A similar development for the joint density P n (X 1 = x, X 2 = y), using the same tilted distribution π a it readily follows that the last result holds. We used the fact that a n is a bounded sequence.

The following result states the behavior of the moments of π mi .

Lemma 13 Assume (A) and (E1). Then max 1≤i≤k |m i | = a + o Pn ( n ) . Also max 1≤i≤k s 2 i , max 1≤i≤k µ i 3 and max 1≤i≤k µ i 4 tend in P n probability to the variance, skewness and kurtosis of p when a = a n → 0 and remain bounded when a is fixed positive.

Proof. Define

V i+1 := m(t i ) -a = Σ n i+1 n -i -a.
We state that max 0≤i≤k-1

|V i+1 | =o Pn ( n ) , (35) 
namely for all positive δ

lim n→∞ P n max 0≤i≤k-1 |V i+1 | > δ n = 0
which we prove following Kolmogorov maximal inequality. Define

A i := ((|V i+1 | ≥ δ n ) and (|V j | < δ n for all j < i + 1)) . from which max 0≤i≤k-1 |V i+1 | ≤ δ n = k-1 i=0 A i .
It holds

E Pn V 2 k = ∪Ai V 2 k dP n + (∪Ai) c V 2 k dP n ≥ ∪Ai V 2 i + 2 (V k -V i ) V i dP n + (∪Ai) c V 2 i + 2 (V k -V i ) V i dP n ≥ ∪Ai V 2 i dP n ≥ δ 2 2 n k-1 j=0 P n (A j ) = δ 2 2 n P n max 0≤i≤k-1 |V i+1 | >δ n .
The third line above follows from EV i (V k -V i ) = 0 which is proved hereunder. Hence

P n max 0≤i≤k-1 |V i+1 | >δ n ≤ V ar Pn (V k ) δ 2 2 n = 1 δ 2 2 n (n -k) (1 + o(1))
where we used Lemma 12; therefore (35) holds under (E1). We now check that

E Pn (V i (V k -V i )) = 0. Indeed denoting E Z Pn T the conditional expectation of T wrt Z , E Σ n i+1 n-i Pn Σ n i+1 n -i Σ n k+1 n -k - Σ n i+1 n -i = 0
by linearity, which implies

E Pn Σ n i+1 n -i Σ n k+1 n -k - Σ n i+1 n -i = 0
through integration, which implies

E Pn Σ n i+1 n -i -a Σ n k+1 n -k - Σ n i+1 n -i = 0
which achieves the proof. We also need the order of magnitude of max (X 1 , ..., X k ) under P n which is stated in the following result.

Lemma 14 For all k between 1 and n, max (X 1 , ..., X k ) = O Pn (log k) .

Proof. For all t it holds

P n (max (X 1 , ..., X k ) > t) ≤ kP n (X n > t) = k ∞ t π a (X n = u) π a (S n-1 1 = na n -u) π a (S n 1 = na n ) du.
Let τ be such that m(τ ) = a. Center and normalize both S n 1 and S n-1 1 with respect to the density π a in the last line above, denoting π a n the density of S n 1 := (S n 1 -na n ) /s (a) √ n when X has density π a with mean a and variance s (a) 2 , we get

P n (max (X 1 , ..., X k ) > t) ≤ k √ n √ n -1 ∞ t π a (X n = u) π a n-1 S n-1 1 = (na -u -(n -1)a) / s (a) √ n -1 π a n S n 1 = 0 du.
Under the sequence of densities π a the triangular array (X 1 , ..., X n ) obeys a first order Edgeworth expansion

P n (max (X 1 , ..., X k ) > t) ≤ k √ n √ n -1 ∞ t π a (X n = u) n (a -u) /s (a) √ n -1 P (u, i, n) + o(1) n (0) + o(1) du ≤ kCst ∞ t π a (X n = u) du.
for some constant Cst independent of n and τ and

P (u, i, n) := 1 + P 3 (a -u) /s (a) √ n -1 where P 3 (x) = µ (a) 3 
6(s (a) ) 3

x 3 -3x is the third Hermite polynomial; µ (a) 3

is the third centered moment of π a . We used uniformity upon u in the remaining term of the Edgeworth expansions. Making use of Chernoff Inequality to bound Π a (X n > t) ,

P n (max (X 1 , ..., X k ) > t) ≤ kCst Φ(τ + λ) Φ(τ ) e -λt
for any λ such that φ(τ + λ) is finite. For t such that

t/ log k → ∞ it holds P n (max (X 1 , ..., X k ) < t) → 1,
which proves the lemma.

B Proof of the approximations resulting from Edgeworth expansions in Theorem 1

We complete the calculation leading to (15) and ( 16).

Set

Z i+1 := (m i -Y i+1 ) /s i √ n -i -1. It then holds π n-i-1 (Z i+1 ) = n(Z i+1 ) 1 + 1 √ n-i-1 P 3 (Z i+1 ) + 1 n-i-1 P 4 (Z i+1 ) + 1 (n-i-1) 3/2 P 5 (Z i+1 ) (36) + O Pn 1 (n -i -1) 3/2
.

We perform an expansion in n(Z i+1 ) up to the order 3, with a first order term n

-Y i+1 / s i √ n -i -1 , namely n(Z i+1 ) = n -Y i+1 / s i √ n -i -1 (37)     1 + Yi+1mi s 2 i (n-i-1) + m 2 i 2s 2 i (n-i-1) Y 2 i+1 s 2 i (n-i-1) -1 + m 3 i 6s 3 i (n-i-1) 3/2 n (3) Y * (s i √ n-i-1) n(-Yi+1/(si √ n-i-1))     where Y * = 1 si √ n-i-1 (-Y i+1 + θm i ) with |θ| < 1.
Lemmas 13 and 14 provide the orders of magnitude of the random terms in the above displays when sampling under P n .

Use those lemmas to obtain

Y i+1 m i s 2 i (n -i -1) = Y i+1 n -i -1 (a + o Pn ( n )) (38) 
and

m 2 i s 2 i (n -i -1) = 1 n -i -1 (a + o Pn ( n )) 2 .
Also when (A) holds then the dominant terms in the bracket in (37) are precisely those in the two displays just above. This yields

n(Z i+1 ) = n -Y i+1 s i √ n -i -1 1 + aYi+1 s 2 i (n-i-1) - a 2 2s 2 i (n-i-1) + o Pn ( n log n) n-i-1
.

We now need a precise evaluation of the terms in the Hermite polynomials in (36). This is achieved using Lemmas 13 and 14 which provide uniformity upon i between 1 and k = k n in all terms depending on the sample path Y k 1 . The Hermite polynomials depend upon the moments of the underlying density π mi . Since π mi 1 has expectation 0 and variance 1 the terms corresponding to P 1 and P 2 vanish. Up to the order 4 the polynomials write P

3 (x) = µ (i) 3 6(si) 3 H 3 (x), P 4 (x) = (µ i 3 ) 2 72(si) 6 H 6 (x) + µ (i,n) 4
-3(si) 4 24(si) 4 H 4 (x) with H 3 (x) := x 3 -3x, H 4 (x) := x 4 + 6x 2 -3 and H 6 (x) := x 6 -15x 4 + 45x 2 -15.

Using Lemma 13 it appears that the terms in x j , j ≥ 3 in P 3 and P 4 will play no role in the asymptotic behavior in (36) with respect to the constant term .

By ( 13), ( 14) and ( 17)

p(X i+1 = Y i+1 |S n i+1 = na n -Σ i 1 ) = √ n -i √ n -i -1 π mi (X i+1 = Y i+1 ) n -Yi+1 si √ n-i-1 n(0) A(i)
with

A(i) := 1 + µ * 1 Yi+1 n-i-1 - µ * 2 a n-i-1 - κ i 2 n-i-1 + o Pn ( n log n) n-i-1 1 - κ i 2 n-i + O Pn 1 (n-i) 3/2 .
We perform a second order expansion in both the numerator and the denominator of the above expression, which yields

A(i) = exp µ * 1 Y i+1 n -i -1 + a 2s 2 i (n -i -1) exp - aκ i 1 n -i -1 exp o Pn ( n log n) n -i -1 A (i). (41) 
The term exp

µ * 1 Yi+1 n-i-1 + a 2s 2 i (n-i-1)
in (41) is captured in g i ( Y i+1 | Y i 1 ).

The term A (i) in (41) writes

A (i) := Q1.Q2 with 
Q1 := exp - κ i 2 (n-i-1)(n-i) + (κ i 2 ) 2 2(n-i) 2 + 1 2 µ * 1 Yi+1 n-i-1 - aµ * 2 n-i-1 - κ i 2 n-i-1 2 and Q2 := exp B 1 exp B 2
where

B 1 := o Pn ( 2 n (log n) 2 (n -i -1) 2 ) + µ * 1 Y i+1 (n -i -1) 2 o Pn ( n log n) + µ * 2 a (n -i -1) 2 o Pn ( n log n) + o Pn ( n log n) (n -i -1) 2 + o(u 2 1 ) B 2 := κ i 2 n -i O Pn 1 (n -i) 3/2 + O Pn 1 (n -i) 3 + O Pn 1 (n -i) 3/2 + o κ i 2 n -i + O Pn 1 (n -i) 3/2 2 .
with

u 1 = µ * 1 Y i+1 n -i -1 - µ * 2 a n -i -1 - κ i 2 n -i -1 + o Pn ( n log n) n -i -1 .
We first prove that k-1 i=0

A (i) = 1 + o Pn ( n (log n) 2 ) (42) 
as n tends to infinity. Since

p(X k 1 = Y k 1 |S n i+1 = na n ) = k-1 i=0 g i Y i+1 | Y i 1 k-1 i=0 A (i) k-1 i=0 L i
where

L i := C -1 i Φ (t i ) √ n -i √ n -i -1 exp - aκ i 1 n -i -1
the completion of the proof will follow from k-1 i=0

L i = 1 + o Pn ( n (log n) 2 ). ( 43 
)
The proof of (42) is achieved in two steps.

Claim 16 Q1 = 1 + o Pn ( n (log n)

2 ).

By Lemma 13 the random terms µ i j deriving from π mi satisfy max 1≤i≤k µ i j -µ j = o Pn [START_REF] Barbe | Simulation in exponential families[END_REF] as n tends to ∞, where µ j is the j-th centered moment of p. Therefore we may substitute µ i j by µ j in order to check the convergence of all subsequent series. It follows that, noting A n the intersection of the events A i n , j = 1, ..., 8

lim n→∞ P n (A n ) = 1.
To sum up, we have proved that, under (E1),

Q1 = 1 + o Pn n (log n) 2 .
Claim 17 Q2 = 1 + o Pn n (log n) 2 .
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 5268728 Figure 5: Trajectories in the normal case for P (S n 1 > na) = 10 -2
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 9 Figure 9: Distribution of X i s in the normal case for P (S n 1 > na) = 10 -2
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 10 Figure 10: Distribution of X i s in the normal case for P (S n 1 > na) = 10 -8
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 11 Figure 11: Distribution of X i s in the exponential case for P (S n 1 > na) = 10 -2
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 12 Figure 12: Distribution of X i s in the exponential case for P (S n 1 > na) = 10 -8

Figure 13 :

 13 Figure 13: Distribution of X i s in the normal case for P (S n 1 > na) = 10 -2 and for f (x) = x 2

1 nE Pn Y 4 1 = E π a Y 4 1 + O 1 n

 111 i -1) 2 < β 8 . Apply Theorem 15 with X i,n = Y 2 i+1 and a i,n = (log n) 2 (n-i-1) 2 .which entails that for some positive constant Γ such that EY 4 1 ≤ Γ < ∞. AlsoE Pn Y 2 1 Y 2 2 = s 2 (0) + a s 2 (0) + a + O

  This allows to use Lemma 8 in the numerator in (31) on a subset E k in R k with P X (E k ) → 1. Substituting D k by D k ∩ E k does not alter the magnitude of the estimate of RE(k).

	Turn to (31). Consider i.i.d. random realizations Y k 1 under p X . By (A) it holds a n / n → ∞. Hence by (E2) , a n √ n → ∞, which, together with the CLT pertaining to U k 1 -kµ /σ √ k entails lim

)

in the range of the large or moderate deviations, i.e. when |u| √ n → ∞ and |u| is bounded from above. n→∞ m f (t k /σ) √ n -k = ∞ in probability when k → ∞.

4 Simulation of typical paths of a random walk under a point conditioning By Theorem 7 (ii), h σa+µ and the density of X k 1 under (U n 1 = n (σa + µ)) get closer and closer on a family of subsets of R k which bear the typical paths of the random walk under the conditioning (U n 1 = n (σa + µ)) with probability going to 1 as n increases. By Lemma 5 large sets under P f n are also large sets under H σa+µ . It follows that longs runs of typical paths under p f n defined in (26) can be simulated as typical paths under H σa+µ at least for large n.

in P 4 and the term in x from P 3 . Indeed substituting x by Z i+1 and dividing by n -i -1, the term in x 2 in P 4 writes O Pn (log n) 2 /(n -i) 2 where we used Lemma 13. These terms are of smaller order than the term -3x in P 3 which writes -

which yields

For the term of order 4 it holds

which yields

The fifth term in the expansion plays no role in the asymptotics, under (A).

To sum up , under (A), and comparing the remainder terms in (39) and (40), we get

where A and B are given in (15) and ( 16).

C Final step of the proof of Theorem 1

We make use of the following version of the law of large numbers for triangular arrays (see [START_REF] Taylor | Limit theorems for sums of exchangeable random variables[END_REF] Theorem 3.1.3).

Theorem 15 Let X i,n ,1 ≤ i ≤ k denote an array of row-wise real exchangeable r.v's and

Developing Q1, define, for any positive β 1 , β 2 , β 3 and β 4

It clearly holds that lim

Let for any positive β 5

If lim n→∞ P n A 5 n = 1, then lim n→∞ P n A j n , j = 6, 7 where

Apply Theorem 15 with X i,n = Y i+1 and a i,n =

This amounts to prove that the sum of the terms in B1 (resp in B2) is of

The four terms in the the sum of the terms in B1 are respectively of order o Pn

and o Pn n (log n) 2 /(n-k) using Lemma 13. The sum of the terms o u 2 1 is of order less than those ones. Assuming (E1) all those terms are o Pn n (log n) 2 .

For the sum of terms B2, by uniformity of the Edgeworth expansion with respect to Y k 1 it holds

We now turn to the proof of (43) Define

.

Use the classical bounds

to obtain on both sides of the above inequalities the second order approximation of C -1 i through integration with respect to p. The upper bound yields

in the upper bound of L i above yields

+ O Pn 1 (n -i -1) 2 .

Using Lemma 13, m 2 i -2am i + a 2 = o Pn (a n ) and therefore

with

Under (A) and (E1),

This closes the proof of the Theorem.