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Abstract

In this paper the contact problem between rigid indenters of arbitrary shapes

and a viscoelastic half-space is considered. Under the action of a normal force the

penetration of the indenters changes and a few contact areas appeared. We wish to

find the relations which link the pressure distribution, the resultant forces on the

indenters and the penetration on the assumption that the surfaces are frictionless.

For indenters of arbitrary shapes the problem may be solved numerically by using

the Matrix Inversion Method, extended to viscoelastic cases [1]. But when the prob-

lem involves a large number of points the Matrix Inversion Method can become very

time-consuming. Here the problem is solved using an alternative scheme, called the

Two-scale Iterative Method. In this method the Local Matrix Inversion Method is

used at the micro-scale for each contact area to compute the pressure distribution

taking into account interacting effect (the forces on the other contact areas which

Preprint submitted to Int. Journal of Mechanical Sciences 21 October 2009

*Manuscript
Click here to view linked References

http://ees.elsevier.com/submit2ijms/viewRCResults.aspx?pdf=1&docID=1722&rev=1&fileID=43033&msid={0E60BE63-8F39-4B19-BC8A-F012C6B1D5CB}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

can be calculated at the macro-scale) between indenters. Two algorithms were pro-

posed. The first algorithm takes into account the distribution of forces on the other

contact areas and the second is the approximation of the first algorithm and takes

into account the resultant forces on the other contact areas. The method was imple-

mented for a simple configuration of seven spherical indenters, seven spherical-ended

cylindrical indenters and seven flat-ended cylindrical indenters as well as for a more

complex configuration of twelve randomly positioned indenters of arbitrary shapes:

spherical-ended cylindrical, flat-ended cylindrical, conical and cylindrical indenters

(finite cylindrical shape with its curved face). This last case is more difficult as the

indenting geometry doesn’t have an axisymmetric profile. For all these cases the

Two-scale Iterative Method permits to find the pressure distribution and the con-

tact forces versus the penetration. It can be validated by comparing the numerical

results to the numerical results obtained with the Matrix Inversion Method.

Key words: Contact mechanics, Viscoelastic contact, Viscoelasticity, Indenter,

Numerical methods

1 Introduction

The contact between a tyre and a road is mainly modeled in the frame of

the elastic theory. Generally, the viscoelastic effects have not been taken into

account for computing the pressure distribution. But in fact the dynamic mod-

ulus of rubber is frequency dependent and the viscoelastic part can be more

important than the elastic modulus. So the aim of our work is to propose a

new numerical method for problems of multi-indentation on a viscoelastic half-

space with asperities of arbitrary shapes for an increasing and then decreasing

∗ Corresponding author : Tel: (7 499) 135 35 90 ; Fax: (7 499) 135 61 59

Email address: kogevnik@ccas.ru (I.F. Kozhevnikov).
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vertical loading.

In the past, Boussinesq [2], using the potential theory, investigated the normal

contact between a perfectly rigid indenter and a plane elastic half-space. In

the case of two elastic bodies with smooth and quadratic contacting surfaces,

Hertz [3,4] also gave an analytical solution of the contact problem. Numerous

analytical or semi-analytical solutions were then derived from Boussinesq’s

theory for a rigid indenter of arbitrary shape on an elastic half-space, especially

in axisymmetric contact cases by Sneddon [5]. In the paper by Vilke [6] an

invariant form for the force function which depends on the geometric properties

of an intersection for the undeformed rigid bodies is proposed. This expression

is supposed to hold in cases when the classic contact theory hypotheses fail.

The problem of a rigid indenter pressed into contact with a viscoelastic solid

was also investigated by many authors. For finding the stresses and defor-

mations in cases where the corresponding solution for an elastic material is

known one can use a suggestion by Radok [7], which consists in replacing the

elastic constant in the elastic solution by the corresponding integral operator

from the viscoelastic stress-strain relations. This approach can be applied to

the contact problem if the contact area is increasing and can not be used if

the contact area decreases. This complication has been studied by Ting [8] for

a rigid axisymmetric indenter. Recently Vandamme and Ulm [9] show that for

conical indenters the suggestion of Radok remains valid at the very beginning

of the unloading phase as well.

Analytical, numerical and experimental studies have been made in case of

spherical, conical and pyramid indenters. Ball (Brinell) and flat (Boussinesq)

punch indentation was analysed in the work of Larsson and Carlsson [10], the

3
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elliptic indenter in the work of Yang [11], pyramid indenters in the works of

Giannakopoulos [12], Murakami et al. [13], Larsson et al. [14], Rabinovich and

Savin [15]. Cheng et al. [16] analyse the indentation of viscoelastic solids by a

spherical-tip indenter.

The contact problem when the number of indenters is large, was also investi-

gated by many authors. Greenwood and Williamson [17] proposed a statistical

method for contacts between rough surfaces. Asperities were approached by

independent spheres from the statistical properties of the surfaces and the

Hertz′s theory was used. Such methods don’t take into account the interac-

tion between asperities. McCool [18] has made numerical comparisons between

the Greenwood-Williamson elastic model and two more general isotropic and

anisotropic models. In the work by Carbone and Bottiglione [19] a critical

analysis of the principal contact theories (based on the idea of Greenwood

and Williamson) of rough surfaces was made. In the paper by Kucharski et al.

[20] the elastoplastic asperity-based model for the contact of rough surfaces is

presented. This model adopts most of the basic asperity-based assumptions,

introducing a more realistic elastoplastic deformation law for the analysis of

individual asperity deformations. The paper by Adams and Nosonovsky [21]

reviews contact modeling with an emphasis on the contact forces and their

relationship to the geometrical, material and mechanical properties of the con-

tacting bodies. The paper by Cesbron et al. [22] deals with the experimental

study of dynamical tyre/road contact for noise prediction. The measurements

of contact forces were carried out for a slick tyre rolling on six different road

surfaces between 30 and 50 km/h. The contact areas obtained during rolling

were smaller than in static conditions, that is mainly explained by the dynami-

cal properties of tyre compounds, like the viscoelastic behaviour of the rubber.
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One can also note the works by Kragelsky and Demkin [23], O’Callaghan and

Cameron [24], Bush et al. [25].

For the analysis of the contact between rough surfaces the iterative approach

was also used in the literature ( Singh and Paul [26], Webster and Sayles

[27], Ju and Zheng [28] and Chang and Gao [29] ). These methods can be-

come time-consuming when the number of unknowns increases. A numerical

approach was presented in the paper by Nayak and Johnson [30] for calculat-

ing the pressure distribution and the contact area shape between two elastic

bodies of arbitrary profile. Nowell and Hills [31] propose another method for

solving multi-contact problems for normal pressure which was extended later

to shearing forces by Ciavarella et al. [32]. In this approach any individual as-

perity contact produces a constant normal displacement at the other asperity

sites. This hypothesis is correct if the asperities are not close. The paper by

Karpenko and Akay [33] describes a computational method to calculate the

friction force between two rough surfaces, which shows how friction changes

with surface roughness. The analysis of real surface contacts and pressure

distributions in sliding wear was also made in the article by Liu et al. [34].

Stanley and Kato [35] used yet another numerical method based on a Fast

Fourier Transform (FFT) from spatial domain to wavelength domain of the

contacting surfaces. This procedure may be used even for contact problems

with a large number of asperities and it is limited for finding the contact

solution at large wavelengths due to an aliasing introduced by the FFT.

The Matrix Inversion Method (MIM) (Kalker [36]) is described in the book

of Johnson [37]. In the MIM the boundary conditions are satisfied exactly at

specified ”matching points” (the mid-points of the boundary elements). The

MIM is used in the work of Cesbron et al. [38] for the analysis of the elas-
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tic tyre-road contact. In this method, called the Two-scale Iterative Method

(TIM), one proceeds successively at two scales. At the macro-scale, the forces

on each indenter are computed from an approximate relation between the nor-

mal contact force and the relative displacement of the tip of each indenter.

The approximate relation takes into account the interacting effect between the

indenters. At the micro-scale the Local Matrix Inversion Method (LMIM) is

used to compute the pressure distribution on each contact area by an iterative

scheme.

In the paper of Kozhevnikov et al. [1] a new algorithm for computing the

indentation of a rigid body of arbitrary shape on a viscoelastic half-space was

proposed. In this method the MIM was extended to viscoelastic problems. It

can be validated by comparing the numerical results to the analytic solutions

in cases of a spherical asperity (loading and unloading) and a conical asperity

(loading only). Finally, the method was implemented for a finite cylindrical

shape with its curved face indenting the surface of the half-space. But when

the problem involves a large number of points the MIM can become very

time-consuming.

In this paper the problem is solved using the TIM. In this method the LMIM

is used at the micro-scale for each contact area to compute the pressure distri-

bution taking into account interacting effects (the forces on the other contact

areas which can be calculated at the macro-scale) between indenters.

The paper is structured as follows. The indentation by a rigid indenter of

arbitrary shape will be considered first. Then the discretization of the con-

tact problem will be made and two algorithms will be proposed. Next it will

be possible to solve the general contact problem by the TIM. The general

6
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methodology will be applied to the simple configuration of seven spherical

indenters, seven spherical-ended cylindrical indenters, seven flat-ended cylin-

drical indenters and to the more complex configuration of twelve randomly po-

sitioned indenters of arbitrary shapes: spherical-ended cylindrical, flat-ended

cylindrical, conical and cylindrical indenters. The results will be discussed

before concluding remarks.

2 Algorithm for viscoelastic contacts

We consider a rigid indenter of arbitrary shape z(x, y) being pressed into

contact with a viscoelastic solid. Under the action of a normal force the pene-

tration of the indenter δ(t) and the contact areas will both grow with time and

the distribution of contact pressure p(x, y, t) will change. We wish to find the

relations which link the pressure distribution, the resultant force F (t) on the

indenter and the penetration on the assumption that the surfaces are friction-

less. Using Cartesian coordinates, the surface of the viscoelastic half-space

before loading corresponds to the (x, y) plane, as illustrated in Fig. 1. The

boundary conditions (z = 0) of our problem are given by































uz(x, y, t) = δ(t) − |z(x, y)|, (x, y) ∈ Ω(t),

σyz = σzz = σzx = 0, (x, y) 6∈ Ω(t).

(1)

where uz(x, y, t) is the normal component of the displacement of the point on

the surface of the half-space, σij is the stress tensor, Ω(t) =
M
⋃

r=1
Ωr(t) is the

current contact area, M is the maximum number of contact areas (some Ωr(t)

may be empty).
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The Boussinesq′s problem [2], involving the normal displacement of the point

(x, y) on the surface of the half-space, due to the normal load, for the elastic

case may be written as:

uz(x, y) =
(1 − ν)

π

1

2µe

p

ρ
, ρ =

√

(x − ξ)2 + (y − η)2 (2)

where µe is the elastic shear modulus, ν is the Poisson’s ratio which has been

taken as a constant. The analogue problem for the viscoelastic case [1] with

the boundary condition may be written as:

uz(x, y, t) =
(1 − ν)

π

t
∫

0

J(t − τ)





∫∫

Ωm

1

ρ

dp(ξ, η, τ)

dτ
dξdη



dτ

= δ(t) − |z(x, y)|, (x, y) ∈ Ω(t)

(3)

where Ωm =
M
⋃

r=1
Ωm

r is the maximum contact area. This domain is larger than

the current contact area Ω(t) at each time step. Then the pressures in Ωm are

positive or null depending on whether the points are in contact or not at the

considered time step. This problem may be solved numerically by using the

Matrix Inversion Method (MIM), extended to viscoelastic cases [1]. But when

the problem involves a large number of points the MIM can become very time-

consuming. Here the problem is solved using an alternative scheme, called the

Two-scale Iterative Method (TIM), extended to viscoelastic cases. The normal

component of the displacement uz(x, y, t)|(x,y)∈Ωr(t) has two components: vr,

which corresponds to the normal displacement of the point (x, y) of the half-

space on the rth asperity because of the pressure in the rth asperity and wr,

which corresponds to the normal displacement of the point (x, y) of the half-

8
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space on the rth asperity because of the pressures in the others asperities:



























































































uz(x, y, t)|(x,y)∈Ωr(t) = vr(x, y, t) + wr(x, y, t) = δ(t) − |z(x, y)|,

vr(x, y, t) =
(1 − ν)

π

t
∫

0

J(t − τ)







∫∫

Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





 dτ

wr(x, y, t) =
(1 − ν)

π

t
∫

0

J(t − τ)







∫ ∫

Ωm\Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





dτ,

(x, y) ∈ Ωr(t), r = 1, M

(4)

Now our problem may be represented as follows:

(1 − ν)

π

t
∫

0

J(t − τ)







∫∫

Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





 dτ

= vr(x, y, t) = δ(t) − |z(x, y)| − wr(x, y, t)

= δ(t) − |z(x, y)| − (1 − ν)

π

t
∫

0

J(t − τ)







∫ ∫

Ωm\Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





 dτ,

(x, y) ∈ Ωr(t), r = 1, M

(5)

The total force at point r is given by:

Fr(t) =
∫ ∫

Ωr(t)

p(ξ, η, t)dξdη, (x, y) ∈ Ωr(t), r = 1, M (6)

Now the distribution of pressure for points different of r is replaced by the

concentrated normal forces. This is an approximation of our problem, which

allows to accelerate the calculation. This yields:

wr(Xr, Yr, t) =
(1 − ν)

π

t
∫

0

J(t − τ)







∫ ∫

Ωm\Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





dτ

≈ (1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

t
∫

0

J(t − τ)
dFs(τ)

dτ
dτ, r = 1, M

(7)

9
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where (Xr, Yr) are the coordinates of the tip of the rth asperity, ρrs =
√

(Xr − Xs)2 + (Yr − Ys)2. In this case the problem may be represented as

follows:







































































(1 − ν)

π

t
∫

0

J(t − τ)







∫∫

Ωm
r

1

ρ

dp(ξ, η, τ)

dτ
dξdη





 dτ

= δ(t) − |z(x, y)| − (1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

t
∫

0

J(t − τ)
dFs(τ)

dτ
dτ

Fr(t) =
∫ ∫

Ωr(t)

p(ξ, η, t)dξdη, (x, y) ∈ Ωr(t), r = 1, M

(8)

A surface of the half-space of size Lx × Ly was meshed using N = nxny

rectangular elements of dimensions dx = Lx

nx
and dy = Ly

ny
with centres in

(xi, yi) and with uniform pressures acting on each of them (Fig. 2). The time

discretization is τ = nτdτ .

Algorithm 1

We will discretize the equations (5) and (6) in the form:



































































l
∑

k=1

J

(

(l − k)dτ

) nr
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ = δl − zi

−
M
∑

s=1
s 6=r

l
∑

k=1

J

(

(l − k)dτ

) ns
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ, i = 1, nr,

F l
r =

nr
∑

j=1

pl
jdxdy, r = 1, M

(9)

where pk
j = p(xj , yj, kdτ), F l

r = Fr(ldτ), δl = δ(ldτ), zi = z(xi, yi) and nr =

nr(t) is the number of contact elements for the rth asperity for the time t. The

influence coefficient Tij, which expresses the displacement at a general point i

due to a unit pressure element centred at point j, was calculated using Love’s

10
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results [39] for a rectangular surface acting on an elastic half-space

Tij =
(1 − ν)

π

yj+
dy

2
∫

yj−
dy

2

xj+
dx
2

∫

xj−
dx
2

dξdη
√

(xi − ξ)2 + (yi − η)2

(10)

Then the first equation of the system (9) is written in the form:



































































J(0)
nr
∑

j=1

Tijp
l
j = δl − zi − vl−1

i

−
M
∑

s=1
s 6=r





l−1
∑

k=1

J

(

(l − k)dτ

) ns
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ + J(0)

ns
∑

j=1

Tij

pl
j − pl−1

j

dτ
dτ



 ,

vl−1
i =

l−1
∑

k=1

J

(

(l−k)dτ

) nr
∑

j=1

Tij

pk
j −pk−1

j

dτ
dτ−J(0)

nr
∑

j=1

Tijp
l−1
j , r=1, M, i=1, nr

(11)

Then an iterative scheme for each moment of time l is used for the calculation

of normal contact pressure on each asperity. The first iteration:

J(0)
nr
∑

j=1

Tijp
l
Ij = δl − zi − vl−1

i −
M
∑

s=1
s 6=r

l−1
∑

k=1

J

(

(l − k)dτ

) ns
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ,

r = 1, M, i = 1, nr

(12)

Now it is possible to determine pl
Ij , j = 1, nr, r = 1, M for a given history

of loadings using the MIM which was programmed following the algorithm

described in [37]. According to this algorithm, after solving the first equation

of (12), some values of pl
Ij may be negative and for the next iteration of MIM

these mesh points are excluded from the assumed contact area and the pressure

11
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there is taken to be zero. The second iteration of our iterative scheme:

J(0)
nr
∑

j=1

Tijp
l
IIj = δl − zi − vl−1

i

−
M
∑

s=1
s 6=r





l−1
∑

k=1

J

(

(l − k)dτ

) ns
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ + J(0)

ns
∑

j=1

Tij

pl
Ij − pl−1

j

dτ
dτ



 ,

r = 1, M, i = 1, nr

(13)

Now it is possible to determine pl
IIj, j = 1, nr, r = 1, M . The iterative scheme

is stopped when the following convergence criteria is respected:

nr
∑

j=1

(

pl
N+1j − pl

Nj

)2

nr
∑

j=1
(pl

Nj)
2

< ε, r = 1, M (14)

The convergence parameter ε is chosen by the operator and fixes the precision

of the method. Then using the second equation of the system (9) it is possible

to determine F l
r.

Here it is necessary to take note of a correct comparison of pk
j with pk−1

j since

the number of contact elements is different for times k and k − 1. For solving

this problem one can introduce the matrix Tr of dimension nm
r × nm

r and

the vectors pr of dimension nm
r , r = 1, M (the maximum number of contact

elements, corresponding to Ωm
r ).

Remark. The problem of multi-indentation on a viscoelastic half-space by an

asperity of arbitrary shape may be solved using MIM which was extended to

12
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the viscoelastic problem in [1]:



































J(0)
n

∑

j=1

Tijp
l
j = δl − zi − vl−1

i , i = 1 . . . n

vl−1
i =

l−1
∑

k=1

J

(

(l − k)dτ

) n
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ − J(0)

n
∑

j=1

Tijp
l−1
j

(15)

where n =
M
∑

r=1
nr is the number of contact elements for the time t for all

indenters. But when the problem involves a large number of points the MIM

can become very time-consuming.

Algorithm 2

We will represent the system (8) in the form:



































































l
∑

k=1

J

(

(l − k)dτ

) nr
∑

j=1

Tij

pk
j − pk−1

j

dτ
dτ = δl − zi

−(1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

l
∑

k=1

J

(

(l − k)dτ

)

F k
s − F k−1

s

dτ
dτ, i = 1, nr,

F l
r =

nr
∑

j=1

pl
jdxdy, r = 1, M

(16)

Then the system (16) is written as follows:































































































J(0)
nr
∑

j=1

Tijp
l
j = δl − zi − vl−1

i

−(1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

[

l−1
∑

k=1

J

(

(l − k)dτ

)

F k
s − F k−1

s

dτ
dτ + J(0)

F l
s − F l−1

s

dτ
dτ

]

,

vl−1
i =

l−1
∑

k=1

J

(

(l−k)dτ

) nr
∑

j=1

Tij

pk
j −pk−1

j

dτ
dτ−J(0)

nr
∑

j=1

Tijp
l−1
j ,

F l
r =

nr
∑

j=1

pl
jdxdy, i = 1, nr, r = 1, M

(17)

Then an iterative scheme for each moment of time l is used for the calculation

13
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of the normal contact pressure on each asperity. The first iteration is:



































































J(0)
nr
∑

j=1

Tijp
l
Ij = δl − zi − vl−1

i

−(1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

l−1
∑

k=1

J

(

(l − k)dτ

)

F k
s − F k−1

s

dτ
dτ, i = 1, nr,

F l
Ir =

nr
∑

j=1

pl
Ijdxdy, r = 1, M

(18)

Now it is possible to determine pl
Ij , j = 1, nr, r = 1, M for a given history of

loadings. Then using the second equation of the system (18) it is possible to

determine F l
Ir. The second iteration of our iterative scheme:



































































J(0)
nr
∑

j=1

Tijp
l
IIj = δl − zi − vl−1

i

−(1 − ν)

π

M
∑

s=1
s 6=r

1

ρrs

[

l−1
∑

k=1

J

(

(l − k)dτ

)

F k
s − F k−1

s

dτ
dτ + J(0)

F l
Is − F l−1

s

dτ
dτ

]

, i = 1, nr,

F l
IIr =

nr
∑

j=1

pl
IIjdxdy, r = 1, M

(19)

Now it is possible to determine pl
IIj , F

l
IIr, j = 1, nr, r = 1, M . The iterative

scheme is stopped when the convergence criteria (14) is respected.

3 Numerical examples

Five geometries of indenters will be studied as shown in Fig. 3: spherical

indenter of radius R, spherical-ended cylindrical indenter which is composed

of a cylindrical base of radius a and a spherical end of radius R > a, flat-

ended cylindrical indenter of radius a, conical indenter of semi-opening angle

θ, cylindrical indenter of radius R and of width b (finite cylindrical shape with

14
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its curved face).

In the following examples the stress history is represented in the form of a

Prony’s series:

σ(t) =
(

E∞ + (E0 − E∞)e−
t

τc

)

ε0
(20)

where τc is the characteristic time, E0 is the instantaneous Young’s modulus,

E∞ is the statical Young’s modulus, ε0 is the instantaneous strain. Then the

creep and the relaxation functions may be written as follows:























































G(t) = E∞ + (E0 − E∞)e−
t

τc ,

J(t) =
1

E∞

− (E0 − E∞)

E0E∞

e
−E∞

E0

t
τc

(21)

Now for the numerical calculations we take the following parameter values

E∞ = 7.5 MPa, E0 = 15 MPa, τc = 1 s. The penetration δ(t) = sin( πt
Lt

) is

imposed with the duration of loading Lt = 5 s, so that the penetration δ(t)

increases monotonically to 1 mm and then decreases monotonically to 0 mm

Fig. 5 (b).

3.1 The indentation of a viscoelastic half-space by seven rigid spherical in-

denters

This configuration is composed of seven rigid spherical indenters of the type

shown in Fig. 3 (a). The indenters are identical with radius R = 5 mm. Fig.

4 shows the upper view of this configuration with Lx = Ly = 30 mm. The

15
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coordinates of their tips are:

x1 = 0, y1 = 0,

x2 = 0, y2 = 2R,

x3 =
√

3R, y3 = R,

x4 =
√

3R, y4 = −R,

x5 = 0, y5 = −2R,

x6 = −
√

3R, y6 = −R,

x7 = −
√

3R, y7 = R

(22)

A comparison between the contact forces obtained with Algorithm 2 for a

central and a peripheral indenters with nτ = 401, nx = ny = 91 and the

convergence parameter ε = 0.1 (which is chosen and will not be changed)

is made in Fig. 5 (a). The difference between the two curves is large. The

reason is the influence of the peripheral indenters on the central indenter.

The peripheral indenters deform the viscoelastic half-space under the central

indenter and the contact force for the central indenter is less than for the

peripheral indenters. Also one can see the asymmetry between increasing and

decreasing loadings of the viscoelastic curves. The contact forces may equal

zero even if the penetration does not yet equal zero. The reason is the memory

of the viscoelastic material.

In Fig. 6 the dependence of forces versus the penetration is illustrated. As

previously, the difference between the two curves is large. Also here hysteresis

is observed in the force-penetration curve as viscoelastic substance loses energy

16
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when a load is increasing, then decreasing.

The distribution of the pressure p(x, y, t) and the pressure p(0, y, t) for t = 2.5

s are represented in Fig. 7 with nτ = 401, nx = ny = 201. For each indenter

this is the analogue of the Hertz′s distribution for the viscoelastic case. As

previously, the influence of the peripheral indenters on the central indenter

is observed. The peripheral contact areas are larger than the central contact

area and the absolute value of pressure for the peripheral indenter is higher

than for the central indenter.

A comparison between the contact forces obtained with Algorithm 1 and Al-

gorithm 2 with nτ = 401, nx = ny = 91 is made in Fig. 8. The difference

between the solutions is small, showing a very good agreement. Since Algo-

rithm 2 is about five times faster than Algorithm 1, common sense guides us

to use it.

The TIM was validated by comparing to the Finite Elements Method (FEM)

and to the MIM for the elastic case using contact force results. The Young’s

modulus has been taken equal 10 MPa, R = 10 mm, nx = ny = 121. The

penetration was varied between 0 and 2 mm. The FEM analysis was done using

the bi-potential method [40]. The simulation of the seven spherical indenters in

contact with the elastic half-space required a three-dimensional FE model. Due

to symmetry, only one twelfth of the initial sample was considered. The half-

space was subdivided into 12000 eight-node brick-like elements. The indenters

were modelled with 408 rigid shell elements. Contact elements were generated

between the shell and the top surface of the half-space so as to prevent an

interpenetration of the contact surfaces. A vertical rigid motion was imposed

on the indenters by an amount of 2 mm. Newton-Raphson iterative algorithm

17
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was used and the displacement was applied in 20 load steps. The results of the

TIM and the FEM are compared for the central and the peripheral indenters

in Fig. 9. The method MIM has been taken as a reference. The MIM and

the TIM provide very similar results (the relative difference is less than 2 %).

Thus, the interaction between the indenters is well taken into account by the

TIM. The FEM leads to much larger errors which are more than 12 % for the

peripheral indenters and close to 20 % for the central indenter. Although it is

possible to improve the accuracy of the results by using a finer mesh in the

FEM, the calculations will become excessively time consuming.

The TIM was also compared to the measured data for this configuration (elas-

tic half-space, seven rigid spherical indenters) in the work of Cesbron et al.

[41]. The differences between experiments and numerical results were below

10 %.

3.2 The indentation of a viscoelastic half-space by seven rigid spherical-ended

cylindrical indenters

This configuration is composed of seven identical rigid spherical-ended cylin-

drical indenters of the type shown in Fig. 3 (b) of radius R = 10 mm and

base radius a. We consider two cases with the different values of base radius

a = 2.5 mm and a = 3.5 mm. Spherical-ended cylindrical indenters are used

to get large and close contact areas. For the spherical case when the radius R

is large the contact areas are also large but not close. The coordinates of the

tips of the indenters are the same as relations (22) with replacement of R by

a. Thus, the configuration with a = 2.5 mm correspond to closer cases.

18
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The distribution of the pressure p(x, y, t) and the pressure p(0, y, t) obtained

with Algorithm 2 for a = 2.5 mm, t = 1 s are represented in Fig. 10 with

nτ = 401, nx = ny = 201. The influence of the peripheral indenters on the

central indenter is stronger than for the spherical case because the contact

areas are very close. For this case the contact areas for peripheral indenters

are much larger than for the central indenter and the absolute value of pressure

for the peripheral indenter is much higher than for the central indenter.

The distribution of the pressure p(x, y, t) and the pressure p(0, y, t) obtained

with Algorithm 1 for a = 3.5 mm, t = 1 s are represented in Fig. 11 with

nτ = 401, nx = ny = 121. Under the influence of the central indenter the

maximum value of pressure shifts outside and no more in the tip of the pe-

ripheral indenter. Thus, one can see the asymmetry of the distribution of the

pressure for peripheral indenters.

A comparison between the contact forces obtained with Algorithm 1 and Al-

gorithm 2 for the base radius a = 3.5 mm with nτ = 401, nx = ny = 61 is

made in Fig. 12 (a). The difference between the solutions is small, showing a

good agreement, but higher than for the spherical case when the contact areas

are not close. A comparison between the distributions of the pressure obtained

with Algorithm 1 and Algorithm 2 for t = 1 s with nτ = 401, nx = ny = 121

is made in Fig. 12 (b). This difference between the solutions is also small,

showing a good agreement. Yet one can see that Algorithm 1 catches better

the influence of the central indenter on the peripheral indenters.

The TIM can be also validated by comparing the numerical results to the

numerical results obtained with MIM which were also compared to the analytic

solutions in cases of a single spherical asperity (loading and unloading) and a
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single conical asperity (loading only) in the work [1]. The comparison is made

in Fig. 13 for nτ = 401, nx = ny = 61 and a = 3.5 mm. The total contact force

computed by the TIM agrees very well with the total contact force computed

by the MIM. But for the chosen parameters the TIM is about eight times

faster than the MIM.

3.3 The indentation of a viscoelastic half-space by seven rigid flat-ended

cylindrical indenters

This configuration is composed of seven rigid flat-ended cylindrical indenters of

the type shown in Fig. 3 (c) of base radius a = 1 mm. A comparison between

the contact forces obtained with Algorithm 2 for a central and peripheral

indenters with nτ = 401, nx = ny = 201 is made in Fig. 14 with the penetration

δ(t) imposed in Fig. 5 (b), as for the spherical case. Again, the difference

between the two curves is large. The reason is the same - the influence of the

peripheral indenters on the central indenter.

In Fig. 15 the dependence of forces versus the penetration is illustrated. Also

here, as for the spherical case, hysteresis is observed in the force-penetration

curve as viscoelastic substance loses energy when a load is increasing, then

decreasing.

The distribution of the pressure p(x, y, t) and the pressure p(x, 0.56x, t) (the

pressure distribution along a diagonal line) for t = 1 s are represented in

Fig. 16 with nτ = 401, nx = ny = 421. The maximum pressure for each

contact area is concentrated at the boundaries of contact areas and the value

of pressure for the peripheral indenter is higher than for the central indenter.
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Yet the distribution of the pressure for peripheral indenters is not symmetric.

3.4 The indentation of a viscoelastic half-space by twelve rigid indenters of

arbitrary shape

Now we consider the more general case of twelve indenters of arbitrary shapes.

This configuration is composed of three rigid spherical-ended cylindrical inden-

ters of base radius a = 3 mm and radius R = 5, 6, 10 mm, of three flat-ended

cylindrical indenters of base radius a = 1, 1, 1.5 mm, of three conical indenters

of the type shown in Fig. 3 (d) of semi-opening angle θ = π
4

and of three

cylindrical indenters (finite cylindrical shape with its curved face) of the type

shown in Fig. 3 (e) of radius R = 3 mm and of width b = 1 mm; R = 2

mm, b = 2 mm; R = 1 mm, b = 3 mm. This case is more complex since the

indenting geometry doesn’t have an axisymmetric profile and the positions

of indenters are arbitrarily. The distribution of the pressure p(x, y, t) and the

pressure p(0, y, t) obtained with Algorithm 1 for t = 1 s are represented in

Fig. 17 with nτ = 401, nx = ny = 161. The maximum pressure for flat-ended

cylindrical indenters is concentrated at the boundaries of each contact area.

The maximum pressure for cylindrical indenters is concentrated at the bound-

aries of the contact area which are perpendicular to the axis y which is the

axis of symmetry of the cylinder. The maximum pressures for cylindrical and

flat-ended cylindrical indenters are comparable and the distributions are not

symmetric. The maximum pressure for spherical-ended cylindrical indenters

is less than for the others indenters. The absolute maximum pressure is on the

conical indenters, but the contact areas are the smallest.
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4 Conclusions

In this paper the Matrix Inversion Method (MIM) introduced by Kalker and

used for the analysis of elastic and viscoelastic [1] contacts, was revised to the

viscoelastic problem for indenters of arbitrary shape when a few contact areas

are available. On the basis of this alternative scheme, called the Two-scale

Iterative Method (TIM), two algorithms were proposed. With the aid of these

algorithms the contact forces as a function of time, the pressure distribution,

the contact area are found for a simple configuration of seven spherical inden-

ters, seven spherical-ended cylindrical indenters, seven flat-ended cylindrical

indenters as well as for a more complex configuration of twelve randomly po-

sitioned indenters of arbitrary shapes: spherical-ended cylindrical, flat-ended

cylindrical, conical and cylindrical indenters (finite cylindrical shape with its

curved face).

The TIM was validated by comparing the numerical results to the numerical

results obtained with MIM in the case of a seven spherical-ended cylindrical

indenters. The total contact force computed by the TIM agrees very well with

the total contact force computed by the MIM.

For a simple configuration of seven spherical indenters one can see the differ-

ence between the forces for central and peripheral indenters. The peripheral

indenters deform the viscoelastic half-space under the central indenter and

the contact force for the central indenter is less than for the peripheral inden-

ters. As consequence, the peripheral contact areas are larger than the central

contact area and the absolute value of pressure for the peripheral indenter is

higher than for the central indenter. The difference between the Algorithm 1
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and Algorithm 2 is small and since Algorithm 2 is about five times as fast as

Algorithm 1, common sense guides us to use it.

For a simple configuration of seven spherical-ended indenters when the inden-

ters are very close the difference between the Algorithm 1 and Algorithm 2 is

also small, but higher than for the spherical case when the contact areas are

not very close. For this case the Algorithm 1 catches better the influence of the

central indenter on the peripheral indenters. Under the influence of the central

indenter the maximum value of pressure shifts outside and is no more in the

tip of the peripheral indenter. Here one can see the asymmetry of distribution

of the pressure for peripheral indenters.

For a simple configuration of seven flat-ended cylindrical indenters the max-

imum pressure for each contact area is concentrated at the boundaries and

the value of pressure for the peripheral indenter is higher than for the central

indenter.

And the last example of twelve randomly positioned indenters of arbitrary

shapes shows that the method proposed in this paper could be probably ap-

plied to practical contact problems with a large number of asperities, such as

for tyre-road contact computations.
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Fig. 10. Spherical-ended cylindrical case. At the top the pressure distribution ob-

tained with Algorithm 2 for t = 1 s and a = 2.5 mm. At the bottom the pressure

for x = 0 mm.

40



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0

 0.5

 1

 1.5

 2

 2.5

 3

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9  10  11

P
R

E
S

S
U

R
E

 D
IS

T
R

IB
U

T
IO

N
 (

N
/m

m
*m

m
)

y (mm)

Viscoelastic spherical case

Fig. 11. Spherical-ended cylindrical case. At the top the pressure distribution ob-

tained with Algorithm 1 for t = 1 s and a = 3.5 mm. At the bottom the pressure

for x = 0 mm.
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(a) Viscoelastic spherical case
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Fig. 12. Spherical-ended cylindrical case. The penetration δ(t) is imposed. (a) The

difference between the contact forces, —— central indenter (Algorithm 1), -----

peripheral indenter (Algorithm 1), ············ central indenter (Algorithm 2), ············ pe-

ripheral indenter (Algorithm 2) (b) The difference between the pressures for t = 1

s, x = 0 mm and a = 3.5 mm, —— Algorithm 1, ------ Algorithm 242



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 0

 50

 100

 150

 200

 250

 300

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

T
O

T
A

L 
C

O
N

T
A

C
T

 F
O

R
C

E
 (

N
)

TIME (s)

Viscoelastic spherical case

Fig. 13. Spherical-ended cylindrical case. The penetration δ(t) is imposed. The dif-

ference between the contact forces, —— MIM, ------ TIM
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Fig. 14. Flat-ended cylindrical case. The penetration δ(t) is imposed. The difference

between the contact forces, —— central indenter, ------ peripheral indenter
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Fig. 15. Flat-ended cylindrical case. The difference between the contact forces, ——

central indenter, ------ peripheral indenter
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Fig. 16. Flat-ended cylindrical case. At the top the pressure distribution for t = 1

s. At the bottom the pressure p(x, 0.56x, 1)
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General case

Fig. 17. General case: three spherical-ended cylindrical indenters, three flat-ended

cylindrical indenters, three conical indenters, three cylindrical indenters. At the top

the pressure distribution for t = 1 s. At the bottom the pressure for x = 0 mm.
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