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DISTRIBUTION OF THE SYSTOLIC VOLUME OF HOMOLOGY

CLASSES

IVAN BABENKO AND FLORENT BALACHEFF

Abstract. Given a pair (G, a) where G is a finitely presentable group and a

is an integer homology class of this group, Gromov defined in [Gro83] a new

numerical invariant associated to this pair called systolic volume. Our goal
is to propose a systematic study of systolic volume as a function of the two
variables G and a. In particular we focus on the distribution of the values of
the systolic volume on the real line.

Contents

1. Introduction 2
2. Singular manifolds as extremal objects of systolic volume 6
2.1. Technical lemmas 7
2.2. Admissible geometric cycles are minima of the systolic volume 9
2.3. Singular manifolds of prescribed singularity type according to Baas 10
2.4. Realization of homology classes by admissible geometric cycles. 12
3. Relative density of the values of systolic volume 12
4. Non-finiteness of irreducible homology classes 14
5. Systolic volume of multiple classes 17
5.1. Systolic volume of the sum of homology classes 17
5.2. Sublinear upper bound for systolic volume of multiple classes 18
5.3. Homology classes with positive simplicial volume 21
5.4. Large oscillations of systolic volume 21
5.5. Systolic generating function 22
6. Torsion, simplicial complexity of groups and systolic volume 23
6.1. Simplicial complexity of a group 25
6.2. Simplical complexity and 1-torsion 26
6.3. Application to lenticular spaces 28
6.4. Application to 3-manifold 28
6.5. Simplicial complexity and systolic area of a group 29
7. The Heisenberg group, nilmanifolds and the Waring problem 33
7.1. Nilmanifolds and the Waring problem 33
7.2. Family of lattices in the Heisenberg group 34
8. On stable systolic volume 36
References 38

Date: September 14, 2010.
1991 Mathematics Subject Classification. Primary 53C23; Secondary 20J06, 20F99.
Key words and phrases. Systolic volume, homology of a group with integer coefficients, Heisen-

berg group, torsion, multiple of a class, nilmanifold, representability of a homology class.

1
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1. Introduction

Let G be a finitely presentable group, and a ∈ Hm(G,Z) a non trivial homology
class of dimension m ≥ 1. A geometric cycle (X, f) representing a class a is a
pair (X, f) consisting of an orientable pseudomanifold X of dimension m and a
continuous map f : X → K(G, 1) such that f∗[X ] = a where K(G, 1) denotes the
Eilenberg-MacLane space1. The representation is said to be normal if in addition
the induced map f♯ : π1(X) → G is an epimorphism.

Given a geometric cycle (X, f), we can consider for any polyhedral metric g on
X (see [Bab06]) the relative homotopic systole denoted by sysf (X, g) and defined
as the least length of a loop γ of X whose image under f is not contractible. The
systolic volume of the geometric cycle (X, f) is then the value

Sf(X) := inf
g

vol(X, g)

sysf (X, g)
m
,

where the infimum is taken over all polyhedral metrics g onX and vol(X, g) denotes
the m-dimensional volume of X . In the case where f : X → K(π1(X), 1) is the
classifying map (induced by an isomorphism between the fundamental groups), we
simply denote byS(X) the systolic volume of the pair (X, f). From [Gro83, Section
6], we have for any m ≥ 1 that

σm := inf
(X,f)

Sf(X) > 0,

the infimum being taken over all geometric cycles (X, f) representing a non trivial
homology class of dimension m. The following notion was introduced by Gromov
(see [Gro83, Section 6]) :

Definition 1.1. The systolic volume of the pair (G, a) is defined as the number

S(G, a) := inf
(X,f)

Sf (X),

where the infimum is taken over all geometric cycles (X, f) representing the class
a.

Any integer class is representable by a geometric cycle. The systolic volume of
(G, a) is thus well defined and satisfies S(G, a) ≥ σm. But this definition does not
give any information on the structure of a geometric cycle that might achieve this
infimum. In the case where the homology class a is representable by a manifold,
we know that this infimum is reached and coincides with the systolic volume of any
normal representation of a by a manifold, see [Bab06, Bab08, Bru08]. A manifold
is an example of admissible pseudomanifold, that is a pseudomanifold for which any
element of the fundamental group can be represented by a curve not going through
the singular locus of X . In section 2 we prove that any integer class a admits a
normal representation by an admissible geometric cycle - a geometric cycle whose
pseudomanifold is admissible - and we show the following

Theorem 1.2. Let G be a finitely presentable group and a ∈ Hm(G,Z) a homology
class of dimension m ≥ 3. For any normal representation of a by an admissible
geometric cycle (X, f),

S(G, a) = Sf (X).

1This definition slightly differs from the original one in [Gro83] where in addition a geometric
cycle is provided with a polyhedral metric on X.
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In particular an admissible geometric cycle (X, f) minimizes the systolic volume
over all representations of f∗[X ]. As a consequence, the systolic volume of an admis-
sible orientable pseudomanifold X depends only on the image of its fundamental
class f∗[X ] ∈ Hm(π1(X),Z). In section 7 we exhibit an example showing that
the condition of normalization (that is, f♯ is an epimorphism between fundamental
groups) can not be relaxed in our theorem.

In order to relate systolic volume with topological properties of the pair (G, a),
Gromov used quasi-extremal regular geometric cycles, see [Gro83, Theorem 6.4.A].
They are geometric cycles representing the class a endowed with a polyhedral metric
whose systolic volume is arbitrarily close to the systolic volume of the pair (G, a),
and which are regular (that is the area of balls of radius less than half the systole
is roughly at least the area of a ball of same radius in Euclidian space). These
quasi-extremal regular cycles allowed Gromov to derive inequalities between systolic
volume and two important topological invariants of (G, a), see [Gro96, subsection
3.C.3]:

• the simplicial height h(a) of the class a ∈ Hm(G,Z) which is the minimum
number of simplices of any dimension of a geometric cycle representing a,

• the simplicial volume ‖a‖∆ defined as the infimum of the sums
∑

i |ri| over
all representations of a by singular cycles

∑
i riσi with real coefficients.

Gromov proved in [Gro83, Theorem 6.4.C” and Theorem 6.4.D’] (see also [Gro96,
subsection 3.C.3]) the following:

Theorem 1.3 (Gromov). Let G be a finitely presentable group and a ∈ Hm(G,Z)
a homology class of dimension m ≥ 2.
(1) There exists positive constants Cm and C′

m depending only on the dimension m
such that

S(G, a) ≥ Cm · h(a)

exp(C′
m

√
lnh(a)

;

(2) There exists a positive constant C′′
m depending only on the dimension m such

that

S(G, a) ≥ C′′
m · ‖a‖∆

(ln(2 + ‖a‖∆))m
.

These two lower bounds will be used in the sequel.

In this article, we first focus on general properties of the distribution of systolic
volume. In section 3 we prove the relative density of the set of values taken by
systolic volume:

Theorem 1.4. Let m ≥ 3. For any interval I ⊂ R+ of length at least σm, there
exists a pair (G, a) consisting of a finitely presentable group and a homology class
of dimension m such that S(G, a) ∈ I.

We also prove the relative density of the systolic volume of essential manifolds
of dimension m (see Theorem 3.2).

In section 4, we will prove that the finiteness of systolic volume does not hold
for dimension m ≥ 3. In order to give this statement content, we introduce the
following definition. A class a ∈ Hm(G,Z) is said reducible if there exists a proper
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subgroupH ⊂ G and a class b ∈ Hm(H,Z) such that i∗(b) = a where i denotes the
canonical inclusion. Otherwise the class will be said irreducible. Given a positive
constant T and a positive integer m, we denote by F(m,T ) the set of finitely
presentable groups G such that there exists an irreducible class a ∈ Hm(G,Z) with
S(G, a) ≤ T . We will prove the following result:

Theorem 1.5. The set F(m, 1) is infinite for any dimension m ≥ 3.

A natural question on the distribution of systolic volume is the following: given
a finitely presentable group G and a homology class a of dimension m, how does
the function S(G, ka) behave in terms of the integer k ? In section 5 we show the
following:

Theorem 1.6. Let G be a finitely presentable group and a ∈ Hm(G,Z) where
m ≥ 3. There exists a positive constant C(G, a) depending only on the pair (G, a)
such that

S(G, ka) ≤ C(G, a) · k

ln(1 + k)

for any integer k ≥ 1. In particular,

lim
k→∞

S(G, ka)

k
= 0.

This theorem is a considerable improvement of the main result in [BB05]. We
may ask in which cases the function S(G, ka) goes to infinity, and in which cases
it does not. When the group is Zn, we obtain the following result:

Proposition 1.7. Let 1 ≤ m ≤ n be two integers. Every class a ∈ Hm(Zn,Z)
satisfies the inequality

S(Zn, a) ≤ Cm
n ·S(Tm)

where Cm
n denotes the binomial coefficient.

In the opposite direction, the systolic volume of the multiples of any homology
class a whose simplicial volume ‖a‖∆ is positive goes to infinity. More precisely,
our Theorem 1.6 coupled with Theorem 1.3 of Gromov gives rise to the following
statement:

Corollary 1.8. Let G be a finitely presentable group and a ∈ Hm(G,Z) where
m ≥ 3 such that ‖a‖∆ > 0. Then there exists two positive constants C(G, a) and

C̃(G, a) depending only on (G, a) such that for k large enough we have

C̃(G, a) · k

(ln(1 + k))m
≤ S(G, ka) ≤ C(G, a) · k

ln(1 + k)
.

This double inequality implies that if ‖a‖∆ > 0 no linear recurrent equation is
satisfied by the sequence S(G, ka), see section 5.

The dependence of systolic volume on torsion is another natural question. Gro-
mov mentions in [Gro96] that it may be possible to use the torsion of H∗(π1(M),Z)
to bound from below the systolic volume of a manifold M . Given a finitely pre-
sentable group G and a homology class a of dimension m, we define the 1-torsion
of the class a as the integer

t1(a) := min
(X,f)

|TorsH1(X,Z)|,
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where the minimum is taken over the set of geometric cycles (X, f) representing
the class a and |TorsH1(X,Z)| denotes the number of torsions elements in the first
homology group of X . We now state the main result of section 6 :

Theorem 1.9. Let G be a finitely presentable group and a ∈ Hm(G,Z) where
m ≥ 2. Then

S(G, a) ≥ Cm
ln t1(a)

exp(C′
m

√
ln(ln t1(a))

,

where Cm and C′
m are two positive constants depending on m.

In particular, for any ε > 0

S(G, a) ≥ (ln t1(a))
1−ε

if t1(a) is large enough.

The proof of this theorem involves two ingredients: Theorem 1.3 of Gromov, and
a bound of the height of a by its 1-torsion. It is important to remark (see section
6) that for any dimension m there exists a sequence of groups Gn and of homology
classes an ∈ Hm(Gn,Z) such that

lim
n→∞

S(Gn, an)

ln t1(an)
= 0.

In general the 1-torsion of a class is difficult to compute. In the case of Zn := Z/nZ,
we can bound from below the 1-torsion of any generator by the number n (see
Lemma 6.10). In particular, the fundamental classes of lens spaces Lm(n) realize
exactly the generators of the group H2m+1(Zn,Z) and we obtain

S(Lm(n)) ≥ (lnn)1−ε

for any ε > 0 if n is large enough.

Theorem 1.9 also allows us to derive the following result.

Theorem 1.10. There exists two positive constants a and b such that, for any
manifold M of dimension 3 with finite fundamental group,

S(M) ≥ a
ln |π1(M)|

exp(b
√
ln(ln |π1(M)|)

,

where |π1(M)| denotes the cardinal of π1(M).

In section 7, we explore the case of nilmanifolds, and more specifically the case of
the Heisenberg group of dimension 3. We obtain a new illustration of the possible
behaviour of the systolic volume of cyclic coverings. The study of the systolic
volume of cyclic coverings in terms of the number of sheets has been suggested in
[Gro96], and the first result in this direction can be found in [BB05].

The Heisenberg group H of dimension 3 is the group of triangular matrices






1 x z
0 1 y
0 0 1


 | x, y, z ∈ R



 .

The subset H(Z) of H composed of matrices with integer coefficients (i.e. matrices
for which x, y, z ∈ Z) is a lattice, and we will denote by MH = H/H(Z) the
corresponding quotient space. First of all, we obtain the following explicit upper
bound for the systolic volume of multiples of the fundamental class MH.
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Theorem 1.11. Let a = [MH] ∈ H3(H(Z),Z) be the fundamental class of MH.
Then

S(H(Z), ka) ≤ 19 ·S(H(Z), a)

for any integer k ≥ 1.

The constant appearing here is the one involved in the resolution of the classical
Waring problem (see [BDD86]): any integer number decomposes into a sum of at
most 19 fourth powers. The idea of using the solution of the Waring problem in
order to bound from above the function S(G, ka) when (G, a) = (H(Z), [MH])
carries over to any pair (G, a) where G is a nilpotent graded group without torsion
and a denotes the fundamental class of the corresponding nilmanifold, see Theorem
7.2.

Now consider the sequence of lattices {Hn(Z)}∞n=1 of H, where Hn(Z) denotes
the subset of matrices whose integer coefficients satisfy x ∈ nZ and y, z ∈ Z. Denote
byMHn

= H/Hn(Z) the corresponding nilmanifolds. The manifoldMHn
is a cyclic

covering with n sheets ofMH, and the techniques involved in the proof of Theorem
1.6 implies that

S(MHn
) ≤ C · n

ln(1 + n)
.

The fact that the function S(MHn
) goes to infinity is a consequence of Theorem

1.9.

Corollary 1.12. The function S(MHn
) satisfies the following inequality:

S(MHn
) ≥ a

lnn

exp(b
√
ln(lnn)

,

where a an b are two positive constants. In particular,

lim
n→+∞

S(MHn
) = +∞.

Note that in this case ‖MHn
‖∆ = 0 and the second bound of Theorem 1.3 does

not apply. For any integer n the manifold MHn
gives a non normal realization of

the class n[MH]. So normalization condition in Theorem 1.2 cannot be relaxed.

Finally, the last section is devoted to the description of some results for stable
systolic volume.

2. Singular manifolds as extremal objects of systolic volume

Definition 1.1 introduces the systolic volume of a homology class as an infimum.
But it does not give any information on the structure of a pseudomanifold that
might achieve this infimum. If a homology class a can be realized by a manifold,
we know that the infimum is reached and that this value coincides with the systolic
volume of any normal representation of a by a manifold, see [Bab06, Bab08, Bru08].
In the case where the class a does not admit a representation by a manifold, it is
not even clear if the value S(G, a) can be achieved by the systolic volume of some
pseudomanifold.

Let X be a pseudomanifold of dimension m. The singular locus of X is by
definition the set Σ(X) of points of X which are not contained in a neighbourhood
homeomorphic to a m-dimensional ball. By definition of a pseudomanifold, Σ(X)
is a simplicial subcomplex of codimension at least 2.
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Definition 2.1. A pseudomanifold X is said admissible if the natural inclusion
X \ Σ(X) ⊂ X induces an epimorphism of fundamental groups.

That is, a pseudomanifold is admissible if any element of the fundamental group
can be represented by a loop of X \ Σ(X). A geometric cycle (X, f) represent-
ing some homology class a will be called admissible if the pseudomanifold X is
admissible.

Example 2.2. Let M be a triangulated manifold and N ⊂ M be a simplicial
subcomplex of codimension ≥ 2. Denote by ♯N the set of connected components of
N . The simplicial complexM/♯N obtained fromM by contraction of the connected
components of N into distinct points is an admissible pseudomanifold. The singular
locus Σ(M/♯N) consists of the points corresponding to the connected components
of N .

Example 2.3. Let M be a manifold with boundary and suppose that ∂M =
A×P , where A is a manifold and P a connected manifold. The result of the fibred
contraction of P is an admissible pseudomanifold M homeomorphic to the space

M ∪
∂M

A× CP

where CP stands for the cone over P , the singular locus Σ(M) being homeomorphic
to A. Remark that if P is simply connected , π1(M) = π1(M). The pseudomanifold
M obtained that way is a particular example of manifold of singularity type P , see
[Baas73] and subsection 2.3 for the general construction.

Remark that an admissible pseudomanifold of dimension 2 is a surface. In partic-
ular it does not possess any singularity. The interest of this class of pseudomanifold
is underlined by the following two results.

Theorem 2.4. Let G be a finitely presentable group and a ∈ Hm(G,Z) be a homol-
ogy class of dimension m ≥ 3. Suppose that there exists a normal representation of
the class a by an admissible geometric cycle (X, f). Then

S(G, a) = Sf (X).

The condition of normalisation saying that f♯ is an epimorphism can not be
dropped, see section 7 and the example of the Heisenberg group.

The following proposition, together with the previous result, shows that for any
pair (G, a) the systolic volume S(G, a) is reached by the systolic volume of some
pseudomanifold.

Proposition 2.5. Let K be a CW-complex whose fundamental group is finitely
presentable. Any homology class a ∈ H∗(K,Z) admits a normal representation by
an admissible geometric cycle (X, f).

Before proving Theorem 2.4 and its topological support contained in Proposition
2.5, we need some technical results.

2.1. Technical lemmas. Hopf’s trick perfectly adapts to the setting of admissible
pseudomanifolds. Consider a map

f : (X,X1) −→ (Y, Y1)

between two relative manifolds of the same dimension m ≥ 3. Suppose that f is
transversal at y ∈ Y \ Y1, i.e. there exists an embedded m-disk D such that
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• y ∈ D ⊂ Y \ Y1 ;
• f−1(D) = ∪n

i=1Di is a disjoint union of m-disks embedded in X \X1 ;
• the restriction of f to f−1(D) is a covering map with base space D and n
sheets.

Set xi = Di ∩ f−1(y). The technical trick of Hopf is essentially contained in the
the following lemma.

Lemma 2.6. Suppose that there exists a m-disk embedded in D′ ⊂ X \X1 with the
following properties:

(1) D1, D2 ⊂ D′ and D′ ∩Di = ∅ if i > 2 ;
(2) for any path γ from x1 to x2 in D′, the loop f(γ) is contractible in Y ;
(3) for any orientation of D, the orientations on D1 and D2 induced by f are

never coherent in D′.

Then there exists a homotopy {ft}0≤t≤1 of f0 = f which is constant on X \D′ and
such that

f−1
1 (D) = ∪

i>2
Di,

the last union being empty if n = 2.

We refer to [Eps66, p.378-380] for a proof as the construction of the homotopy ft
occurs in D′ and so carries over to our context. We state the corresponding version
of Hopf’s Theorem in the orientable case.

Lemma 2.7. Let X be an admissible orientable connected pseudomanifold and
(Y, Y1) an orientable relative manifold of the same dimension m ≥ 3. Suppose that
f : X −→ Y is a map of degree k inducing an epimorphism between fundamental
groups.

Then there exists a homotopy {ft}0≤t≤1 of f0 = f such that f−1
1 (Y \ Y1) is

homeomorphic to the disjoint union of k disks and the restriction of f1 to the union
of these disks is a covering map with base space Y \ Y1 and k sheets.

The degree of f stands here for the absolute value of the multiple defined by the
induced map f∗ : Hm(X ;Z) −→ Hm(Y, Y1;Z). A corresponding version of Lemma
2.7 also holds in the non-orientable context with the notion of absolute degree.

Proof. Consider a point y ∈ Y \ Y1. We can assume that y /∈ f(Σ(X)) and the
map f to be transversal at y. Let D ⊂ Y \ Y1 be a disk containing the point y
such that f−1(D) = ∪n

i=1Di is a disjoint union of m-disks embedded in X \ Σ(X)
and such that the restriction of f to ∪n

i=1Di is a covering map with n sheets and
base space D. We have n ≥ k and suppose that n > k. We can choose generators
of Hm(X ;Z) and Hm(Y, Y1;Z) such that the map f∗ induced on m-dimensional
homology is simply the multiplication by k. This induces an orientation both on
X and Y \ Y1, and also on disks {Di}ni=1 and D. As n > k, there exists two disks
say D1 and D2 such that f |D1 reverses the orientation and f |D2 preserves it. We
now follow step by step the proof of [Eps66, Theorem 4.1]. Join the two points
xi = f−1(y) ∩ Di, i = 1, 2 by a simple curve γ ⊂ X \ Σ(X). Because f induces
an epimorphism between fundamental groups, there exists a loop α based at x1
such that f(α) and f(γ) are homotopic as loops based at y. As X is admissible,
we can furthermore choose α in X \ Σ(X). The concatenation α−1 ⋆ γ and this
evident modification in a neighborhood of the concatenation defines a simple curve
β ⊂ X \Σ(X) joining x1 and x2. The loop f(β) is contractible in Y relatively to y.
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We then define the disk C as a small enough neighborhood of β, and apply Lemma
2.6. Remark that the choice of C implies a possible diminution of the size of the
disks {Di}ni=1 and D. The end of the proof is straightforward, see [Eps66] for the
missing details. �

2.2. Admissible geometric cycles are minima of the systolic volume. In
this subsection, we prove Theorem 2.4. For this we use in a decisive way the
comparaison and extension techniques elaborated in [Bab06, Bab08], as well as the
ideas contained in those articles.

Let (X1, f1) be a geometric cycle representing the class a. The pseudomanifold
X1 admits a cell decomposition with only one m-cell (see for example [Sab06]).
This allows us to describe X1 as a relative m-manifold (Y, Y ′), where Y denotes
the m-cell and Y ′ lies in the (m − 1)-skeleton. We construct an extension of X1

as follows (compare with [Bab06]). By adding to X1 cells of dimension between 1
and m, we first construct a new CW-complex X1(m) which is the m-skeleton of
the Eilenberg-MacLane space K(G, 1). More precisely, we start by adding 1- and
2-cells to X1 such that the resulting CW-complex X1(2) has fundamental group
G. Then, for each dimension k going from 3 to m, we add k-cells to X1(k − 1)
such that the new CW-complex X1(k) thus obtained satisfies πi(X1(k)) = 0 for
1 < i < k − 1. At the end we get a CW-complex X1(m) which is m-aspherical
and with fundamental group G. By adding cells of dimension higher than m, we
can realize the Eilenberg-MacLane space K(G, 1) as an extension of X1(m) (see
[Bab06]). The original CW-complex X1 is naturally embedded in K(G, 1) by a
map denoted i : X1 →֒ X1(m) ⊂ K(G, 1). Remark that Y \ Y ′ is a m-cell of
X1(m).

By hypothesis, there exists an admissible pseudomanifold X and a map f : X →
K(G, 1) giving a realization of the same class a ∈ Hm(G,Z) such that f♯ : π1(X) →
G is an epimorphism. The map f induces a map

(2.1) g : X → X1(m).

This last map g is not uniquely determined up to homotopy, but Lemma 3.10 of
[Bab06] applies in this context, so we can choose g such that

(2.2) g∗[X ] = i∗[X1]

in Hm(X1(m),Z). Let {Y } ∪ {Yi}i∈I denote the m-cells of X1(m) (this list can be

finite or infinite). To each m-cell Yi or Y is associated the relative manifold (Yi, Ŷi)

or (Y, Ŷ ), where Ŷ∗ denotes the closure of the union of all the other cells of Y∗. The
map (2.1) induces maps

g̃ : X → (Y, Ŷ ) and g̃i : X → (Yi, Ŷi), ∀i ∈ I.

From equation (2.2), we deduce that the degree of g̃ is equal to 1, and that the
degree of each g̃i is zero. As X is compact, g(X) intersects only a finite number

of m-cells. We then apply Lemma 2.7 to each relative manifold (Yi, Ŷi) such that
Yi

⋂
g(X) 6= ∅. In this way we obtain a map

g1 : X → Z ⊂ X1(m− 1)

homotopic to g, where Z denotes the subcomplex of X1(m − 1) obtained from
X1(2) by adding the cells (in finite number) of dimension between 3 and m − 1
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which intersect g1(X). Remark that π1(Z) = G and that the inclusion

i : X1 →֒ Z ⊂ X1(m− 1) ⊂ X1(m)

satisfies ker i♯ = ker(f1)♯, where i♯ : π1(X1) → π1(Z) denotes the map induced by
i on fundamental groups. The comparison principle (see [Bab06]) then implies

(2.3) Sf (X) ≤ S(Z) = Sf1(X1).

As we started with any representation (X1, f1) of a, we get from (2.3)

Sf (X) = S(G, a).

2.3. Singular manifolds of prescribed singularity type according to Baas.

Before proving Proposition 2.5, we briefly recall the construction of some models
of singular manifolds, see [Baas73] for more details. Recall that a manifold with
general corners (also called variété aux angles, see [Cerf61]) is a manifold whose
boundary admits singularities similar to those of the closed cube.

Definition 2.8. A manifold M with general corners is said decomposed if there
exist submanifolds with general corners ∂0M,∂1M, ..., ∂nM such that

∂M = ∂0M ∪ ∂1M ∪ ... ∪ ∂nM,

where union means identification along a common part of the boundary.

If M is a decomposed manifold, by setting

(2.4)

{
∂j(∂iM) = ∂jM ∩ ∂iM if j 6= i,
∂i(∂iM) = ∅ if not,

we get

∂(∂iM) =
n∪

j=0
∂j(∂iM).

So each ∂iM is again a decomposed manifold.

Example 2.9. If M denotes the m-dimensional cube, its boundary is naturally
decomposed into (m− 1)-faces :

∂M = ∂0M ∪ ∂1M ∪ ... ∪ ∂2m−1M.

Remark 2.10. A manifold with general corners can be smoothed through a process
which has been well studied (see [Cerf61] for instance).

We consider a finite sequence of closed manifolds S = {P0, P1, ..., Pn} ordered
by increasing dimension. If S 6= ∅, we will always assume that P0 = ∗ is a point.

Definition 2.11. A manifold M with general corners is said of singularity type S
if
1) For any subset ω ⊂ {0, 1, ..., n}, there exists a decomposed manifold M(ω) such
that
(a) M(∅) =M ,
(b) ∂M(ω) = ∪i/∈ω∂iM(ω).
(c) For every i ∈ {1, . . . , n} \ ω, there exists a diffeomorphism

(2.5) β(ω, i) : ∂iM(ω) ≃M(ω, i)× Pi,

where (ω, i) = ω ∪ {i},
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2) For any subset ω ⊂ {0, 1, ..., n}, and for all i, j ∈ {1, . . . , n} \ ω, the following
diagram is commutative:

∂j∂iM(ω)
β(ω,i)−→ ∂jM(ω, i)× Pi

β(ω,i,j)×id−→ M(ω, i, j)× Pj × Pi

||

∂jM(ω) ∩ ∂iM(ω)

yid× T

||
∂i∂jM(ω)

β(ω,j)−→ ∂jM(ω, i)× Pj
β(ω,j,i)×id−→ M(ω, i, j)× Pi × Pj

where T denotes the transposition.

The first part of the definition describes the local structure of product on the
boundary of the decomposed manifold M . The diagram describes how the bound-
ary components are glued together. We now define a particular class of singular
manifolds.

Definition 2.12. To any manifold with general corners M of singularity type S,
we associate the singular manifold MS defined as the quotient space M(∅)/ ∼ where

a ∼ b

if

a, b ∈ ∂i1 ...∂ikM, ij ≥ 1, k ≥ 1,

and

(2.6)
pr ◦ β(i1, ..., ik) ◦ .... ◦ β(i1, i2) ◦ β(∅, i1)(a) =
pr ◦ β(i1, ..., ik) ◦ .... ◦ β(i1, i2) ◦ β(∅, i1)(b).

Here

(2.7) pr :M(i1, ..., ik)× Pi1 × ...× Pik −→M(i1, ..., ik)

denotes projection on the first factor.
The singular manifold MS is then said of singularity type S or S-singular man-

ifold.

If the elements of S are connected manifolds, then every S-singular manifold M
is an admissible pseudomanifold. If not, the following remark will be of fundamental
importance in the next section.

Remark 2.13. For each i = 1, . . . , n, we decompose the manifold Pi into connected
components Qij and set

T = {Qij | 1 ≤ i ≤ n, 1 ≤ j ≤ ki}.
Given a singular S-manifold MS modeled on M , the local S-structure (2.5) on ∂M
defines a local T -structure. The commutative diagram of Definition 2.11 and the
equivalence (2.6) allow us to define an equivalence relation on M denoted by ∼T

and such that the projections (2.7) only occur along the factors of type Qij . This
gives rise to a T -singular manifold MT defined as the quotient M(∅)/ ∼T . A class
for the relation ∼T being a subclass of the relation ∼S , we get a canonical map of
degree 1

(2.8) q :MT →MS.
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2.4. Realization of homology classes by admissible geometric cycles. We
now prove Proposition 2.5. Following Milnor [Mil60] and Novikov [Nov62], the
complex cobordism ring ΩU

∗ is isomorphic to the ring of integer polynomials ΩU
∗ =

Z[x1, x2, ...] where each generator xk is of degree 2k and can be represented by a
manifold Pk. Each representant Pk can be chosen as a complex algebraic manifold,
see [Sto68] for instance. But the connectivity of this complex manifold is not clear
in general (if k = ps − 1 where p is a prime number, Pk can be choosen as CP k).
Define the following sequence of singularities

(2.9) S = {P1, P2, ...}.
Given a homology class a ∈ Hm(X,Z), there exists according to Bass’ Theorem
[Baas73, Corollaire 5.1] a S-singular manifold MS of dimension m and a map f :
MS → X such that f∗[MS ] = a. The elements in S are not necessarily connected
manifolds. So we proceed as in remark 2.13, and obtain in this way a new singular
manifoldM ′ representing a which is now an admissible pseudomanifold. Finally, we
add if necessarily 1-handles to M ′ and extend the map f ′ = q ◦ f (where q denotes
the canonical map from M ′ to MS of degree 1) in such a way that f ′

♯ becomes an
epimorphism between fundamental groups. This concludes the proof.

Remark 2.14. The admissible pseudomanifold M ′ which realizes a can be chosen
as a singular manifold whose singularities are more specifics. In CPm × CPn with
m ≤ n, we consider the hypersurface of degree (1, 1)

Hm,n = {z0w0 + z1w1 + ...+ zmwm = 0},
where (z0, z1, ..., zm) and (w0, w1, ..., zn) denote the homeogeneous coordinates in
CPm and CPn respectively. The manifolds Hm,n are known as Milnor’s mani-
folds. The cobordism classes of the {Hm,n}m≤n together with the familly of classes
{CP s}s≥1 give rise to a spanning familly of ΩU

∗ (see [Hirz58] and [Nov62]). The
classes in ΩU

∗ are thus linear combinations (with integer coefficients) of cobordim
classes {Hm,n}m≤n and {CP s}s≥1. So we can choose the {Pk}k≥1 as a disjoint
union of some of these manifolds endowed with an adequate orientation. Tak-
ing into account remark 2.13, an admissible pseudomanifold which represents the
classe a ∈ H∗(K,Z) can be choosen as a singular manifold of singularity type
{CP s, Hm,n}.

3. Relative density of the values of systolic volume

The aim of this section is to show that the set of values of systolic volume over
the set of homology classes (resp. over the set of orientable manifolds) of fixed
dimension is a relatively dense set in the following sense.

Definition 3.1. Given a subset A ⊂ R+ and d a positive constant, A is said d-
dense in R+ if, for any interval I ⊂ R+ of length |I| > d, the intersection I ∩A is
not empty.

For a fixed dimension m ≥ 3, define

Σm := {S(G, a) | Gfinitely presentable group anda 6= 0 ∈ Hm(G,Z)},
and

σm := inf
(G,a)∈Σm

S(G, a).
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Similarly, set

Ω+
m := {S(M) |M orientable essential manifold of dimension m},

and
ω+
m := inf

M∈Ω+
m

S(M).

Recall that σm > 0 by [Gro83] and that an orientable manifold M is said essential
if the image of its fundamental class under its classifying map is not zero. In
particular, ω+

m ≥ σm. The main result of this section is the following.

Theorem 3.2. For any dimension m ≥ 3, the set Σm (resp. Ω+
m) is σm-dense

(resp. ω+
m-dense) in R+.

In order to prove this result, we will study the behaviour of systolic volume under
the operation of connected sum. Part of these results will also be useful in the next
section.

Remark 3.3. Remark that the set Ωm of values taken by the systolic volume over
all manifolds of the same dimension m (not necessarily orientable) contains the
subset Ω+

m : it is also a relatively dense set of R+ with density ω+
m. It is not clear

if this density can be decreased and the answer may depend on the parity of the
dimension.

Fix a morphism of groups π : G→ G′ and a ∈ Hm(G,Z) a homology class.

Proposition 3.4. If m ≥ 3,

S(G′, π∗a) ≤ S(G, a).

Proof. According to Proposition 2.5, fix an admissible geometric cycle (X, f) repre-
senting normally the class a. The admissible geometric cycle (X, π ◦ f) is a normal
representation of the class π∗(a), so

S(G′, π∗(a)) = Sπ◦f (X) ≤ Sf (X) = S(G, a)

by Theorem 2.4. �

Corollary 3.5. Let X1 and X2 be two orientable admissible pseudomanifolds of
dimension m ≥ 3. Then

max{S(X1),S(X2)} ≤ S(X1#X2),

where X1#X2 denotes the connected sum of X1 and X2.

Proof. Denote by fj : Xj → K(π1(Xj), 1) the classifying map for j = 1, 2. Ob-
serve that π1(X1#X2) = π1(X1) ∗ π1(X2). We have a natural monomorphism
ij : π1(Xj) →֒ π1(X1) ∗ π1(X2) and a natural epimorphism sj : π1(X1) ∗ π1(X2) →
π1(Xj) such that sj ◦ ij = idπ1(Xj), s2 ◦ i1 = 0 and s1 ◦ i2 = 0. From Proposition
3.4,

S(X1#X2) = S(π1(X1) ∗ π1(X2), (i1 ◦ f1)∗[X1] + (i2 ◦ f2)∗[X2])

≥ S(sj(π1(X1) ∗ π1(X2)), (sj)∗ ◦ ((i1 ◦ f1)∗[X1] + (i2 ◦ f2)∗[X2]))

≥ S(π1(Xj), (fj)∗[Xj])} = S(Xj)

for j = 1, 2. �

Furthermore, we have the following comparaison result:
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Proposition 3.6. Let X1 and X2 be two orientable pseudomanifolds of dimension
m ≥ 3. Then

S(X1#X2) ≤ S(X1) +S(X2).

Proof. The contraction of the gluing sphere into a point gives rise to a natural
projection map

p : X1#X2 → X1 ∨X2

which induces an isomorphism between fundamental groups if m ≥ 3. Applying
the comparaison principle (see [Bab06]), we get

S(X1#X2) ≤ S(X1 ∨X2) = S(X1) +S(X2).

�

With this two comparaison results, we can now prove Theorem 3.2.

We first prove the σm-density of the set Σm. Consider any interval I ⊂ R+ such
that |I| > σm. Choose a pair (G, a) composed of a finitely presentable group and
a m-class of its homology such that σm ≤ S(G, a) < |I|. According to Proposition
2.5, we can choose an admissible geometric cycle (X, f) representing normally the
class a ∈ Hm(G,Z) which satisfies Sf (X) = S(G, a) by Theorem 2.4. If the map
f# is not a monomorphism, we can directly contract some loops in X and get a new
admissible geometric cycle (X ′, f ′) representing a such that f ′

# is an isomorphism.
So

Sf (X) = S(X ′).

The sequence {an = S(#nX
′)}∞n=1 is increasing by Corollary 3.5 and satisfies

an+1 − an ≤ S(X ′) < |I| by Proposition 3.6. By [Sab07], we have

S(#nX) ≥ Cm
n

exp(C′
m

√
logn)

where Cm and C′
m are two positive constants depending only on the dimension m

(strictly speaking, this inequality is proved for manifolds, but carries over perfectly
to pseudomanifolds). So the sequence {an} is not bounded and does intersect I.

The proof of the ω+
m-density of Ω+

m is similar: for any interval I ⊂ R+ with |I| >
ω+
m, we can argue as previously starting with the sequence {an = S(#nM)}∞n=1

whereM is an orientable essential manifold of dimensionm with ω+
m ≤ S(M) < |I|.

4. Non-finiteness of irreducible homology classes

This section deals with the following natural question:

Question 4.1. Given a positive constant T , how many finitely presentable groups
G exist such that any essential (orientable) manifold M of dimension m with fun-
damental group G satisfies S(M) ≤ T ?

In dimension 2, this number is bounded from below by c · T (lnT )2 and from
above by C ·T (lnT )2 for some universal positive constants c and C, see [BS94] and
[Gro96] . In fact the situation is quite rigid in dimension 2. Even the finiteness of
the systolic volume over the set of finite simplicial complexes of dimension 2 holds.
More precisely, recall that
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• the systolic area of a finitely presentable group G is defined as

S(G) = inf
π1(P )=G

S(P ),

where the infimum is taken over all finite simplicial complexes P of dimen-
sion 2 with fundamental group G ;

• a finitely presentable group G is said of zero Grushko free index if G can
not be written as a free product H ∗ Fn for some n > 0, compare [RS08].

Then the number of finitely presentable groups G of zero Grushko free index such

that S(G) ≤ T does not exceed KT 3

where K is a universal explicit positive con-
stant, see [RS08].

The situation is rather different in higher dimensions. Let M be an essential
manifold of dimension m ≥ 4 whose fundamental group is of zero Grushko free
index and N a non-essential manifold of the same dimension with fundamental
group of zero Grushko free index. The fundamental group π1(M) ∗ π1(N) of the
connected sumM#N is still of zero Grushko free index. By Proposition 3.6 we get

S(M#N) ≤ S(M).

That is, while staying in the class of groups of zero Grushko free index we can
considerably modify the fundamental group of a manifold without increasing the
systolic volume. So there is no hope to obtain finiteness results in this context.
This is why we introduce the following.

Definition 4.2. Let G be a finitely presentable group. A class a ∈ Hm(G,Z) is
said reducible if there exists a proper subgroup H ⊂ G and a class b ∈ Hm(H,Z)
such that i∗(b) = a where i denotes the canonical inclusion. In the contrary case,
the class a will be said irreducible.

Furthermore let say that a manifold M is reducible (resp. irreducible) if the
image of its fundamental class [M ] (under the classifying map) in Hm(π1(M),Z)
is a reducible (resp. irreducible) class.

Example 4.3. LetM be an aspherical manifold of dimensionm (that is πk(M) = 0
for k > 1). Then M is irreducible.

Example 4.4. Let G be a finite group and a ∈ Hm(G,Z) a class of order |G|.
Then a is irreducible.

This last example shows that the fundamental class of a lenticular manifold is
irreducible.

Remark that it is possible that

• any multiple of an irreducible classe is irreducible as in the case G = Zp for
p a prime number,

• each multiple of an irreducible classe is reducible as in the case of tori Tm.

On the other hand, there exists classes a ∈ Hm(G,Z) which are completely re-
ducible in the following sense: a is reducible, and any class b ∈ Hm(H,Z) where H
is a proper subgroup H ⊂ G and such that i∗(b) = a is also reducible.

Given a positive constant T and a positive integer m, we denote by F(m,T )
the set of finitely presentable groups G such that there exists an irreducible class
a ∈ Hm(G,Z) with S(a) ≤ T .
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Theorem 4.5. The set F(m, 1) is infinite for any dimension m ≥ 3.

Proof. Let p be a prime number and set

G(p,m) := Zp ⊕ . . .⊕ Zp︸ ︷︷ ︸
m

.

Denote by φp : π1(T
m) −→ G(p,m) the natural projection and set

a(p,m) := (φp)∗[T
m] ∈ Hm(G(p,m),Z).

In order to prove that a(p,m) 6= 0 in Hm(G(p,m),Z), we will show that the
reduction modulo p of a(p,m) is not null in Hm(G(p,m),Zp). Consider the gen-
erators v1, . . . , vm of H1(G(p,m),Zp) corresponding to the natural projections of
G(p,m) on each factor. The elements ui := (φp)

∗(vi), i = 1, 2, ...,m generate the
group H1(Tm,Zp), and u := u1 ∪ . . . ∪ um generates the group Hm(Tm,Zp). So
u∩ [Tm]p = 1 where [Tm]p denotes the reduction modulo p of the fundamental class
[Tm]. This implies

(v1 ∪ . . . ∪ vm) ∩ (φp)∗[T
m]p = (φp)

∗(v1) ∪ . . . ∪ (φp)
∗(vm) ∩ [Tm]p

= 1.

This proves the non-triviality of (φp)∗[T
m]p, and so of (φp)∗[T

m].

We now prove the irreducibility of a(p,m). Let suppose the contrary. Any proper
subgroup H of G(p,m) is also a Zp-vector subspace of G(p,m) of dimension k < m.
Associated to some complementary of H in G(p,m), we construct a projection map

π : G(p,m) −→ H

which is the identity on H . Fix a basis of the free Z-module π1(T
m) such that the

composition

π ◦ φp : π1(T
m) −→ H

decomposes as

π ◦ φp = ψ ◦ ρ♯,
where ρ♯ is induced by some projection ρ : Tm −→ Tk and ψ : π1(T

k) −→ H
corresponds to the reduction modulo p. Now assume that a(p,m) = i∗(b), where
b ∈ Hm(H,Z) and i : H −→ G(p,m) denotes the inclusion. Then

b = π∗(a(p,m)) = π∗ ◦ (φp)∗[Tm] = ψ∗ ◦ ρ∗[Tm] = ψ∗(0) = 0

as b = π∗ ◦ i∗(b). This gives a contradiction the class a(p,m) being non trivial.

In order to conclude the proof, remark that

S(a(p,m)) = Sφp
(Tm) ≤ S(Tm) ≤ 1,

for any m ≥ 3 and any prime p. �

This theorem implies the following unexpected result in dimensions m ≥ 4 .

Corollary 4.6. For any dimension m ≥ 4, there exists an infinite number of
irreducible orientable manifolds M of dimension m with pairewise non-isomorphic
fundamental groups such that S(M) ≤ 1.
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Proof. By construction, every class a(p,m) is representable by a manifold. Ifm ≥ 4,
such a manifold can be modify by surgery in order to get a new manifold denoted
by M(p,m) such that π1(M(p,m)) = G(p,m) and Φ∗[M(p,m)] = a(p,m), where
Φ : M(p,m) −→ K(G(p,m), 1) denotes the classifying map, see [Bab06]. The
infinite sequence of manifolds {M(p,m)} where p runs over all prime numbers
gives an infinite sequence of irreducible orientable manifolds M of dimension m
with pairewise non-isomorphic fundamental groups such that S(M) ≤ 1. �

The following natural question remains open :

Question 4.7. Consider the systolic volume S(·) as a function over all irreducible
orientable manifolds of dimension m. Does there exist a positive constant C such
that the number of distinct values of the function S(·) less than C is infinite ?

5. Systolic volume of multiple classes

Given a finitely presentable group G and a homology class a of dimenson m,
how does the function S(G, ka) behave in term of the integer variable k ? In this
section, we obtain the following result:

Theorem 5.1. Let G be a finitely presentable group and a ∈ Hm(G,Z) where
m ≥ 3. Then there exists a positive constant C(G, a) depending only on the pair
(G, a) such that

(5.1) S(G, ka) ≤ C(G, a) · k

ln(1 + k)

for any positive integer k.

Before proving this result, we put the problem in a more general context.

5.1. Systolic volume of the sum of homology classes. Let G1 and G2 be
two finitely presentable groups and for j = 1, 2 denote by ij : Gj →֒ G1 ∗ G2 the
natural monomorphism. Fix two integer homology classes a1 ∈ Hm(G1,Z) and
a2 ∈ Hm(G2,Z). The natural isomorphism

Hm(G1 ∗G2,Z) ≃ Hm(G1,Z)⊕Hm(G2,Z)

allows us to identify the class (i1)∗(a1) + (i2)∗(a2) with a1 + a2.

Proposition 5.2. If m ≥ 3,

S(G1 ∗G2, a1 + a2) ≤ S(G1, a1) +S(G2, a2).

Proof. For any ε > 0, we choose for j = 1, 2 a geometric cycle (Xj , fj) of dimension
m representing aj and satisfying

Sfj (Xj) ≤ S(Gj , aj) +
ε

2
.

The geometric cycle (X1#X2, f1#f2) obtained as the connected sum of (X1, f1) and
(X2, f2) represents the class a1 + a2. By the comparison principle (see [Bab06]),

Sf1#f2(X1#X2) ≤ Sf1∨f2(X1 ∨X2) = Sf1(X1) +Sf2(X2)

where (X1 ∨X2, f1 ∨ f2) denotes the wedge of (X1, f1) and (X2, f2). As ε can be
chosen arbitrarily small, we get the result. �

If a1 and a2 are two homology classes of dimension m of the same group G, we
deduce the following subadditivity property of the systolic volume.
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Corollary 5.3. Let a1 and a2 be two classes of Hm(G,Z), m ≥ 3. Then

S(G, a1 + a2) ≤ S(G, a1) +S(G, a2).

Proof. Indeed, if we denote by π : G ∗G→ G the epimorphism defined by π ◦ ij =
idG, then π∗(a1 + a2) = a1 + a2. By Proposition 3.4, we get the result. �

As a direct consequence of this corollary, we get

S(G, ka) ≤ k ·S(G, a)

for any a ∈ Hm(G,Z) with m ≥ 3 and any integer k, and that the limit

lim
k→∞

S(G, ka)

k

exists. Theorem 5.1 permits us to conclude that the value of this limit is always
zero.

5.2. Sublinear upper bound for systolic volume of multiple classes. Theo-
rem 5.1 is related to the behaviour of systolic volume under connected sum operation
and is a direct consequence of the following result.

Theorem 5.4. Let X be a connected pseudomanifold of dimension m ≥ 3. There
exists a constant C(X) depending only on the topology of X such that

(5.2) S(#kX) ≤ C(X) · k

ln(1 + k)

for any positive integer k. If k is large enough, this last inequality (5.2) is satisfied
for

C(X) = m · c(X) · ln c(X)

where c(X) stands for the number of cubes of a minimal decomposition of X by
cubes.

This theorem is a subsequent improvement of [BB05, Theorem A]. But the proof
is entirely based on the techniques and ideas of [BB05]. A better upper bound is
known for surfaces, see [Gro96]. Futhermore the upper bound (5.2) also holds for
a sequence of cyclic covering. The details are similar to those considered in the
sequel, see [BB05] on this subject.

Proof. We consider a minimal decomposition Θ of X by cubes and let c := c(X)
be the number of cubes of such a decomposition. We endow each m-dimensional
cube of Θ with the flat euclidian metric g0 such that the length of the edges of the
cube is 1. Now cut each cube C ∈ Θ with a strictly smaller concentric cube C′ ⊂ C.
On each sleeve

C = C \ C′ ≃ ∂C × [0, 1],

we consider the product metric g0|∂C × ε dt. The parameter ε will be chosen in the

sequel. Denote by (X ′, g′0) the riemannian polyhedron thus obtained and remark
that g′0 coincides with g0 on the (m− 1)-skeleton Θ(m−1) of Θ.

By construction,

• The complex X ′ is homeomorphic to X minus c disjoint m-disks, so

π1(X
′) = π1(X);
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• the volume of X ′ is given by the following formula:

vol(X ′, g′0) = c · 2m · ε;
• the obvious contraction of X ′ on Θ(m−1) decreases distances.

Moreover,

Lemma 5.5. Let C ∈ Θ. If a relative curve γ of (X ′, ∂C) is not entirely included
in the open star st(C) of C, then its length satisfies lg′

0
(γ) ≥ 2.

This lemma can be proved mutatis mutandis as in [BB05, Lemma 1].

We define the graph Ac composed of c edges starting from one vertex s0, see
[BB05, Formula (3.9)]. The PL-map

f : X ′ −→ Ac(5.3)

which contracts Θ(m−1) into s0 and projects in the evident way each sleeve C ≃
∂C× [0, 1] on an edge of Ac is analog to that one defined in formula (3.10) of [BB05].
In order to adapt this formula to our case, we need to replace the term 1

2k2 by ε.
If Ac is endowed with the linear metric for which each edge has length ε, the map
f contracts distances (see [BB05, Lemma 3]).

We now adapt the construction of [BB05, Subsection 3.4]. We replace M(k) by
X ′, k2 by 1

2ε and the valency D by c. This gives rise to a pseudomanifold X(2n, ε)
homeomorphic to

(#
2n
X)#( #

n(c−2)+1

S1 × Sm−1),

and a graph Γ with 2n vertices of valency c where

n ≥ 2

[ 1
2ε ]−1∑

t=1

(c− 1)t.

The graph Γ is endowed with the linear metric h for which each edge has length 2ε.
The combinatorial systole of Γ being bigger than 1

2ε , the metric systole sys(Γ, h) is
thus bigger than 1. Each piece X ′ ⊂ X(2n, ε) is endowed with the metric g′0 and
this defines a metric on X(2n, , ε) denoted by g1. The map

(5.4) F : (X(2n, ε), g1) −→ (Γ, h)

is then distance-decreasing. The restriction of F to any element X ′ ⊂ X(2n, ε)
coincides with the map f defined in 5.3 : it thus contracts the (m− 1)-skeleton of
Θ into the corresponding vertex of Γ and it projects each sleeve on a half-edge of
Γ starting from this vertex.

In order to estimate S(#2nX) = S(X(2n, ε)) (the addition of 1-handles does
not change the value of the systolic volume, see [BB05]), it remains to prove

Lemma 5.6.

(5.5) sys(X(2n, ε), g1) ≥ 1.

Proof. If γ : [0, 1] → X(2n, ε) is a closed curve whose image F (γ) is not contractible
in Γ, we have

lg1(γ) ≥ lh(F (γ)) ≥ sys(Γ, h) ≥ 1.

Now assume that γ is not contractible in X(2n, ε) but that F (γ) is contractible
in Γ. We will show that lg1(γ) ≥ 2.
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First of all, we can assume that γ is minimizing in its own homotopy class. The
metric g1 is piecewise flat, so γ is piecewise linear. The contractibility of F (γ)
implies the existence of a cusp in the following sense: there exists an edge [si, sj]
of Γ joining two vertices si and sj , a point v ∈]si, sj ] and a triplet (t1, t∗, t2) such
that 0 ≤ t1 < t∗ < t2 ≤ 1 satisfying

• v = F (γ(t∗)) ;
• F (γ([t1, t2]) ⊂ [si, v] ;
• F (γ(t1)) = F (γ(t2)) = si.

If v ∈]si, sj [, we contract the part of the curve {γ(t)}t∈[t1,t2] in F−1([si, v[). This
contraction strictly decreases the length of γ which is in contradiction with its
minimality. So the cusp v coincides with sj . The restriction of γ to the interval
[t1, t2] is thus the concatenation γ1⋆γ2⋆γ3 of three curves with γ1, γ3 ⊂ F−1([si, sj [)

and γ2 ⊂ F−1({sj}) = Θm−1
j . If mij denotes the middle of the edge [si, sj ], we set

Cj = F−1([mij , sj [).

We have two cases to consider.

(1) Either γ2 is not entirely contained in the star st(Cj) of Cj and

lg1(γ) ≥ lg′

0
(γ2) ≥ 2

by Lemma 5.5 ;
(2) Or γ2 is entirely contained in the star st(Cj) of Cj . The orthogonal pro-

jections of st(Cj) on each face of ∂Cj are correctly defined and coherents.
So we project γ2 orthogonally on ∂Cj. This projection does not change the
homotopy class of γ, and if γ2 6⊂ ∂Cj , it strictly decreases the length. We

still denote by γ2 the part of the curve contained in Cj . Now we contract

γ2 in Cj \ ∂Cj . This contraction strictly decreases the length of γ which is
in contradiction with the minimality of γ.

This concludes the proof of the lemma. �

So we have shown that

(5.6) S(#2nX) ≤ vol(X(2n, ε), g1)

(sys(X(2n, ε), g1)m
≤ 4m · n · c · ε.

The graph Γ is c-regular and satisfies the statement of [BB05, Theorem 2]. The
number of vertices can be chosen to satisfy the relation

2n ≥ 4

c− 2
[(c− 1)l − (c− 1)]

where l = 1
2ε . As c ≥ 2m+ 1 ≥ 7, we can always choose n such that

(5.7) 2n ≤ (c− 1)l.

We deduce from 5.6 and 5.7 that

S(#2nX) ≤ mc ln(c− 1)
2n

ln(2n)
.
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So

S(#2n+1X) ≤ S(#2nX) +S(X)

≤ m · c · ln(c− 1)
2n

ln(2n)
+S(X)

≤ m · c · ln(c− 1)
2n+ 1

ln(2n+ 1)
+S(X).

For any large enough k, we thus get the universal upper bound (5.2) for d = m·c·ln c.
This concludes the proof. �

5.3. Homology classes with positive simplicial volume. Recall the following
definition (see [Gro82]).

Definition 5.7. Let X be a pseudomanifold of dimension m. Its simplicial volume
is the quantity

‖X‖∆ = inf {
∑

i

|ri| | [X ] =
∑

i

riσ
m
i },

where the infimum is taken over the set of representations of the fundamental class
[X ] by singular simplicial chains with real coefficients.

If G denotes a finitely presentable group and a a homology class of dimension
m, the simplicial volume of a is then the number

‖a‖∆ = inf {‖X‖ | X representing a}.
For homology classes whose simplicial volume is positive, the function S(G, ka)

goes to infinity and the following result precises its asymptotic behaviour.

Corollary 5.8. Let G be a finitely presentable group and a ∈ Hm(G,Z) be a
homology class of dimension m ≥ 3 such that ‖a‖∆ > 0. Then there exists two

positive constants C(G, a) and C̃(G, a) depending only the pair (G, a) such that

C̃(G, a) · k

(ln(1 + k))m
≤ S(G, ka) ≤ C(G, a) · k

ln(1 + k)

for any positive integer k.

Proof. The lower bound is a direct consequence of the following inequality of Gro-
mov (see [Gro83, Theorem 6.4.D’]): any pseudomanifold X of dimension m satisfies
the inequality

C′ ‖X‖∆
(ln(2 + ‖X‖∆))m

≤ S(X),

where C′ is a positive constant depending only on the dimension m. It remains
to remark that, if X represents the class ka, then ‖X‖∆ = ‖ka‖∆ = k‖a‖∆. The
upper bound then follows by Theorem 5.1. �

5.4. Large oscillations of systolic volume. The following example shows that
the function k 7→ S(G, ka) can be to some extent irregular.

Let m = 2l+ 1 ≥ 3 be an odd integer and q ≥ 2 an integer. Let X be an essen-
tial manifold of dimension m (for example aspherical) and f : X → K(π1(X), 1)
denotes its classifying map. If X is not aspherical, we assume that the image of
its fundamental class f∗[X ] is an element of infinite order in Hm(π1(X),Z). Set
a = f∗[X ]. Fix a generator b ∈ Hm(Zq,Z) = Zq. For each 1 ≤ l ≤ q− 1, we choose
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a normal representation of lb by a manifold Yl with π1(Yl) = Zq. For l prime with
q, the corresponding lenticular space can be chosen to be Yl. Set

D = max
1≤k≤q

S(π1(X), ka)

and fix any positive constant C. Consider the free product

Gn = π1(X) ∗ Zq ∗ . . . ∗ Zq︸ ︷︷ ︸
n

,

and pick in

Hm(Gn,Z) = Hm(π1(X),Z)⊕Hm(Zq ,Z)⊕Hm(Zq,Z)⊕ ...⊕Hm(Zq,Z)

the class c = a⊕ b⊕ . . .⊕ b︸ ︷︷ ︸
n

. If Xk is a manifold representing the class ka, then

Xk#Yk# . . .#Yk︸ ︷︷ ︸
n

represents the class kc. By Corollary 3.5,

S(Gn, kc) ≥ S(Yk# . . .#Yk︸ ︷︷ ︸
n

).

Now Theorem A of [Sab07] implies that if n is chosen large enough, we have
S(Gn, kc) > C for any 1 ≤ k ≤ q − 1. Besides qc = qa in Hm(Gn,Z), and so
S(Gn, qc) ≤ D.

5.5. Systolic generating function. If G is a finitely presentable group and a ∈
Hm(G,Z) is a homology class of infinite order, the study of the sequence {S(G, ka)}∞k=1

is equivalent to the study of analytic properties of the following generating function:

σG,a(z) =

∞∑

k=1

S(G, ka) · zk.

If the group G is clearly identified by the context, we simplify the notation into
σa(z). The upper bound (5.1) implies that σa(z) is an analytic function on the disk
|z| < 1. Furthermore the complex point z = 1 is a singular point of this function
as S(G, ka) ≥ σm > 0.

There is no hope in general for σG,a(z) to be a rational function. Indeed, if a
is class with positive simplicial volume, Corollary 5.8 teachs us that z = 1 is not a
pole of the corresponding systolic generating function: so σa(z) is not rational. It is
well known that the rationality of the generating function of a numerical sequence
is equivalent to the recurrence of this sequence. We deduce the following

Proposition 5.9. Let G be a finitely presentable group and a ∈ Hm(G,Z) a ho-
mology class of infinite order. If the simplicial volume of a is positive, the sequence
of systolic volumes {S(G, ka)}∞k=1 does not satisfy any linear recurrent equation.

Nevertheless the rationality of σa(z) seems plausible for classes a with a bounded
sequence of systolic volume {S(G, ka)}∞k=1. Tori give a model of this type of be-
haviour for multiple classes.
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Proposition 5.10. Let 1 ≤ m ≤ n be two integers. Any class a ∈ Hm(Zn,Z)
satisfies the inequality

S(Zn, a) ≤ Cm
n ·S(Tm),

where Cm
n denotes the binomial coefficient.

Proof. Fix a basis of Hm(Zn,Z) composed of embedded m-torus, and write the
class a in this basis:

a =

Cm
b∑

i=1

ki[T
m
i ]

where ki ∈ Z for i = 1, . . . , Cm
b . By Corollary 5.3,

(5.8) S(G, a) ≤
Cm

b∑

i=1

S(G, ki[T
m
i ]).

Observe that

(5.9) S(Zn, k[Tm
i ]) ≤ S(Tm)

for any integer k. In fact, if f : Tm → Tm
i denotes a map of degree k, the geometric

cycle (Tm, f) represents the class k[Tm
i ]. By adding 1-handles, we can normalize

this representation into a geometric cycle (Tm#(S1×Sm−1)# . . .#(S1×Sm−1), f̃).
We get

S(Zn, k[Tm
i ]) = Sf̃ (T

m#(S1 × Sm−1)# . . .#(S1 × Sm−1))

≤ S(Tm#(S1 × Sm−1)# . . .#(S1 × Sm−1)) = S(Tm).

Now we deduce the result by combining inequalities (5.8) and (5.9). �

We close this chapter with the following

Conjecture 5.11. If a = [Tm] ∈ Hm(Zm,Z), then the associated systolic generat-
ing function is

σa(z) = S(Tm) · z

1− z
.

6. Torsion, simplicial complexity of groups and systolic volume

Let G be a finitely presentable group and a a homology class of dimension m.
We define the 1-torsion of the class a as the number

t1(a) = inf
(X,f)

|TorsH1(X,Z)|.

Here the infimum is taken over the set of geometric cycles (X, f) representing the
class a and |TorsH1(X,Z)| denotes the number of torsion elements in the first
integer homology group of X . We present the main result of this section:

Theorem 6.1. Let G be a finitely presentable group and a ∈ Hm(G,Z). Then

S(G, a) ≥ Cm
ln t1(a)

exp(C′
m

√
ln(ln t1(a))

,

where Cm and C′
m are two positive constants depending only on m.
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In particular,

S(G, a) ≥ (ln t1(a))
1−ε

for any ε > 0 if t1(a) is large enough. It is important to remark that there is no
hope in any dimension to prove a universal lower bound of the type

S(G, a) ≥ C ln t1(a)

for some positive constant C. Indeed, for any positive integer n, the Eilenberg-
MacLane space of the group

Gn := Z2 ∗ . . . ∗ Z2︸ ︷︷ ︸
n

is the complex ∨n
i=1RP

∞
i . If RP 2m+1

i ⊂ RP∞
i denotes the skeleton of some odd

dimension 2m + 1 of the i-th component, we consider the sequence of homology
classes

an =

n∑

i=1

[RP 2m+1
i ] ∈ H2m+1(Gn,Z).

We can see that |TorsH1(X,Z)| ≥ 2n for any representation (X, f) of a and so, by
application of Theorem 5.4,

S(Gn, an) ≤ S(#n
i=1RP

2m+1
i ) ≤ C · ln t1(an)

ln ln t1(an)

for some positive constant C > 0. For even dimension, we consider the sequence of
classes ãn = [S1]× an ∈ H2m+2(Z×Gn,Z) for which the same estimates hold.

In general the 1-torsion of a class is difficult to compute. In the case of Zn,
we can estimate from below the 1-torsion of any generator by the number n. As
the fundamental class of a lenticular manifold Lm(n) of dimension 2m + 1 with
fundamental group Zn realizes a generator a of the homology group H2m+1(Zn,Z),
we obtain the following result:

Theorem 6.2. For any lenticular manifold Lm(n),

S(Lm(n)) ≥ Cm
lnn

exp(C′
m

√
ln(lnn)

where Cm and C′
m are two positive constants depending only on m.

In order to prove Theorem 6.1, we are going to estimate the minimal number of
2-simplices of any representation a by a geometric cycle. This number of simplices
turns out to be estimated by the torsion of the first homology group. Remark that
the possibility to use the torsion of H∗(π1(M),Z) to estimate from below S(M)
has been mentionned by Gromov in [Gro96]. This principle will be also used for
the computation of some estimations in the next section. Indirectly, we also derive
from this result the following.

Theorem 6.3. There exists two positive constants a and b such that any manifold
M of dimension 3 with finite fundamental group satisfies

S(M) ≥ a
ln |π1(M)|

exp(b
√
ln(ln |π1(M)|)

,

where |π1(M)| denotes the cardinal of π1(M).
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Remark that finite fundamental groups of 3-manifolds can have a large number
of elements but a very small torsion in H1(π1(M),Z). A direct estimate of S(M)
by the torsion of H1(π1(M),Z) is interesting only if the manifold M is a lenticular
space.

6.1. Simplicial complexity of a group. First of all, we introduce a definition
which appears useful independently of the study of the systolic volume. Given a
finite simplicial complex P , we denote by sk(P ) the number of its k-simplices.

Definition 6.4. Let G be a finitely presentable group. We define the simplicial
complexity of G by the following formula:

κ(G) := inf
π1(P )=G

s2(P ),

the infimum being taken over all finite simplicial 2-complexes P with fundamental
group G. A 2-complex P is said minimal for G if π1(P ) = G and s2(P ) = κ(G).

This quantity posseses the following properties:

1. For any finitely presentable group G, κ(G) = 0 if and only if G is a free group.

2. The free product of two finitely presentable groups G1 and G2 satisfies

κ(G1 ∗G2) ≤ κ(G1) + κ(G2).

If κ(G1) and κ(G2) are both positive, this last inequality can be strengthened in
the following way:

κ(G1 ∗G2) ≤ κ(G1) + κ(G2)− 2.

3. For a simplicial complex X , its simplicial height h(X) (total number of its
simplices, notion introduced by Gromov, see [Gro96]) is obviously bounded from
below by the simplicial complexity of its fundamental group:

h(X) ≥ κ(π1(X)).

Remark 6.5. Even for groups whose structure is simple, the exact value of κ seems
hard to compute. We can show that κ(Z2) = 10: this value is realized on a minimal
triangulation of RP 2. It seems reasonable but not obvious that the minimal value
of κ over non free groups will be reached for the group Z2.

Remark 6.6. For a group of surface of large genus, the exact computation of the
complexity reminds an open problem. We can nevertheless give some bound of the
complexity in term of the genus.

Let πl be the fundamental group of an orientable surface of genus l ≥ 1. By
elementary algebraic and combinatorial considerations,

(6.1)
4

3
l ≤ κ(πl).

Besides, by a result of Jungerman & Ringel [JR80],

(6.2) κ(πl) ≤ 4(l − 1) + 2

{
7 +

√
1 + 48l

2

}
.

Here {a} denotes the integer part of a+ 1 if a is not an integer and a for integers.
Strictly speaking, the upper bound is only available for l 6= 2. For l = 2 we have to
replace the upper bound by 24, see [JR80]. We thus have

κ(Z⊕ Z) ≤ 14
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from which we derive easily that the abelian group An of rank n satisfies

1

2
n(n− 1) ≤ κ(An) ≤ 7n(n− 1).

More precisely, the lower bound is given by the second Betti number and the upper
bound is obtained by recurrence using previous inequality. The precise computation
of κ(An) remains open.

Let P be a connected simplical 2-complex. An edge r of P will be said free if the
edge is not incident to a 2-simplex of P . An elementary analysis of the simplicial
structure of P tells us that there exists a new connected simplicial 2-complex Q
satisfying the following properties:

• s2(P ) = s2(Q) ;
• Q does not possess free edges ;
• π1(P ) = π1(Q) ∗ Fn, where Fn is the free group with n generators.

Proposition 6.7. For any positive constant K, the set of finitely presentable groups
G of zero Grushko free index satisfying κ(G) ≤ K is finite and can be bounded by

2
K3

14 .

Proof. Let G be an group of zero Grushko free index with κ(G) ≤ K. By the
preceding remark, we can find a minimal 2-complex P for G without free edges.
Remark also that the minimality of P implies that any edge is incident to at least
two 2-simplices, and that any vertex of P is incident to at least four 2-simplexes. In
particular the number of vertices of P is bounded from above by 3

4κ(G) ≤M := 3
4K.

Thus P is a subcomplex of the (M − 1)-dimensional simplex ∆M .
The number of 2-simplices of ∆M is equal to C3

M . So for each integer 0 ≤ s ≤ K,
the number of 2-complexes of ∆M without free edges and composed of a number
s of 2-simplices is equal to Cs

C3
M

. We deduce that the number of groups G of zero

Grushko free index with κ(G) ≤ K is bounded by

K∑

s=0

Cs
C3

M
≤ 2C

3
M = 2

K(3K−4)(3K−8)
128 ≤ 2

K3

14 .

�

Remark 6.8. The bound of Proposition 6.7 seems far to be optimal.

6.2. Simplical complexity and 1-torsion. The simplicial complexity κ(G) is
quite sensitive to the number of torsion elements in H1(G,Z).

Proposition 6.9. Let X be a simplicial complex of dimension 2. Then

s2(X) ≥ 2 log3 |TorsH1(X,Z)|.
In particular, any finitely presentable group G satisfies the inequality

κ(G) ≥ 2 log3 |TorsH1(G,Z)|.

Proof. Consider the complex of simplicial cochains

(6.3) C1(X,Z)
d1

−→C2(X,Z)
d2

−→ 0.



ON DISTRIBUTION OF SYSTOLIC VOLUME 27

The universal coefficient theorem implies a duality between homology torsion and
cohomology torsion, and we have (see [Hat02, Corollary 3.3] for instance)

(6.4) TorsH1(X,Z) ≃ TorsH2(X,Z).

This implies that |TorsH1(X,Z)| = |Tors
(
C2(X,Z)/Im d1

)
|.

We endow Ci(X,Z) with the basis dual to the simplicial basis of Ci(X,Z). Let
D denotes the matrix of d1 with respect to these bases. The matrix D has s2(X)
rows, and each row has exactly three non zero elements whose value is either 1 or
−1. It follows that every row vector of D has euclidian length

√
3. If we interpret

the determinant of a square matrix V of order k as the volume of the parallelotope
generated by its row vectors, we see that for any smaller square matrix V of D of
order k

(6.5) |detV | ≤ (
√
3)k.

Assume that the rank of D is equal to d, and denote by t(D) the greatest common
divisor of all minors of order d of D. By (6.5),

(6.6) t(D) ≤ (
√
3)d ≤ (

√
3)s2(X).

Furthermore, it is obvious that t(D) is invariant under change of basis of C1(X,Z)
or of C2(X,Z). By a general result on free Z-modules (see [VdW71]), there exist
a basis e1, . . . , es1(X) of C1(X,Z) and a basis f1, . . . , f s2(X) of C2(X,Z) such that
d1(ei) = mi · f i for 1 ≤ i ≤ d and d1(ei) = 0 for i > d (note that the mi’s can be
chosen such that mi divides mi+1 albeit we will not need this). On the one hand,
we have

|TorsH1(X,Z)| = |Tors
(
C2(X,Z)/Im d1

)
| =

d∏

i=1

mi.

On the other hand, the matrix of d1 in the new bases (ei)
s1(X)
i=1 and (f j)

s2(X)
j=1 is

the diagonal matrix Diag(m1, . . . ,md, 0, . . . , 0) and a straightforward computation
of the minors of order d of this matrix gives

t(D) =

d∏

i=1

mi.

Together with the inequality (6.6), this completes the proof. �

Now we prove Theorem 6.1. Let G be a finitely presentable group and a ∈
Hm(G,Z) a homology class. Recall that the simplicial height h(a) of a homology
class a is the minimum number of simplexes (of any dimension) of a geometric cycle
representing the class a. By Proposition 6.9,

(6.7) h(a) ≥ 2 log3 t1(a).

It remains to apply the estimate of the systolic volume S(G, a) by the simplicial
height h(a), see [Gro83, 6.4.C”] and [Gro96, 3.C.3].
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6.3. Application to lenticular spaces. Given two integers m ≥ 0 and n ≥ 2,
let Lm(n) be a lenticular space of dimension 2m + 1 with fundamental group Zn.
That is, there exist integers q1, . . . , qn coprime with n and an isometry A of order
n of the form

A(z1, . . . , zm) = (e2πi
q1
n z1, . . . , e

2πi qm
n zm)

such that

Lm(n) := {Z = (z1, . . . , zm) ∈ C
m

∣∣∣∣
m∑

k=1

|zk|2 = 1}/∼A ≃ S2m+1/Zn,

where Z ∼ Z ′ if and only if Z = Ak Z ′. Observe that the fundamental class of a
lenticular space Lm(n) realizes a generator a of the homology group H2m+1(Zn,Z).

Lemma 6.10. Let a be a generator of H2m+1(Zn,Z). Then

t1(a) ≥ n.

Proof. Let (X, f) be a geometric cycle representing a. As a is a generator of
H2m+1(Zn,Z) ≃ Zn, the map f induces an isomorphism

(6.8) f∗ : H2m+1(Zn,Zn) −→ H2m+1(X,Zn).

Let
β : H1(Zn,Zn) −→ H2(Zn,Z).

denotes the Bockstein homomorphism and

j : H2(Z,Z) −→ H2(Z,Zn)

the morphism of reduction modulo n. In our case, j is an isomorphism. A generator
of H2m+1(Zn,Zn) (non necessarily dual to a) can be choosen as u ∪ (j ◦ β(u))m,
where u ∈ H1(Zn,Zn) is a generator. Now consider f∗(β(u)) = β(f∗(u)) ∈
H2(X,Z). Taking into account the isomorphism (6.8), f∗(u)∪

(
f∗(j◦β(u))

)m
is an

element of order n in H2m+1(X,Zn). This implies that the order of f∗(j ◦ β(u)) ∈
H2(X,Zn) is n, and so the order of β(f∗(u)) ∈ H2(X,Z) is also n. By the duality
(6.4), we get the result. �

Remark that the statement of this lemma as well as its proof hold in the case of
a simplicial complex X representing the class a. In this more general case, we have
to note that the map (6.8) is a monomorphism.

By combining Lemma 6.10 and Theorem 6.1, we derive Theorem 6.2.

6.4. Application to 3-manifold. Given a closed manifoldM and a covering space
M ′ with k sheets, the following inequality is obvious:

(6.9) S(M) ≥ 1

k
S(M ′).

Let M be a manifold of dimension 3 with finite fundamental group. Its universal
cover is the sphere S3, and the action of the fundamental group π1(M) on S3 is
orthogonal. The list of finite groups which act orthogonally on S3 can be found in
[Mil60] for instance. An analyse of this list shows that π1(M) possesses a cyclic
subgroup of index k ≤ 12. Denote by M ′ the covering space corresponding to this

subgroup. The manifold M ′ is a lenticular space L1(n) with n ≥ |π1(M)|
12 . Theorem

6.3 now follows from Theorem 6.2 and the inequality (6.9) with k = 12.
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6.5. Simplicial complexity and systolic area of a group. Recall that the
systolic area of a finitely presentable group G is defined as

S(G) = inf
π1(P )=G

S(P ),

where the infimum is over all finite simplicial complex P of dimension 2 with fun-
damental group G.

For finitely presentable groups G of zero Grushko free index, the quantity of
metric nature S(G) is relied to the the purely combinatorical quantity κ(G) by the
following two results.

Proposition 6.11. Let G be an finitely presentable group of zero Grushko free
index. Then

S(G) ≤ κ(G)

2π
.

Proof. Consider a minimal simplicial complex P of dimension 2 with fundamental
group G. Endow P with the metric h such that any edge is of length 2π

3 and any
face is the round hemisphere of radius 1. As P is minimal, s2(P ) = κ(G) and so

(6.10) area(P, h) = 2πκ(G).

The definition of h implies that any systolic geodesic can be homotoped to the 1-
skeleteon without increasing its length. Such a curve passes through at least three
edges and thus sys(P, h) ≥ 2π. This implies with (6.10) that

S(G) ≤ S(P, h) =
κ(G)

2π
.

�

Theorem 6.12. Let G be a finitely presentable group of zero Grushko free index.
Then

κ(G) ≤ C ·S(G) exp
(
C′

√
logS(G)

)
,

for some universal positive constants C and C′. In particular, for any θ > 0 there
exists a positive constant Cθ such that

S(G) ≥ Cθ · κ(G)1−θ .

Proof. We argue as in [Gro83, 5.3.B]. In the sequel, if B := B(p,R) denotes the
metric ball centered at p of radius R, we denote by |B| its area for the metric g,
and nB the concentric ball B(p, nR) for any positive integer n.

Set R0 = 1
25 and

(6.11) α = 25 exp
(√

log(62500 ·S(G))
)
.

By [RS08, Theorem 1.4],

S(G) ≥ π

16
,

so α is well defined ans satisfies α > 5. Fix some positive ε small enough such that

(6.12) log5
R0

5ε
· logα

5
≥ log (62500 · κ(G)).

By [RS08, Theorem 3.5 and Lemma 4.2], there exists a simplicial complex P of
dimension 2 endowed with a metric g such that
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• π1(P ) = G ;
• sys(P, g) = 1 ;
• S(P, g) = area(P, g) < S(G) + ε ;
• any ball B(p,R) ⊂ P of radius R ∈ [ε, 12 ] centered at any point p ∈ P
satisfies the inequality

|B(p,R)| ≥ 1

4
R2.

Following Gromov, we introduce the following definition, see [Gro83, Theorem
5.3.B]. A ball B(p,R) with ε ≤ R ≤ R0 is said α-admissible if

• |B(p, 5R)| ≤ α · |B(p,R)| ;
• ∀R′ ∈]R,R0], α · |B(p,R′)| ≤ |B(p, 5R′)|.

If there exists a point p ∈ P such that for any R ∈ [ε,R0] the ball B(p,R) is never
α-admissible, then, if r ∈ N denotes the unique integer such that R0

5r+1 ≤ ε < R0

5r ,

|B(p,R0)| ≥ αr|B(p,
R0

5r
)| ≥ 1

4
αrε2 ≥ 1

100

(α
5

)r

R2
0 ≥ 1

62500

(α
5

)log
5

R0
5ε

.

Thus

S(P, g) ≥ κ(G)

according to the inequality (6.12) and the result is proved in this case.

So we can assume that for any p ∈ P there exists Rp ∈ [ε,R0] such that B(p,Rp)
is α-admissible. Denote by A the area of (P, g).

Lemma 6.13. Let B(p,R) be an α-admissible ball. Then

|B(p,R)| ≥ A(α) :=
1

100

(
1

25

) log 100 A

R2
0

log α
25 R2

0.

Proof of the lemma. Let r ∈ N be the unique integer such that R0

5r+1 ≤ R < R0

5r .
We have

A = area(P, g) ≥ |B(p,R0)| ≥ αr|B(p,R)| ≥ 1

4
αrR2 ≥ 1

100

( α
25

)r

R2
0,

and so

r ≤ r(α) :=
log100A

R2
0

log α
25

.

This implies

|B(p,R)| ≥ 1

4
R2 ≥ 1

100

(
1

25

)r

R2
0 ≥ A(α).

�

We now construct a familly {Bi}Ni=1 of α-admissible balls of P in the following
way. We first choose an α-admissible ball B1 := B(p1, R1) with R1 := max{Rp |
p ∈ P}. At each step i ≥ 2, we construct Bi using the data of {Bj}j<i as follows.
Let Ri be the maximal radius of an α-admissible ball centered at a point of the
complementary of the union of the balls {2Bj}j<i and let Bi := B(pi, Ri) be such
an α-admissible ball. By construction, Bi is disjoint from the other balls Bj as
Ri ≤ Rj . The process ends in a finite number N of steps when the balls {2Bi}Ni=1
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cover P , as Ri ≥ ε for every i = 1, . . . , N .

Consider N the corresponding nerve of this cover. In a general way, if X is
a paracompact topological space and U a locally finite cover of X , there exists a
canonical map Φ from X to the nerve N (U) of the cover U defined as follows. If
{φV }V ∈U denotes a partition of unity associated to U ,

Φ : X → N (U)
x 7→

∑

V ∈U

φV (x)V.

This map is uniquely defined up to homotopy. In our case, U = {2Bi}Ni=1 and Φ
associates the center of such a ball to the corresponding vertex of N .

Lemma 6.14. The map Φ : P → N induces an isomorphism of fundamental
groups.

Proof of the lemma. Denote by N (k) the k-skeleton of N . We will construct a map
Ψ : N (2) → X such that the induced map

Ψ♯ : π1(N ) ≃ π1(N (2)) → π1(P )

is the inverse of Φ♯ : π1(P ) → π1(N ).

We have denoted {pi}Ni=1 the set of centers of balls of the covering U and set

vi = Φ(pi). We first define Ψ on N (0) by

Ψ(vi) = pi.

If two vertices vi and vj are connected by an edge [vi, vj ], we join pi and pj in
P by any minimizing geodesic denoted by γi,j . The map Ψ is then defined on the
edge [vi, vj ] to the arc γi,j in the obvious way

Ψ : [vi, vj ] −→ γi,j .

This defines Ψ on the 1-skeleton N (1). Remark that lg(γi,j) ≤ 4 · R0 (vi and vj are
connected by an edge if and only if 2Bi ∩ 2Bj 6= ∅).

Next we consider any 2-simplex τ = [vi, vj , vk] of N . The concatenation γi,j ⋆
γj,k ⋆ γk,i is a closed curve of P of length at most 12 · R0 < 1. So it is contractible
and any contraction of this curve into a point gives rise to an extension of the map
Ψ to τ . We get this way a map

Ψ : N (2) → P.

Observe that the restriction of Ψ to N (1) is unique up to homotopy.

By construction, Φ(pi) = vi for any i = 1, . . . , N , and if [vi, vj ] denotes an edge
of N and p belongs to the corresponding geodesic γij , Φ(p) ∈ St([vi, vj ]) where
St([vi, vj ]) denotes the star of [vi, vj ]. This implies that Φ ◦ Ψ : [vi, vj ] −→ N is

homotopically equivalent to the identity relatively to {vi, vj}. So Φ ◦Ψ : N (1) −→
N is homotopically equivalent to the identity relatively to N (0). From this, we
get that the induced morphism Φ♯ ◦ Ψ♯ : π1(N ) → π1(N ) is the identity and so
Ψ♯ : π1(N ) → π1(P ) is into.

It remains to prove that Ψ♯ is onto. Consider a geodesic loop α based at the
center p1 of the ball B1 and whose length is minimal in its own homotopy class.
We complete p1 into a finite family {pij}j∈Zn

of points of P such that
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• each pij is the center of some ball Bij of U ;
• the family {2Bij}j∈Zn

covers α ;
• 2Bij ∩ 2Bij+1 6= ∅.

For each j ∈ Zn, fix any point xj ∈ 2Bij ∩α and denote by αj the part of the loop α
joining xj and xj+1 and contained in 2Bij ∪2Bij+1 . By construction, lg(αj) ≤ 8·R0.
Fix a minimizing geodesic βj joining pij and xj . The concatenation

γij ,ij+1 ⋆ βj+1 ⋆ (αj)
−1 ⋆ (βj)

−1

is closed curve of length at most 24 · R0 < 1 thus contractible. So α is homotopic
to γ1,2 ⋆ γ2,3 ⋆ ... ⋆ γn,1 with based point p1 fixed. This proves the surjectivity of Ψ♯

and completes the proof. �

As π1(N ) ≃ G, we deduce the lower bound

s2(N ) ≥ κ(G).

We now estimate the number s2(N ) by the systolic volume of (P, g). First of all,

A = area(P, g) ≥
N∑

i=1

|Bi| ≥
1

α

N∑

i=1

|5Bi|,

as the balls Bi are pairewise disjoints and α-admissibles. If Bi belongs to exactly
Fi distinct 2-simplexes of N , the ball 5Bi contains at least Fi pairewise disjoints
balls of {Bi}Ni=1, and so

|5Bi| ≥ Fi ·A(α).
From the equality

∑N
i=1 Fi = 3 · s2(N ), we deduce that

κ(G) ≤ αA

3A(α)
.

As

A(α) =
1

100

(
1

25

) log 100 A

R2
0

log α
25 R2

0,

we get

κ(G) ≤ 62500

3
· 25

log 100 A

R2
0

log α
25 · αA.

as R0 = 1
25 . From the equality

log
α

25
=

√
log(62500 ·S(G)),

we then compute that

κ(G) ≤ 62500

3
· e
log25· log(62500·A)√

log(62500·S(G)) · 25e
√
log(62500·S(G)) · A.

Now observe that A = area(P, g) = S(P, g) < S(G) + ε. This finally implies the
result for C = 62500·25

3 and C′ = 1 + log25. �
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Remark that for surface groups we have

c
κ(πl)

(logκ(πl))2
≤ S(πl) ≤ C

κ(πl)

(logκ(πl))2

for some positive constants c and C. This can be deduced from [BPS10] using
inequalities (6.1) and (6.2).

7. The Heisenberg group, nilmanifolds and the Waring problem

The nilpotent groups give particularily interesting examples: the systolic volume
of multiples of certain homology classes are bounded, albeit certain of these mul-
tiples admit (non-normalized) representations by manifolds whose systolic volume
is not bounded. This phenomena already appears in the simplest case of nilpotent
non abelian group, that is the Heisenberg group.

7.1. Nilmanifolds and the Waring problem. Consider a nilpotent group G of
finite type without torsion. The classical result of Mal’cev [Malc49] implies that
there exists a simply connected nilpotent Lie group G(G) such that G embeds in
G(G) as a lattice, that is as a cocompact discret subgroup. Denote by L(G) the Lie
algebra of G(G) and suppose that L(G) is graded in the following way:

(7.1) L(G) =
s
⊕
k=1

Lk, [Li,Lj ] ⊂ Li+j ,

where Li+j = 0 if i+ j > s. We do not suppose here that

(7.2) {L(i) =
s
⊕
k=i

Lk}si=1

is a lower central series, s being not in general the nilpotence degree of L(G). For
any t ∈ R, a natural homothety δt is associated to the decompostion (7.1) by the
formula:

δt(v) = tkv if v ∈ Lk.

This homothety δt is an endomorphism of L(G) for any real parameter t. By the
Baker-Campbell-Hausdorff formula, and taking into account the structure (7.1),
the homothety δt generates a homothety ∆t of G.

Definition 7.1. The nilpotent group G is said graded if there exists a graduation
(7.1) of the corresponding Lie algebra L(G) such that for integer parameters the
corresponding homotheties of G(G) preserve the lattice G ⊂ G(G), that is

∆n(G) ⊂ G, ∀n ∈ Z.

If G is a nilpotent graded group, let

d(G) =

s∑

k=1

k dimLk

be the weighted dimension of its corresponding Lie algebra L(G). Remark that if
the sequence of subalgebras (7.2) is the lower central series, d(G) coincides with
the degree of polynomial growth of G, see [Wolf68] and [Bass72].
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Denote by M = G(G)/G the nilmanifold corresponding to the nilpotent group
G. If G is graded, the homothety ∆n : G(G) −→ G(G) defined using the graduation
induces for every positive integer n a map

∆̃n :M −→M

of degree nd with d = d(G). Let a = [M ] ∈ Hm(G,Z) be the fundamental class of
M and k be a positive integer. We can represent the class ka by the connected sum
of a uniformily bounded number of copies of M as follows. By a result of Hilbert
(see [Ellis71]), there exists an integer K(d) such that

(7.3) k =

s∑

i=1

adi ,

where each coefficient ai is a positive integer and s ≤ K(d). Now the class ka is
represented by the geometric cycle (#s

i=1Mi, f) where Mi ≃M for i = 1, . . . , s and

f :
s

#
i=1

Mi −→
s∨

i=1

Mi

s∨
i=1

∆̃ai

−→ MH,

the first map being the contraction of the connected sum into a wedge. We easily
compute that degf =

∑s
i=1 a

d
i = k and so

S(G, ka) ≤ S(#s
i=1M).

Then we apply Proposition 3.6 in order to derive the following result.

Theorem 7.2. Let G be a graded nilpotent group. If a = [G(G)/G] denotes the
fundamental class of the corresponding nilmanifold, then

S(G, ka) ≤ K(d(G)) ·S(G, a)

for any positive integer k.

7.2. Family of lattices in the Heisenberg group. Consider the Heisenberg
group of dimension 3 composed of the following set of upper triangular matrices:

H =








1 x z
0 1 y
0 0 1


 , x, y, z ∈ R



 .

The subsetH(Z) of matrices ofH with integer coefficients (i.e. for which x, y, z ∈ Z)
is a lattice, and we denote by MH = H/H(Z) the corresponding nilmanifold. The
fundamental group H(Z) of MH satisfies the assumptions of Theorem 7.2. In fact
the homotheties {∆t}t>0 are given by the formula

∆t




1 x z
0 1 y
0 0 1


 =




1 tx t2z
0 1 ty
0 0 1


 ,

so ∆n(H(Z)) ⊂ H(Z) for any integer n ≥ 1. The map ∆n factorizes through a map

∆̃n :MH −→MH

for which deg(∆̃n) = n4. The resolution of the Waring problem for the sum of
fourth powers (see [BDD86]) gives that any integer number decomposes into a sum
of at most 19 fourth powers. That is, with the notation of Theorem 7.2, we have
d(H(Z)) = 4 and K(4) = 19. This implies the following
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Corollary 7.3. Let a = [MH] ∈ H3(H(Z),Z) be the fundamental class of MH.
Then

S(H(Z), ka) ≤ 19 ·S(H(Z), a)

for any positive integer k.

The different lattices of H give rise to nilmanifolds whose systolic behaviour is
particularly interesting. Consider the sequence of lattices {Hn(Z)}∞n=1 of H, where
Hn(Z) is the subset of matrices of H such that x ∈ nZ and y, z ∈ Z. Denote by
Mn = MHn

= H/Hn(Z) the corresponding nilmanifolds. The manifold Mn is a
cyclic covering of MH with n sheets, so

(7.4) S(Mn) ≤ C
n

lnn
,

according to the version of Theorem 5.4 for cyclic coverings. The fact that the
function S(Mn) goes to infinity is not obvious. For instance the simplicial volume
of these manifolds is zero, and thus the corresponding lower bound (see Corollary
(5.8)) does not apply.

Proposition 7.4. The function S(Mn) satisfies the following inequality:

S(Mn) ≥ a
lnn

exp(b
√
ln(lnn)

,

where a and b are two positive constants. Especially

lim
n→+∞

S(Mn) = +∞.

Proof. The proof uses the results of section 6. First we have:

Lemma 7.5. Let X be a pseudomanifold of dimension 3 which admits a map of
degree 1 on the nilmanifold Mn. Then

|TorsH1(X,Z)| ≥ n.

Proof of the lemma. By duality between homology and cohomology, the existence
of n-torsion in the group H1(X,Z) is equivalent to the existence of the same torsion
in H2(X,Z).

The cohomologies of Mn are well known:

H2(Mn,Z) = Z⊕ Z⊕ Zn.

The generator of the torsion subgroup TorsH2(Mn,Z) is the class b = β(a), where
a ∈ H1(Mn,Zn) and β denotes the Bokstein homomorphism. Let

j : H2(Mn,Z) −→ H2(Mn,Zn)

denotes the homomorphism of reduction modulo n. We have the following decom-
position of the fundamental cohomology class in H∗(Mn,Zn):

m = a ∪
(
j ◦ β(a)

)
= a ∪ j(b).

If f : X −→Mn is a map of degree 1, then f∗(m) is a generator of the cohomology
group H3(X,Zn) ≃ Zn. This implies that f∗(j(b)) is an element of order n in
H2(X,Zn), and thus f∗(b) is an element of order n in H2(X,Z). This ends the
proof. �
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The lemma implies that any pseudomanifold representing the fundamental class
[Mn] satisfies t1(X) ≥ n, and so

t1([Mn]) ≥ n.

Proposition 7.4 is then a consequence of Theorem 6.1. �

As the cover Mn −→ MH has n sheets, the manifold Mn represents the class
n[MH] ∈ H3(H(Z),Z) for any positive integer n. This representation is not normal-
ized, and Corollary 7.3 together with Proposition 7.4 shows that the assumption of
normalization can not be dropped in Theorem 2.4.

8. On stable systolic volume

In this section, we explain how part of our approach adapts to the context of
stable systolic volume.

Let b ≥ 1 be an integer and fix a non trivial homology class a ∈ Hm(Zb,Z) ≃
Hm(Tb,Z) of dimension 1 ≤ m ≤ b.

Let (X, f) be a geometric cycle representing a and endowed with a polyhedral
metric g. The representation is said normal if the induced map

f∗ : H1(X,Z)/TorsH1(X,Z) → Z
b

is an epimorphism. For any class h ∈ H1(X,Z), set

‖h‖g = lim
n→∞

lg(n · h)
n

where lg(n · h) denotes the least length of a loop of X representing the class n · h.
For this semi-norm, ‖h‖g = 0 if and only if h ∈ TorsH1(X,Z). The semi-norm
‖ · ‖g induces a norm on H1(X,R) called the stable norm. The relative stable
systole denoted by sysstf (X, g) is defined as the infimum of ‖ · ‖g over the classes

h ∈ H1(X,Z)/TorsH1(X,Z) such that f∗(h) 6= 0. The stable systolic volume of
(X, f) is then the value

S
st
f (X) = inf

g

vol(X, g)

(sysstf (X, g))m
,

where the infimum is taken over all polyhedral metrics on X . In the case where
f is the Jacobi map J : X → T

b where b denotes the first Betti number of X ,
we simply denote by S

st(X) the stable systolic volume of the pair (X, f). This is
a consequence of results of Gromov [Gro83, Theorem 7.4.C] and the first author
[Bab92, Theorem 8.2.C] that S

st
f (X) > 0 if and only if the map f : X → Tb =

K(Zb, 1) satisfies f∗[X ] 6= 0 ∈ Hm(Zb,Z).

Definition 8.1. The stable systolic volume of a is defined as the quantity

S
st(a) := inf

(X,f)

S
st
f (X),

the infimum being taken over all geometric cycles (X, f) representing the class a.

Note that any homology class a ∈ Hm(Zb,Z) is representable by some manifold,
and this representation can be normalized by surgery if m ≥ 3. Thus the stable
systolic volume of a is well defined.
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The comparison result of [Bab06] holds for stable systolic volume. This implies
the following version of Theorem 2.4.

Theorem 8.2. If m ≥ 3, any normal representation of a class a ∈ Hm(Zb,Z) by
an admissible pseudomanifold M satisfies

S
st(Zb, a) = S

st(M).

Given an morphism of abelian groups π : Zb → Zb′ and a homology class a ∈
Hm(Zb,Z) with m ≥ 3, we have

S
st(Zb′ , π∗a) ≤ S

st(Zb, a).

We deduce that if X1 and X2 are two orientable admissible pseudomanifolds of
dimension m ≥ 3, then

max{Sst(X1),S
st(X2)} ≤ S

st(X1#X2).

For this it is sufficient to remark that if the torus Tbi is the classifying space for
the stable systole of Xi, then Tb1+b2 is the classifying space of X1#X2.

Finally, the comparison principle of [Bab06] implies that

S
st(X1#X2) ≤ S

st(X1) +S
st(X2).

As a consequence, we derive the following inequality:

S
st(Zb, a1 + a2) ≤ S

st(Zb, a1) +S
st(Zb, a2).

We end this section with the following

Proposition 8.3. Fix two integers 3 ≤ m ≤ b. For any class a ∈ Hm(Zb,Z),

S
st(Zb, a) ≤ Cm

b ·Sst(Tm)

where Cm
b denotes the binomial coefficient.

Proof. Fix a basis {Tm
1 , . . . ,T

m
Cm

b
} of Hm(Zb,Z) composed of Cm

b embedded m-tori,

and write the class a in this basis:

a =

Cm
b∑

i=1

ki[T
m
i ]

where ki ∈ Z for i = 1, . . . , Cm
b . We have

S
st(Zb, a) ≤

Cm
b∑

i=1

S
st(Zb, ki[T

m
i ]),

and the inequality

S
st(Zb, ki[T

m
i ]) ≤ S

st(Tm)

for any i = 1, . . . , Cm
b - whose proof is analog to the proof of inequality (5.9) -

completes the proof. �
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