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Bragg coherent X-ray diffraction imaging is demonstrated with a micro-focused illumination. The 2D projected
density of the 3D nano-crystal is successfully retrieved from the inversion of its diffraction intensity pattern. The
analysis of the phase field at the sample position, which holds in principle the strain information, emphasizes the
high sensitivity of the technique with regard to the wavefront structure. The ptychography approach is a
proposed solution to discriminate the wavefront function from the sample electron density distribution. It is
based on a redundancy of the collected information obtained by measuring a series of diffraction patterns for
different but overlapping beam positions onto the sample. Applicability to the Bragg geometry still needs to be
demonstrated.

Keywords: inversion problem; coherent X-ray diffraction; strain analysis; nano-crystals; nano-focusing

1. Introduction

Hard X-rays – with a wavelength in the nm range – are

the most appropriate waves to reveal new insight in

material science [1,2]. Recently, with the development

of brilliant X-ray sources such as second- and third-

generation synchrotrons, the X-ray study of nano-

structured materials has become possible [3–5]. The

weak interaction of the X-ray photons with matter

allows for a non-destructive investigation of the nano-

structure directly in its environment (embedded in a

matrix, during growth, under stress, etc.). But, the

impossibility of measuring the phase of the diffracted

field, also known as the ‘phase problem’, is a strong

limitation to the method. Therefore, analysis of the

diffraction patterns are often model-dependent [3].

In the 1950s, it was, however, demonstrated that

retrieving the phase directly from the intensity infor-

mation is possible if the diffraction pattern is sampled

at a frequency slightly larger than twice the Nyquist

frequency of the scattered wavefield [6]. It corresponds

to confining the direct space object to a finite region

called the support, which occupies half of the total

volume given by the computational window.

Outside the support, the space is filled with zeros. As

this problem has no analytical solution, the inversion

relies on numerical iterative algorithms using back and

forth transforms between the sample and the measure-

ment spaces [7,8]. This lens-less microscopy technique,

also known as coherent X-ray diffraction imaging

(CDI) requires a coherent illumination of the sample.

(Partially) coherent X-ray beams are nowadays

provided by highly brilliant third-generation synchro-

tron sources such as, e.g. the ESRF or Soleil in France,

SLS in Switzerland, APS in the US, Spring8 in Japan,

and so on.

The first demonstration of CDI was obtained in

1999 by Miao and his co-workers for two-dimensional

non-crystalline test objects [9], followed rapidly by the

3D demonstration [10]. Another important step is

achieved by Robinson and his co-workers. They

demonstrate the imaging of a nano-crystal in 2D [11]

and in 3D [12], from the inversion of intensity patterns

measured in Bragg geometry. The periodic atomic

structure of the crystal leads to additional reciprocal

space maxima called the Bragg peaks. When the whole

sample is coherently illuminated, each Bragg diffrac-

tion peak presents a finely structured intensity distri-

bution related to the crystal shape and electron density.

With planar wavefield illumination and far-field detec-

tion, the scattering process is described in a good

approximation by the Fourier transform of an effective

complex-valued electron density g(r)¼ �(r) exp(i�(r)),

where �(r) is the electron density of the unstrained
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crystal and �(r) is the phase given by the crystal

displacement field u(r) projected onto the Bragg vector

G [13,14]. Hence, similar iterative algorithms can be

used in CDI and Bragg CDI for the inversion of the

intensity diffraction pattern. While CDI is encounter-

ing a fast development with recent results in the

imaging of complex noncrystalline media such as

ceramic nanofoam [15] and biological samples

[16,17], strain imaging using Bragg CDI remains

more difficult to address. Recently, the 3D reconstruc-

tion of the displacement field in a Pb nanocrystal has

been presented [18]. Thanks to the large angles

necessary to reach the Bragg reflections, Bragg geom-

etry presents the advantage, in contrast to CDI, of

avoiding the contribution of the direct beam illumina-

tion. However, several aspects have to be carefully

considered in order to successfully retrieve the exit

wavefield at the sample in Bragg CDI. The weakness of

the Bragg intensity scattered by a nano-crystal is a first

strong limitation and it requires, at least, a long

acquisition time and therefore a highly stable experi-

mental set-up [19,20]. In addition, the complex-valued

density function requires an adaptation of the iterative

algorithm: in particular, for highly strained crystals,

the nonlinear behavior of the non-homogeneous

displacement field leads to an intensity distribution

that can become very different from the Fourier

transform of the crystal shape function. This behavior

leads to serious convergence problems. In that case,

one has to seek for additional direct space constraints,

specific to the studied system, in order to reach the

convergence [21–23]. For weakly strained systems, the

phase of the retrieved complex-valued electron density

often presents some variations that are related to the

experimental conditions rather than to the crystal

structure [19,24]. In a previous paper, we investigated

the detection related artifacts [24]. In this work, we

describe the influences of other artifacts, such as

reciprocal space offset, refraction effects and curved

illumination wavefront.

The paper is organized as follows: the sample and

the experimental set-up used for Bragg CDI with a

micro-focused beam are described in Section 2 before

the inversion schemes and results are presented in

Section 3. In Section 4, the retrieved quantity is

compared to calculations taking into account experi-

mental artifacts such as the illumination wavefront

curvature. Finally, in Section 5, the actual limits of the

technique are discussed, as well as its perspectives for

strain analysis at the nanometer scale.

2. Experiment

The sample used for this experiment is a nano-sized

crystalline powder (a non-stoichiometric ZrC0.92O0.03

compound), prepared by a sol-gel technique. Further

details concerning the sample preparation can be

found in [25]. The powder is composed of well-defined

single-crystals with mostly often octahedron-like shape

(Figure 1(a)). No strong displacement field (due to strain

or crystal defects) is revealed by transmission electron

microscopy (TEM) measurements (Figure 1(b)). The

particle typical size is in the 100–300nm range.

The CDI experiment was carried out at the ID01

beamline (ESRF, France). The monochromatic

9.5 keV beam (wavelength �¼ 0.13 nm) was delivered

by a double crystal Si(111) monochromator (band-

width of about 10�4, resulting in a longitudinal

1 µm

(a) (b)

Figure 1. (a) Scanning electron microscopy picture of the ZrCO nano-powder. (b) Transmission electron microscopy picture of a
single ZrCO nano-crystal.
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(temporal) coherence length of 0.5mm). The experi-

mental set-up is shown in Figure 2(a). The beam

defining slits (S1) located at about 36m from the

source and 10 m from the sample were closed down to

300 mm. With this setting, the transverse coherence

length was estimated to about 5 mm. However, due to

the monochromator instabilities (cooling system) and

the use of two focusing mirrors (higher harmonics

rejection), which act as non-perfect optical elements,

the transverse coherence length was certainly smaller

[26]. The small size of the sample, in the nm range,

required the use of a focusing optics in order to

increase the coherent flux at the sample position [27].

Therefore, a set of 46 Be compound refractive lenses

(CRLs), located 0.9m upstream the sample, was

introduced to further focus the beam to a 4� 8 mm2

(horizontal� vertical, FWHM) spot at the sample

position, with an integrated intensity of 2� 109

photons/s. Contrarily to Fresnel zone plate focusing

optics, which create a planar wavefront at the focus

when used in the diffraction limited condition [28,29],

ideal CRLs would transform the perfect incoming

planar illumination into a spherical wavefront.

However, as both illumination function and Be CRLs

are non-perfect, it is expected that the wavefront at the

focus is highly complex. In order to maximize the

intensity-to-noise ratio, the entrance slits (S2) of the

focusing optics were symmetrically opened to 200 mm,

much larger than the transverse coherence length. An

estimate of the experimental coherence condition can

be given from the product of the source size � by the

beam divergence �: appropriate coherence conditions

are obtained when ��� � is fulfilled [30]. For this set-

up, the partially coherent beam exhibited a maximum

geometrical beam divergence " of about 0.03mrad.

Due to the sample finite size together with the Bragg

geometry, the beam size was estimated to about 100 nm

at the sample position (only the part of the beam

illuminating the isolated crystal is scattered). The left-

hand term of the relation gives about 3� 10�12m,

showing that the coherence conditions were completely

fulfilled. This was further confirmed by the observation

of strongly visible interference fringes in the diffraction

pattern. The intensity acquisition was performed with

a direct illumination charge coupled device (CCD)

camera from Princeton (384� 576 pixels of

22.5� 22.5mm2 size each) mounted at 30 cm from the

sample. The ZrC powder was deposited onto a SiO2/Si

substrate (with a surface density of a few particles/mm2)

previously covered by a conductive C thin film in order

G111
lenses

CCD
(a)

(b)
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Figure 2. (a) Experimental set-up used at the ID01 beamline (ESRF) for the coherent X-ray diffraction experiment with a micro-
focused beam. (b) Experimental geometry. (c) Coherent X-ray diffraction pattern measured at the ZrC 111 reflection on a single
nano-crystal. (The color version of this figure is included in the online version of the journal.)
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to evacuate the electrostatic charges and the heat load

induced by the focused X-ray beam, allowing thereby

the stability of the sample.

In Bragg CDI, the coherently scattered intensity is

measured as a function of the wavevector transfer Q,

which is given by Q¼ kf� ki, where ki (respectively kf )

is the incident (respectively diffracted) wavevector

(with ki, f¼ 2�/�). The 2D coherent diffraction pattern

is obtained after carefully aligning the wavevector

transfer Q defined by the center of the CCD with

regard to the 111 Bragg reflection (G111) of the crystal.

Therefore, the wavevector transfer Q can be written as

Q¼G111þ q, where the components 1 and 2 of q,

(noted q1, q2) are taken in the CCD plane, horizontally

and vertically, respectively, while the q3 direction is

perpendicular to G111 (Figure 2(b)). The center of the

199�199 pixel area shown in Figure 2(c) corresponds

to G111¼ 23.2 nm�1, where q1,2,3¼ 0. The detector to

sample distance and the 111 Bragg angle (�B¼ 13.88�)
give a pixel resolution 	q1,2 of 3.4� 10�3 nm�1. The

uncertainty on q3 is evaluated to 	q3¼ 4� 10�3 nm�1,

given by the uncertainty of the Bragg peak maximum

on the rocking curve. The diffraction pattern shown in

Figure 2(c) results from the accumulation of 1700

frames with a 2 s exposure time. Each frame is

analyzed by the droplet algorithm to recover the

single photon signal [31]. The intensity exhibits a

dynamic range of a few 103. The interference fringes

result from the crystal finite size effects, i.e. the facets

along the [111] and ½�111� (or the symmetric ½1�11�)
directions. The typical angle of about 71� � 2� is

measured between the two streaks. The oversampling

ratio is more than 10 pixels per interference fringe.

3. Inversion

The principle of the phase retrieval algorithm is shown

in Figure 3. The inversion algorithm is initiated with

a sample estimate, whose shape fulfills the support

condition together with a set of random phases. The

nano-crystal sample is small enough to fulfill the Born

approximation. The illumination is assumed to be

planar and the sample detector distance is large

enough to consider the far-field regime is reached.

Therefore, the scattered wavefield G(q) can simply be

described by the Fourier transform of the sample

electron density g(r), which is introduced as a fast

Fourier transform (FFT) in the iterative algorithm. In

order to allow for the convergence of the algorithm, a

set of constraints has to be applied, at each iteration,

in the sample and Fourier spaces. One common

sample constraint is the support condition of the

sample density, which is a direct consequence of the

oversampling condition. Another very powerful con-

straint to reach the convergence is the positivity of the

electron density, which is usually used for strain-free

material (amorphous system or fully relaxed crystals).

However, it cannot be applied in the present case of a

FFT( )+ set of random phases

Reciprocal space

constraints:

G„k =(Iexp)1/2 Gk/|Gk|

First estimate

Real space constraints:

finite support

(fixed or adaptive (shrinkwrap))

Gk(q)

G„k(q)

g k(r )

g k+1(r )

g„k+1(r)

FFT–1

FFT

Sample

Figure 3. Scheme of the inversion algorithm: g(r) is the sample electron density function and G(q) is the diffracted wavefield at
the detector position. For a planar illumination, when Born conditions are fulfilled and the detection is performed in the far-field
regime, G(q) is the Fourier transform of g(r). Fast Fourier transforms (FFTs) are used to propagate back and forth the wavefield
from the sample to detector positions. The subscripts k and kþ 1 are the iteration indices.
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complex-valued electron density. In the Fourier space,

the found solution has to fulfill the experimental

measurement: the magnitude jG(q)j of the far-field

complex-valued scattered wavefield G(q)¼
jG(q)jexp(i’(q)) has to be equal to the square root of

the measured intensity I(q). The convergence of the

algorithm is reached when the solution fulfills both the

sample and the Fourier space constraints. It can be

monitored at each iteration by the error metric 
2

which is given by:


2 ¼
PN

i¼1

�

jGij �
ffiffiffi

Ii
p �2

PN
i¼1 Ii

ð1Þ

where the subscript i denotes the pixel number and N

the total number of pixels. As the error metric

decreases at each iteration, this algorithm is named

error reduction (ER) [8]. It is a derivative of the

original Gerchberg and Saxton algorithm [7].

However, the convergence of the ER algorithm is

rather slow and has to be used alternately with the

hybrid input output algorithm (HIO) [8]. The HIO

algorithm provides an element of feedback by linearly

including a portion of the object solution, obtained by

applying the Fourier space constraint, in the solution

resulting from the previous iteration, in order to build

the solution at the next iteration. Therefore, the real

space constraint never enforces the density to be

strictly equal to zero outside the support. When it

converges, the error metric value is equal to zero.

However, for experimental data with noise and limited

dynamical range, a zero-error metric cannot be

obtained and the algorithm is stopped after 
2 becomes

smaller than a certain threshold. The obtained solution

is approved when different starting guesses (i.e.

different sets of initial random phases) lead to similar

– almost identical – solutions for the same ERþHIO

cycle combination. Our inversion procedure has first

been successfully checked on several numerical com-

plex-valued examples [14,32].

For the measurement presented here, the inversion

procedure was composed of 15 cycles, each of them

being a combination of ER (20 steps) and HIO (50

steps) algorithms. For both algorithms, a complex-

valued electron density solution was allowed. After

each cycle, the support was re-evaluated to a tighter

one using either the shrink wrap method [33] or

manual adjustments. Figure 4 presents the magnitude

(a) and the phase (b) of the best reconstruction of the

sample electron density. The error metric is smaller

than 2� 10�4. The extent of the detectable intensity in

the Fourier space gives an estimate of the resolution of

about 13� 13 nm2.

4. Analysis of the retrieved quantity

The result obtained in Figure 4 demonstrates the

possibility to invert the complex valued wavefield

from an intensity measurement obtained with a

micro-focused illumination. However, in order to

quantify the quality of the result, a detailed analysis of

the retrieved quantity at the sample plane is presented in

the following, for, respectively, the sample magnitude

and phase successively.

In a 2D measurement, such as the one presented

here, the retrieved quantity at the sample plane is the

projection of the 3D complex-valued electron density,

onto the detector (2D) plane [14]. In order to

illustrate this property, a nano-crystal model, with

an octahedron shape is used, as suggested by the

SEM observations (Figure 1(a)). According to the

two streak orientations observed in Figure 2(c), one

can orientate the octahedron with respect to the CCD

plane, with two pairs of facets perpendicular to the

diagonal streak and two other facets slightly inclined

with regard to the horizontal plane in order to take

into account the 111 Bragg angle (Figure 4(c)). The

density projection onto the CCD plane is further

calculated and compared to the retrieved magnitude.

The contour of the octahedron projection is plotted

as a white dashed line in Figure 4(a), while the

complete 2D density distribution (not shown here) is

comparable to the maps of Figures 5(a) and 6(b). The

quantitative agreement between the experimentally

retrieved magnitude and the octahedron model is

rather good except that the weak densities in the top

right and bottom left corners cannot be retrieved: it is

most likely due to the sensitivity of the experiment,

limited by the intensity dynamic range. However, a

crystal with amorphous corners would give the same

discrepancies.

The analysis of the retrieved phase field is more

puzzling: it presents a peculiar behavior with a phase

value �(r) decreasing near the particle edges and an

almost radial behavior (�(r)��(r)). This is clearly

different from the constant phase field expected for

strain free crystals (no displacement). In order to

understand the origin of this phase field, five hypoth-

esis have been tested. They are described in the

following.

(i) According to the crystal shape and symmetry,

any physically reasonable internal strain field

(strain at the surface, at the corners, in the

center, etc.) should correspond to an anti-

centrosymmetric displacement field.

Therefore, the expected phase field �S(r)

should exhibit the same anti-centrosymmetric

aspect �S(r)¼��S(�r). The 2D projection of

the 3D strained crystal cannot further

5



transform the symmetry of the 2D retrieved

phase field [14]. A centro-symmetric behavior,

as the observed one, is very unlikely as long as

the displacement field is related to the

symmetry of the nano-crystal. Unfortunately,

the TEM method, which presents in principle

the desired sensitivity towards the displace-

ment field of an atomic array, cannot answer

0

–0.2

–0.4

–0.6

(a) (b)

100 nm

[111]

120 nm

(c)

Figure 4. (a) Retrieved magnitude, and (b) phase of the field at the object plane, resulting from the best inversion result.
(c) 3D view of an octahedron, as seen from the 2D detector. (The color version of this figure is included in the online version of
the journal.)

0

–0.02

–0.04

–0.06
100 nm

(a) (b)

Figure 5. 2D projection of the magnitude (a) and phase (b) of the wavefield at the sample position calculated for a strain free ZrC
octahedron including refraction effects (	¼ 1.3� 10�5). (The color version of this figure is included in the online version of the
journal.)
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this question for this sample because TEM

requires a constant thickness or displacement

along the zone axis. Furthermore, the same

sensitivity as the one obtained with the X-ray

reconstruction would be very difficult to

achieve with TEM for such a nano-particle.

(ii) The crystal is assumed to present a core-

shell chemical structure (ZrCþZrCO): the

obtained phase shift �CS(r) between the

center and the borders of the 2D crystal

projection presents the correct centro-sym-

metric aspect with almost radial dependency,

but the phase shift amplitude is found to be in

the 10�3 rad range, much smaller than the one

observed.

(iii) The 2D coherent diffraction pattern is

assumed to be slightly off-centered with

regard to the Bragg peak maximum (i.e the

2D slice is taken at q3 6¼ 0). A straightforward

analytical calculation shows that the expected

phase �OB(r) of the retrieved complex-valued

electron density function behaves like

�OB(r)¼��OB(�r).

(iv) Although the real part of the index of refrac-

tion, 1� 	, is close to unity, refraction effects

may become non-negligible in the crystal

because the wave propagation distance is

much larger than the wavelength �. Hence,

the wavefield propagating into the crystal is

experiencing a phase shift with regard to the

wavefield propagating in the absence of

matter, both for the incoming and scattered

waves. At each position r in the crystal, the

refraction-induced phase shift is given by

�RðrÞ ¼ 2�
�
	d ðrÞ, where d(r) is the optical

path length difference between the position r

and a reference (taken at the upper surface of

the ZrC crystal). Hence, the exit wavefield of

the 3D crystal is no longer proportional only

to the electron density, but exhibits an addi-

tional refraction-induced phase shift. This

modification is shown in the calculation of

the quantity retrieved in our CDI experiment:

the exit wavefield is obtained for a 3D ZrC

crystal (	¼ 1.3� 10�5) in the 111 Bragg reflec-

tion geometry. In order to compare with the

experimental results, the 3D refraction modi-

fied exit wavefield is further projected onto

a 2D plane parallel to the CCD plane [14].

The 2D amplitude and phase are shown in

Figures 5(a) and (b). While the retrieved ampli-

tude is almost not affected by the refraction

effects, the associated phase map is not con-

stant anymore: the phase difference between

the center and the sides of the retrieved

quantity is in the 0.06 rad range, an order of

magnitude smaller than the phase shift differ-

ence observed in the experiment (Figure 4(b)).

(v) Finally, we consider the effect of a curved

wavefront illumination. In this approach, the

spherical wavefront is supposed to present a

constant radius of curvature R and a constant

amplitude over the crystal dimension. The exit

wavefield Ei(r) at position r in the crystal is

expressed by

EiðrÞ / gðrÞ expðiqrÞ expði�CðrÞÞ ð2Þ

where �C(r) is the wavefront-curvature induced

phase shift. As seen in Figure 6(a),

�CðrÞ ¼ 2�
�
l ðrÞ, where l(r) is the distance,

along the propagation direction ki, between

the curved wavefront and a reference planar

wavefront. Therefore, the Fourier relation

between the far-field scattered wavefield and

0

–0.2

–0.4

–0.6100 nm

(b) (c)

k i
r

A

B
l (r)

(a)

Figure 6. (a) Origin of the phase shift �C(r) between A and B, when the illumination beam presents a curved wavefront:
�CðrÞ ¼ 2�

�
l ðrÞ with l(r) the distance between the curved wavefront in B and the planar wavefront reference taken in A.

(b) 2D projection of the magnitude and (c) phase of the wavefield at the sample position calculated for a spherical illumination
wavefront impinging on a strain free ZrC octahedron, such as the one of Figure 4(c). (The color version of this figure is included
in the online version of the journal.)
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a refraction modified electron density is still

valid. The 2D retrieved quantities shown in

Figures 6(b) and (c) are calculated, as in the

previous case, from the 2D projection of the 3D

strain free ZrC crystal onto the detection plane.

The result, which is obtained with a curvature

radius R¼ 90 mm agrees very well with the

experimental reconstruction: the phase field

exhibits the experimentally expected radial

symmetry and phase shift amplitude, while

the magnitude itself does not exhibit significant

modification. It is clear that this calculation is

not a definitive proof that the experimentally

retrieved phase field is directly resulting from

wavefront curvature effects. However, it shows

the sensibility of the methods with respect to

the finest structures of the X-ray beam. For a

CRL focusing set-up, assuming the optical

system is perfect, the wavefront at the focal

plane is expected to condense into a point-like

source that will further propagate as a spherical

wave. Therefore, R also represents the distance

to the focal plane. Ensuring that the nano-

crystal is in the focal plane of the CRLs requires

a fine monitoring of the distance between the

sample and the focus with an accuracy much

smaller than 100 mm, which remains challeng-

ing regarding the available stability at the

existing coherence micro-diffraction beam-

lines. This could be accomplished through a

detailed scanning of the beam size along its

propagation direction, using the nano-crystal

in diffraction conditions, as a probe. The

position of the beam size minimum would

then correspond to the focal point. This 100 mm

accuracy can be relaxed for larger depth of

focus optics. With the focusing set-up pre-

sented here, the typical strain limit, below

which the method becomes unsensitive, is

estimated to about 10�3. Other effects like

aberration problems are not introduced here.

They would certainly lead to phase artifacts as

well.

5. The wavefront problem

Although the high brilliance of third generation

synchrotron sources opens the way to coherent X-ray

diffraction experiments, the investigation of nano-

crystals with typical size in the range of 100 nm

requires a further focusing of the beam. In principle,

introducing perfect focusing optics on the beam path

should not modify the coherence properties of the

beam. In a real experiment, X-ray optics cannot be

considered as perfect and their introductions slightly

affect the coherence properties. However, this modifi-

cation of the coherence is minimum with regard to the

modification of the wavefront profile, which is

described by a complex-valued function P(r). The

magnitude of the illumination is usually described by a

Gaussian profile, while the phase may result in various

behaviors, depending on the nature of the focusing

elements [28,29]. In that context, the scattered wave-

field in the far-field regime is the Fourier transform of

the exit wavefield given by the product P(r)� �(r).

Therefore, the retrieved phase at the sample plane is a

mixing of the illumination wavefront phase with the

effective phase of the sample density itself. The

presented result is an illustration of this problem. In

the recent past, other groups have also observed

similar effects [12,27,34] and strategies are now devel-

oped to finely characterize the wavefront illumination

function [35,36]. We describe in the following the

ptychography approach as a possible solution for the

wavefield illumination problem.

Contrarily to CDI, where the convergence of the

algorithm is ensured by the oversampling condition, the

ptychography approach developed by Rodenburg and

his co-workers [37] is based on the partial redundancy of

the collected information: the beam is scanned onto the

sample and the coherently scattered intensity patterns

are collected for each beam position, ensuring that the

different beam positions verify a partial but strong

overlapping of their footprints on the sample. The

complete sets of data are inverted by the ptychography

iterative engine (PIE): (1) A first guess of the object and

the wavefront functions are estimated. (2) The corre-

sponding diffracted wavefield is calculated for the first

beam/sample position. (3) The wavefield magnitudes

are set to the square root of the experimental intensities

while the corresponding phases are kept unchanged. (4)

The new wavefield is back-propagated to the sample

plane. (5) A new object function is calculated from the

new wavefield value, keeping constant the illumination

function. The relationship between the new object

estimate and the previous one ensures that a certain

amount of the result obtained at the previous iteration is

conserved. In addition, the updating of the object is not

allowed in the whole object space but rather enforced in

the region where the illumination intensity is large, at

the considered beam/sample position. Steps 1 to 5 are

then repeated for the successive beam/sample positions

with the new object function as the starting object

estimate. The complete cycle is repeated a few times

before the roles of the illumination and object functions

are exchanged in the iterative process: at Step 5, the

object function is kept constant, while the illumination

function is updated, with a formula similar to the one

used for the object update case. The PIE runs,

alternating updating of the object and illumination

8



function, until the convergence is reached, i.e. the

scattered intensities correspond to the experimental

ones and the beam/sample positions verify the over-

lapping conditions. Therefore, both illumination func-

tion and sample are retrieved at the same time, with the

same resolution [35].

The method is highly interesting for measurements

that are based on focused X-ray beams, where the

illumination function is highly different from the

unfocused planar illumination function. In the Bragg

geometry, it should allow for a straightforwardly

discrimination of the beam-curvature induced phase

shift from the displacement-field induced phase shift

case. While several demonstrations of the PIE appro-

ach have been reported in numerical [37,38] and

experimental studies with X-rays [39,35] and visible

light [40], no demonstration of its applicability in the

Bragg geometry has been obtained so far. This is

explained by the experimental difficulties encountered

to apply the ptychographic approach to a nano-crystal

in the Bragg condition. In addition to the experimental

set-up used for Bragg CDI with a micro-focused beam,

this newmethod necessitates a sample translation stage,

with typical accuracy of the order of a few percent of the

beam size (i.e. 5� 10 nm). In addition, the large

acquisition time needed to acquire the full Bragg

Ptychography data set requires a high beam-to-sample

stability. Ideally, for a 3D nano-crystal such as the one

presented here, the sample has to be placed in Bragg

condition in the focal plane of the (sub-)microbeam.

For each position of the sample with regard to the focal

spot, the full 3D diffraction pattern has to be measured.

Using a 2D area detector, the 3D diffraction pattern is

obtained by scanning the incidence angle by a few tens

of a degree along the rocking curve. Hence, modifica-

tions of the Bragg diffraction patterns observed for

different regions of the illumination function can be

attributed to the modifications of the local wavefront

instead of the sample effective electron density. The

reconstructions of both sample and illumination func-

tions are performed with the PIE applied on the full 3D

data set, without major modification.

6. Conclusion

We have demonstrated the possibility of applying

Bragg CDI in 2D to image a nano-crystal of 100 nm

size, using a micro-focused X-ray beam. We have

shown that imaging the displacement field is more

difficult and relies on the fine knowledge of the

wavefront at the sample position. In the example

shown here, the retrieved centro-symmetric phase field

at the sample position could be described by wavefront

curvature effects. The wavefront analysis problem is

crucial for the development of Bragg CDI on weakly

strained material. Therefore, the ptychography

approach seems to be a good candidate to solve this

question in the near future.
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