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TESTING THE COINTEGRATING RANK WHEN THE ERRORSARE UNCORRELATED BUT NONINDEPENDENTHAMDI RAÏSSI,∗ Université Lille 3AbstratWe study the asymptoti behaviour of the redued rank estimator of theointegrating spae and adjustment spae for vetor error orretion time seriesmodels with nonindependent innovations. It is shown that the distribution ofthe adjustment spae an be quite di�erent for models with iid innovationsand models with nonindependent innovations. It is also shown that thelikelihood ratio test remains valid when the assumption of iid Gaussian errorsis relaxed. Monte Carlo experiments illustrate the �nite sample performaneof the likelihood ratio test using various kinds of weak error proesses.Keywords: Cointegration, redued rank regression, likelihood ratio test, strongmixing ondition, vetor error orretion model.1. IntrodutionMultivariate proesses are often used in eonometri appliations beause they allowto understand the interations between di�erent variables. In order to desribe long runeonomi relationships, the ointegration theory has been developed by Granger (1981),Engle and Granger (1987), Ahn and Reinsel (1990). This theory postulates that, insome ases, a stationary proess of lower dimension is obtained by onsidering linearombinations of the omponents of a multivariate nonstationary proess. The numberof independent linear ombinations is the ointegrating rank and is an important pieeof information for the analysis of eonomi data.The dominant test for the ointegrating rank is the likelihood ratio (LR) testdeveloped by Johansen (1988, 1991), Perron and Campbell (1993), Lütkepohl andSaikkonen (1999) in the framework of vetor error orretion models (VECM). Forthe ointegration analysis, the errors terms are generally supposed to be independentand identially distributed (iid). When applied to eonomi data (see for instaneJohansen and Juselius (1990), Clements and Hendry (1996) or Trenkler (2003)), thisiid assumption seems too restritive beause maroeonomi time series often exhibitonditional heterosedastiity and/or other forms of nonlinearity.Rahbek, Hansen and Dennis (2002) studied the e�et of ARCH innovations on theLR test. An important output of their work is that the LR test remains valid when theerror proess is a martingale di�erene. However the assumption that the error proessis a martingale di�erene preludes other forms of dependene. Indeed there exist manyexamples where the assumption of iid or martingale di�erene on the innovations is notsatis�ed (see for instane Franq, Roy and Zakoïan (2005) in the univariate ARMAase or Franq and Raïssi (2005) in the VAR ase). The �rst aim of this paper is tostudy the validity of the LR test in a general ontext of unorrelated errors.
∗ Postal address: Université Lille 3, EQUIPPE Universités de Lille BP 60149 Villeneuve D'AsqCedex, Frane. E-mail: hamdi.raissi�etu.univ-lille3.fr.1



2 The seond aim is to study the asymptoti behaviour of the usual estimators ofthe ointegration and adjustment spaes, in the general framework of VECM withunorrelated, but possibly dependent errors. We will ompare our �ndings to theusual iid ase and results of Seo (2007) whih shows in partiular that the asymptotidistribution of the redued rank estimator of the ointegrating spae is robust toonditional heteroskedastiity. We will use the standard redued rank proedure toestimate the ointegration spae, relaxing the assumption of iid gaussian innovations.The struture of the paper is as follows. In Setion 2 we present the model and wederive the estimators of the parameters. In Setion 3 we give the asymptoti behaviourof the LR test. In setion 4 we state the onsisteny of the ointegration spae and theadjustment spae. In Setion 5 Monte Carlo experiments are performed. The proofsare relegated to the appendix.In the sequel the following notations are used. Weak onvergene is denoted by ⇒and we denote by P
→ the onvergene in probability. For a full olumn rank matrix Aof dimension d × r with d > r, we de�ne the orthogonal omplement A⊥, whih is afull olumn rank matrix of dimension d× (d− r) and suh that A′A⊥ = 0. The symbol

⊗ denotes the usual Kroneker produt and ve(A) denotes the vetor obtained bystaking the olumn of the matrix A. We denote by tr(B) the trae of a square matrix
B. We denote by [m] the integer part of a given real m.2. Charaterization of the modelWe onsider the following VECM with linear trend

∆Xt = Π0Xt−1 +

p−1
∑

i=1

Γ0i∆Xt−i + µo0 + µo1t+ ǫt (2.1)where µo0 and µo1 are d-dimensional parameter vetors. The proess (ǫt) is usuallyassumed iid with mean zero and positive de�nite ovariane matrix Σǫ. In the sequelwe will onsider a weaker assumption for the error proess. The Γ0i, i ∈ {1, ..., p− 1},are d×d short run parameters matries. By onvention the sum vanishes in (2.1) when
p = 1. The following assumption gives us the general framework of our study.Assumption A1 (Cointegration and restrition on the trend parameters)(a) The matrix Π0 is of rank r0 (0 ≤ r0 < d). If r0 > 0 then Π0 an be written as

Π0 = α0β
′
0 where α0 and β0 are full olumn rank matries of dimension d× r0.(b) The autoregressive polynomial A(z) = (1 − z)Id − Π0z −

∑p−1
i=1 Γ0i(1 − z)zi, issuh that | A(z) |= 0 implies that | z |> 1 or z = 1.() The matrix α′

0⊥Γ0β0⊥ is of full rank d− r0, where Γ0 = Id −
∑p−1

i=1 Γ0i.(d) The vetor µo1 is suh that µo1 = −α0τ0, where τ0 6= 0 is an r0-dimensionalvetor.Note that if r0 = 0 the relation (2.1) is a vetor autoregressive model for theproess (∆Xt). Condition (d) is the less restritive ondition on the parameters of thedeterministi part of (2.1) whih allows for trending behaviour for (Xt). Indeed underA1, from Granger's representation theorem, the solution of (2.1) has the following



THE LR TEST UNDER UNCORRELATED ERRORS 3representation
Xt = C

t
∑

i=1

ǫi + ρo1t+ ρo0 + Yt +A, (2.2)where C = β0⊥(α′
0⊥Γ0β0⊥)−1α′

0⊥. The term A depends on initial values and is suhthat β′
0A = 0. The stationary proess (Yt) is of the form

Yt =

∞
∑

i=0

ϕ0iǫt−i,where C(z) =
∑∞

i=0 ϕ0iz
i is onvergent for | z |≤ 1+ δ, for some δ > 0. Note that (2.2)implies that (Xt) is an I(1) proess. From (a) and (d) we an write (2.1) as

∆Xt = ν0 + α0β
′∗
0 Z1t +

p−1
∑

i=1

Γ0i∆Xt−i + ǫt (2.3)where Z1t = (X ′
t−1,−t+ 1)′ and β∗

0 = (β′
0, τ0)

′. The d-dimensional vetor of onstants
ν0 and the r0-dimensional vetor τ0 are funtions of the parameters in (2.1). Notethat in (2.2) the vetor ρo1 is suh that β′

0ρo1 = τ0. Then it an be seen from (2.2)that (β′
0Xt − E(β′

0Xt)) is trend stationary and the r0-dimensional proess (β′∗
0 Z1t −

E(β′∗
0 Z1t)) is stationary. We say in this ase that the ointegrating rank is r0. In thisstudy we test, for some r (0 ≤ r < d), the null hypothesis

H0 : r0 = r vs. H1 : r0 > r.Note that in (2.3) the parameters α0, β0 and τ0 are not identi�ed. Indeed for a given
α01, β01, and sine we assumed that these matries have full rank, we an take anynon singular matrix ζ of dimension r0 × r0 suh that β02 = β01ζ and α02 = α01(ζ

′)−1will give the same matrix Π0. To get rid of this problem one an onsider the followingnormalization
β∗

0c = (β′
0c, τ0c)

′ = ((β0(c
′β0)

−1)′, (β′
0c)

−1τ0)
′ and α0c = α0β

′
0c,where the dimensional d×r0 matrix c is suh that c′β0 has full rank. This normalizationensures identi�ability in the sense that we have β01c = β02c. To see this, note that

c′β01c = c′β02c = Ir0
⇒ c′β01(c

′β01)
−1 = c′β01ζ(c

′β01ζ)
−1

⇒ c′β01

[

(c′β01)
−1 − ζ(c′β01ζ)

−1
]

= 0. (2.4)Then sine c′β01 is a full rank matrix, this implies that
(c′β01)

−1 − ζ(c′β01ζ)
−1 = 0. (2.5)Multiplying (2.5) by β01 on the left, we obtain β01c = β02c. One the parameter β0c isidenti�ed, it is easy to see that α0c and τ0c are also identi�ed. It should be also notedthat the ointegration spae and the adjustment spae, that is the spaes spanned byrespetively β0c and α0c, do not depend on the hoie of the matrix c.



4 In general the assumption that (ǫt) is iid gaussian may appear to be too strong.Indeed it is questionable to assume that a linear ombination of Xt−1, . . . , Xt−p is thebest preditor of Xt. In addition note that, from a pratial point of view, the order pis often identi�ed using tests that are only based on the autoorrelations of (ǫt). Forinstane let us onsider the daily exhange rates of U.S. Dollars to one British Poundand of U.S. Dollars to one Euro from January 2, 2001 to April 12, 2007. The length ofthe series is T = 1578. The analyzed data are plotted in Figure 7.10. We adjusted themodel (2.1) to the series with r0 = 1 and p = 2 using the software JMulTi. Figures7.11-7.12 display the autoorrelations and rossorrelations of the residuals. Figures7.13-7.14 display the autoorrelations and rossorrelations of the squared omponentof the residuals. In view of Figures 7.11-7.12 the hypothesis of unorrelated errors seemsplausible. Indeed most of the autoorrelations and rossorrelations are inside the
5% signi�ane limits. However sine many autoorrelations and rossorrelations areoutside the 5% signi�ane limits in Figures 7.13-7.14, the hypothesis of independenterrors is learly rejeted.Rahbek et al (2002) onsidered VECM with martingale di�erene innovations. Inour framework we will onsider a more general assumption allowing for a large lass oferror proesses.Assumption A2 The error proess (ǫt) is stritly stationary and suh that
Cov(ǫt, ǫt−h) = 0 for all t ∈ Z and all h 6= 0.Suh error proesses are ommonly named weak white noise. Note that Granger'srepresentation theorem still holds when the assumption of iid gaussian innovations isreplaed by A2. The following are examples of error proesses whih verify A2 butare not iid.Example 2.1. Consider the proess (ǫt) de�ned by the relation

ǫt = at + Φ{ǫt−1 ⊙ at}, (2.6)where ⊙ denotes the Hadamard produt, (at) is a d-dimensional iid entered proesssuh that | E(aitajt) |≤ 1, and the matrix Φ is diagonal of dimension d × d and suhthat | Φii |< 1. Taking Φ0 = Id, the equation (2.6) has a stationary solution of the form
ǫt =

∑∞
i=0 Φiat−i ⊙ · · · ⊙ at. It is easy to see that the ǫt's are unorrelated. However

Cov(ǫ2it, ǫ
2
it−1) = E(a2

it)Cov((1 + Φiiǫit−1)
2, ǫ2it−1) 6= 0,in general, showing that the proess (ǫt) is not iid.Example 2.2. The univariate all-pass models (see for instane Breidt, Davis andTrindade (2001)) onstitute an important lass whih an be extended to the mul-tivariate ase. Assume that the proess (ǫt) is the unique solution to the followingequation

ǫt − φ01ǫt−1 − · · · − φ0qǫt−q = wt + φ0q−1φ
−1
0q wt−1 + · · · + φ01φ

−1
0q wt−q+1 − φ−1

0q wt−q,where φ(z) = Id − φ01z · · · − φ0qz
q is suh that φ(z) 6= 0 for | z |≤ 1. The enteredproess (wt) is iid with variane Σw. Assume also that the matries φ01, . . . , φ0q arediagonal. Writing the spetral density for eah omponent (ǫit), it an be shown that



THE LR TEST UNDER UNCORRELATED ERRORS 5the proess (ǫt) is unorrelated (see Andrews, Davis and Breidt (2006)). However if y0is not gaussian the proess (ǫt) is not independent. To see this onsider the followingbivariate simple example
ǫt − φǫt−1 = wt − φ−1wt−1where φ =

(

φ1 0
0 φ2

) and | φ1 |< 1, | φ2 |< 1. Let us introdue ϑt = ǫ1t −

φ1ǫ1t−1. Sine (ǫt) is unorrelated, the proess (ϑt) follows an ausal MA(1). Thenwe have ǫ1t =
∑

i≥0 φ
iϑt−i. Straightforward omputations show that E(ǫ1tϑ

2
t−1) =

E[ǫ1t(ǫ1t−1−ǫ1t−2)
2] = Ew3

t (1−φ−2
1 )(1+φ1) and E(ǫ1tϑ

3
t−1) = E[ǫ1t(ǫ1t−1−ǫ1t−2)

3] =

(Ew4
t − 3)(1 − φ−2

1 )2φ1. Using the fat that ϑt−1 belongs to the σ-�eld generated by
{ǫ1u, u < t}, we have E{ϑ2

t−1E(ǫ1t | ǫ1t−1, · · · )} 6= 0 for Ew3
t 6= 0 and E{ϑ3

t−1E(ǫ1t |
ǫ1t−1, · · · )} 6= 0 for Ew4

t 6= 0. Thus the (ǫt) proess is not a martingale di�erene ingeneral.2.1. Derivation of the quasi maximum likelihood (QML) estimatorsNow we turn to the derivation of the QML estimators of α0c and β∗
0c. We usehere the QML method beause we assume that the errors terms are unorrelatedbut not neessary gaussian independent. Note that the estimation proedure wewill desribe is performed under H0. In the framework of the VECM we shall seethat the methodology in Johansen (1988,1991) in the iid ase remains valid underunorrelated errors assumption. We will use the following notation. Let Z0t = ∆Xt,

Z2t = (∆X ′
t−1, . . . ,∆X

′
t−p+1, 1)′, Ψ0 = (Γ01, . . . ,Γ0p−1, ν0) where Xt = 0 for t ≤ 0.The expression (2.3) beomes with these notations

Z0t = α0cβ
′∗
0cZ1t + Ψ0Z2t + ǫt. (2.7)Here we an remark that sine Xt is I(1) then the proesses Z0t and Z2t are stationary.Using (2.7) and given the observations X1, . . . , XT we write the quasi log-likelihood asfollows

logL(Ψ, αc, βc,Σǫ) = −
1

2
T log | Σǫ |

−
1

2
tr

{

T
∑

t=1

Σ−1
ǫ (Z0t − αcβ

′∗
c Z1t − ΨZ2t)(Z0t − αcβ

′∗
c Z1t − ΨZ2t)

′

}

,where
β∗

c = (β′
c, τc)

′ = ((β(c′β)−1)′, (β′c)−1τ)′ and αc = αβ′c.The maximum likelihood estimation method for the VECM with unorrelated errorsimpliates several steps. We �rst estimate the parameters in the matrix Ψ0 and obtain
Ψ̂(αc, β

∗
c ) = M02M

−1
22 − αcβ

′∗
c M12M

−1
22where

Mij = T−1
T

∑

t=1

ZitZ
′
jt.



6Now de�ning by R0t and R1t the residuals of respetively the regressions of Z0t and
Z1t on Z2t, we get the onentrated log-likelihood

logL(αc, β
∗
c ,Σǫ) = −

1

2
T log | Σǫ |

−
1

2
tr

{

T
∑

t=1

Σ−1
ǫ (R0t − αcβ

′∗
c R1t)(R0t − αcβ

′∗
c R1t)

′

} (2.8)where
R0t = Z0t −M02M

−1
22 Z2t and R1t = Z1t −M12M

−1
22 Z2t.Sine the R1t's are the residuals of the regression of the Z1t's on the Z2t's, andnoting that the proess (Z1t) is I(1) and the proess (Z2t) is I(0), then the proess

(R1t) is I(1). The expression of the onentrated log-likelihood orresponds to theregression equation
R0t = α0cβ

′∗
0cR1t + ǫ̃t, (2.9)so that we obtain the following unfeasible estimators of α0c and Σǫ in (2.9) by ordinaryleast squares

α̂c(β
∗
0c) = S01β

∗
0c(β

′∗
0cS11β

∗
0c)

−1, (2.10)
Σ̂ǫ(β

∗
0c) = S00 − α̂c(β

∗
0c)(β

′∗
0cS11β

∗
0c)α̂

′
c(β

∗
0c)where

Sij = T−1
T

∑

t=1

RitR
′
jt.Note that replaing αc and Σǫ by their estimates in (2.8) we write

logL(α̂(β∗
c ), β∗

c , Σ̂ǫ(β
∗
c )) = −

1

2
T log | Σ̂ǫ(β

∗
c ) | −

1

2
dT.Finally the parameters in β∗

0c an be estimated using the results of the well knownredued rank method of Anderson (1951). In this end we shall minimize the followingexpression
| Σ̂ǫ(β

∗
c ) |=| S00 − S01β

∗
c (β′∗

c S11β
∗
c )−1β′∗

c S10 | .Using the relation
A11 A12

A21 A22
=| A11 || A22 −A21A

−1
11 A12 |=| A22 || A11 −A12A

−1
22 A21 |,we �nd

| S00 − S01β
∗
c (β′∗

c S11β
∗
c )−1β′∗

c S10 |=| S00 |
| β′∗

c (S11 − S10S
−1
00 S01)β

∗
c |

| β′∗
c S11β∗

c |
.Under the null hypothesis and using Lemma 7.1 the expression | β′∗

c (S11−S10S
−1
00 S01)β

∗
c |

/ | β′∗
c S11β

∗
c | is minimized for the following normalized expression

β̂∗
c = (β̂′

c, τ̂c)
′ = ((β̂(c′β̂)−1)′, ((β̂′c)−1τ̂ ))′,



THE LR TEST UNDER UNCORRELATED ERRORS 7where
β̂∗ = (β̂′, τ̂)′ = S

− 1

2

11 (v1, . . . , vr)and v1, . . . , vr are eigenvetors orresponding to the r largest solutions λ̂1 ≥ · · · ≥ λ̂rof the eigenvalue problem
| λI − S

− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0. (2.11)In addition the matrix c′β̂ is of full rank. We obtain α̂c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1. Notingthat we have | Σ̂ǫ(β̂
∗
c ) |=

∏r
i=1(1 − λ̂i), the likelihood ratio test for r is given by

Q
− 2

T
r =

∏r
i=1(1 − λ̂i)

∏d
i=1(1 − λ̂i)

=

d
∏

i=r+1

(1 − λ̂i)
−1.Then to test the null hypothesis, we onsider the LR test statisti

−2 logQr = −T
d

∑

i=r+1

log(1 − λ̂i),where λ̂1 ≥ · · · ≥ λ̂d are the d greater solutions of the eigenvalue problem (2.11). Inthe next setion we will study the asymptoti behaviour of the LR test statisti.3. Asymptoti properties of the LR statistiTo state the main results of the paper, the assumption that the proess (ǫt) isunorrelated is not enough. Indeed we have to ontrol the serial dependene of theproess (ǫt). To this end we introdue the mixing oe�ients αξ(h) for a givenstationary proess (ξt)

αξ(h) = sup
A∈σ(ξu,u≤t),B∈σ(ξu,u≥t+h)

|P (A ∩B) − P (A)P (B)| ,whih measures the temporal dependene of the proess (ξt). De�ne ‖ξt‖q = (E‖ξt‖q)
1/q,where ‖.‖ denotes the Eulidean norm. Then we need to make the following assumptionon the proess (ǫt).Assumption A3 The proess (ǫt) satis�es ‖ǫt‖2+ν+η < ∞ and the mixing oef-�ients of the proess (ǫt) are suh that ∑∞

h=0{αǫ(h)}ν/(2+ν) < ∞ for some ν >
0 and η > 0.Note that the kind of dependene indued by A3 is mild for the error proess (ǫt).The following proposition gives us the asymptoti distribution of the LR test statisti.Proposition 3.1. UnderA1, A2 and A3, the LR test statisti has the same asymp-toti distribution as in the iid gaussian ase, that is

−2 logQr0
⇒ tr

{

[∫ 1

0

F (dB)′
]′ [∫ 1

0

FF ′du

]−1 [∫ 1

0

F (dB)′
]

}

, (3.1)



8where B is a standard d− r0 dimensional Brownian motion, and the omponents Fi of
F are given by

Fi(u) = Bi(u) − B̄i i = 1, . . . , d− r0,

Fd−r0+1(u) = u−
1

2
,and B̄i =

∫ 1

0 Bi(u)du.The same result was found by Rahbek et al (2002) under the assumption that theerror proess (ǫt) is a martingale di�erene and in the framework of VECM withoutdeterministi terms. A onsequene of Proposition 3.1 is that the results for testingthe ointegrating rank using the LR test statisti an be diretly extended from theusual iid gaussian assumption on the error proess. Then we an use the same ritialvalues as in the iid ase to test the ointegrating rank (see Johansen (1995), Table15.4). We rejet the null hypothesis if −2 logQr > ς for a given quantile ς of thedistribution given in (3.1). Therefore, following the Johansen proedure for seletingthe ointegrating rank, we apply suessively this test to r = 0, 1, 2, . . . , d − 1 untilwe obtain −2 logQr < ς. Note that if τ0 = 0, we use a di�erent test statisti and adi�erent limit distribution is obtained in this ase. In the next setion we will studythe asymptoti behaviour of the QML estimators.4. Asymptoti properties of the QML estimatorsIn this setion we suppose that the ointegrating rank is well identi�ed and onlyonsider estimates of β∗
0c with dimension (d×r0). In the sequel we will denote byW (u)the d-dimensional brownian motion of variane Σǫ and de�ne W̄ =

∫ 1

0
W (u)du. Wealso de�ne the matrix β̄0 = β0(β

′
0β0)

−1. The following Proposition gives the asymptotibehaviour of β∗
0c.Proposition 4.1. Under A1, A2 and A3, T (β̂c − β0c) has the same asymptotidistribution as in the iid gaussian ase that is

T (β̂c − β0c) ⇒ (Id − β0cc
′)β̄0⊥

[∫ 1

0

G1.2G
′
1.2du

]−1 ∫ 1

0

G1.2(dVα)′ (4.1)where
G(u) =

(

β̄′
0⊥C(W (u) − W̄ )

−u+ 1
2

)

=

(

G1(u)
G2(u)

)

,

G1.2 = G1 −

(∫ 1

0

G1G2du

) (∫ 1

0

G2G2du

)−1

G2,and
Vα = (α′

0cΣ
−1
ǫ α0c)

−1α′
0cΣ

−1
ǫ Wis independent of G. Then β̂c is asymptotially distributed as mixture normal withvariane

(Id − β0cc
′)β̄0⊥

[∫ 1

0

G1.2G
′
1.2du

]−1

(Id − cβ′
0c) ⊗ (α′

0cΣ
−1
ǫ α0c)

−1. (4.2)



THE LR TEST UNDER UNCORRELATED ERRORS 9Moreover we have
τ̂c = τ0c +Op(T

− 3

2 ). (4.3)Seo (2007) also found that the asymptoti distribution of the redued rank estimatoris not hanged when the errors are onditionally heterosedasti.It is interesting to note that the results of Proposition 3.1 and Proposition 4.1 remainvalid onsidering Υt = ((β′∗
0 Z1t)

′, Z ′
0t)

′ and replaing A3 by the following assumption.Assumption A3' The proess (Υt) satis�es ‖Υt‖2+ν+η < ∞ , moreover the mixingoe�ients of the proess (Υt) are suh that
∞
∑

h=0

{αΥ(h)}ν/(2+ν) <∞ for some ν > 0 and η > 0. (4.4)However assumptions A3 and A3' are not equivalent. Note that using A3' we on-sider I(0) transformations of the proess (Xt), that is β′∗
0 Z1t and Z0t, so that we are ableto use the theory of stationary mixing proesses in our framework. Note also that thesummability ondition (4.4), implies that ((β′∗

0 Z1t)
′, Z ′

0t)
′ and ((β′∗

0 Z1t+h)′, Z ′
0t+h)′ areasymptotially independent while it is assumed there exist long-run relations betweenthe omponents of Xt. A simple illustration of the kind of proesses we onsider isgiven by the following bivariate I(1) proess Xt = (X1 t, X2 t) suh that

X1 t = ν1
∑t

i=1 ǫ0i + ν1t+ ǫ1t

X2 t = ν2
∑t

i=1 ǫ0i + ν2t+ ǫ2twhere the proess (ǫ0t, ǫ1t, ǫ2t) is a mixing proess, and ν1 6= 0 and ν2 6= 0. Here taking
β0 = (ν2,−ν1) it is lear that the proess (β′

0Xt,∆Xt) is mixing.In order to state the onsisteny of the estimator of α0c, we have to introdue thefollowing notations. Let us de�ne
β′∗

0cR̃1t = β′∗
0cZ1t − β′∗

0cM̄12M̄
−1
22 Z2t (4.5)where

β′∗
0cM̄12 = lim

T→∞
β′∗

0cM12 and M̄22 = lim
T→∞

M22.The existene of these limits is ensured by the ergodi theorem sine the proesses
(β′∗

0cZ1t) and (Z2t) are stationary ergodi. De�ne the matrix Σc = E(β′∗
0cR1tR

′
1tβ

∗
0c) =

V ar(β′∗
0cZ1t) − E(β′∗

0c(Z1t − Z̄1)(Z̃2t −
¯̃Z2)

′)V ar(Z̃2t)
−1E((Z̃2t −

¯̃Z2t)(Z1t − Z̄1)
′β∗

0c)where Z̃2t = (Z ′
0t−1, . . . , Z

′
0t−p+1)

′. We also need to onsider the following assumptionwhih strengthens A3.Assumption A4 The proess (ǫt) satis�es ‖ǫt‖4+2ν <∞ and the mixing oe�ientsof the proess (ǫt) are suh that ∑∞
h=0{αǫ(h)}ν/(2+ν) <∞ for some ν > 0.The following Proposition give us the asymptoti behaviour of the estimator of α0c.



10Proposition 4.2. Under A1, A2 and A4, the expression T 1

2 vec(α̂c −α0c) has thefollowing asymptoti distribution whih is di�erent from that of the usual iid gaussianase,
T

1

2 vec(α̂c − α0c) ⇒ N (0,Σα) (4.6)where
Σα =

∞
∑

h=−∞

E
{

Σ−1
c β′∗

0cR̃1tR̃
′
1t−hβ

∗
0cΣ

−1
c ⊗ ǫtǫ

′
t−h

}

.In the iid gaussian ase the asymptoti variane is given by
Σα = Σ−1

c ⊗ Σǫ,so that in this ase (4.6) orresponds to the result in Johansen (1995, Theorem 13.3 p183). We also an obtain the result of Proposition 4.2 replaing A4 by the followingassumption.Assumption A4' The proess (Υt) satis�es ‖Υt‖4+2ν < ∞ , moreover the mixingoe�ients of the proess (Υt) are suh that
∞
∑

h=0

{αΥ(h)}ν/(2+ν) <∞ for some ν > 0.Then despite the fat that the assumption of iid gaussian noise is relaxed in theestimation proedure, the estimates of α0c and β∗
0c obtained in Setion 2 are onsistent.5. Monte Carlo experimentsIn this setion we ompare the small sample properties of the LR test in the asesof iid and dependent innovations for bivariate proesses. Throughout this setion theerror proess is normally distributed with mean zero and variane matrix I2 in the iidase. We will onsider several kinds of weak error proesses. Consider the iid proess

ηt = (η1t, η2t)
′ suh that ηt ∼ N (0, I2). We �rst onsider a bivariate error proessde�ned by

ǫt =

(

η1tη1t−1 . . . η1t−k

η2tη2t−1 . . . η2t−k

)

, (5.1)for some integer k. Note that the omponents of ǫt orrespond to the univariate weakwhite noise built by Romano and Thombs (1996). The innovations proess de�ned in(5.1) is obviously not independent. It an be shown that (ǫt) is a martingale di�erene.Note also that the error proess is k-dependent, in the sense that ǫt and ǫt−i aredependent for i ≤ k and independent for i > k.In order to illustrate the e�et of ARCH innovations on the LR test statisti weonsider the model with onstant orrelation proposed by Jeantheau (1998). In oursimulations the proess (ǫt) follows the DGP given by
(

ǫ1t

ǫ2t

)

=

(

σ1t 0
0 σ2t

) (

η1t

η2t

) (5.2)where
(

σ2
1t

σ2
2t

)

=

(

0.1
0.1

)

+

(

a11 a12

a21 a22

) (

ǫ21t−1

ǫ22t−1

)

.



THE LR TEST UNDER UNCORRELATED ERRORS 11The elements a11, a12, a21 and a22 are supposed to be positive. In addition we supposethat the stationarity onditions hold (see Jeantheau (1998) for more details). In thisase the proess (ǫt) is a martingale di�erene and presents onditional heterosedas-tiity.The third weak error proess follows an all-pass model of Example 2.2 de�ned by
ǫt − φǫt−1 = wt − φ−1wt−1, where φ =

(

φ1 0
0 φ2

) (5.3)and φ1, φ2 are real and suh that | φ1 |< 1, | φ2 |< 1. The terms wt are de�nedby wt = y2t ⊙ y2t−1, where (yt) is iid N (0, I2). Note that the proess (wt) is iid butnon gaussian. Contrary to the �rst and seond ase, the innovation proess is not ingeneral a martingale di�erene.5.1. Empirial sizeWe simulated n = 1000 independent trajetories of length T = 100 and T = 400given by the following bivariate DGP
(

∆X1t

∆X2t

)

=

(

π1 eπ1

π2 eπ2

) (

X1t−1

X2t−1

)

− θ

(

π1

π2

)

(t− 1) +

(

ǫ1t

ǫ2t

) (5.4)where π1, π2, e and θ are real. The true ointegrating rank is r0 = 1. Note thatthe onditions (b) and () of A1 beome in this ase −2 < eπ2 + π1 < 0. When theequation | A(z) |= 0 has two solutions, they will be denoted by z1 = 1 and z2. In thesequel, we onsider tests of the hypothesis H0 : r0 = 1 at the asymptoti nominal level
5%, assuming the order p = 1 is known.In Tables 1 and 2, we onsider three di�erent ases of the model (5.4) to study thebehaviour of the LR test in di�erent points of the parameter spae. For the threeases we take π2 = 0.9, e = −1 and θ = −1.5 so that only π1 hanges. We take
π1 = −0.1 for Case 1, π1 = 0.8 for Case 2 and π1 = −0.8 for Case 3. For Case 1we have eπ2 + π1 = −1 and the equation | A(z) |= 0 has a unique solution whihis equal to one. Note that when eπ2 + π1 = 0, we have z2 = 1 so that the proess
(Xt) is integrated of order higher than one. Atually eπ2 + π1 = 0 orresponds to
| α′

0⊥Γ0β0⊥ |= 0 in ondition () of A1. Case 2 is lose to this limiting sine we have
eπ2 + π1 = −0.1 ≈ 0 and z2 ≈ 1. When eπ2 + π1 = −2, we have z2 = −1 so that theondition (b) of A1 is not satis�ed. Case 3 is lose to this limiting situation sine wehave eπ2 + π1 = −1.7 ≈ −2 and z2 ≈ −1. We will onsider for eah of these ases thewhite noises presented above. Reall that in the iid ase the error proess is normallydistributed with mean zero and variane matrix I2. For the weak white noise (5.1)we take k = 1. For the weak white noise (5.2) we take a11 = a21 = 0.2, a12 = 0.1,
a22 = 0.4 and for the weak white noise (5.3) we take φ1 = φ2 = 0.7. In the followingtables WWN stands for weak white noise, MD for martingale di�erene and SWN forstrong white noise. The relative rejetion frequenies are displayed in bold type whenthey are outside the 5% signi�ant limits 3.65% and 6.35% in Tables 1 and 2.In order to illustrate the behaviour of the LR test when the e�et of the weak whitenoises inreases, we �rst apply the LR test when the error proess follows (5.1) withdi�erent values of k in Figure 7.1. We also apply the LR test when the error proessfollows the ARCH model (5.2) with a21 = a12 = 0 and di�erent values of a11 = a22.



12The results are presented in Figure 7.2. Sine we assumed that ηt ∼ N (0, I2), themoments of order two exist for a11 < 1. The existene of this moment is indiatedby vertial lines. Note also that the error proess is stritly stationary for a11 < 3.56.The same experiment is made for the weak white noise (5.3) with di�erent values of
φ1 = φ2 in Figure 7.3. These experiments are performed for Case 1. We will alsostudy the behaviour of the the LR test for di�erent values of the trend parameter θ foreah of the noises onsidered above. We will take the same parameters for weak whitenoises (5.2) and (5.3) as in Tables 1 and 2. We will also take k = 1 for weak white(5.1) for these experiments. The results are presented in Figures 7.4-7.7 for π1 = −0.1,
π2 = 0.9 and e = −1.We will �rst interpret the results for Case 1 in the di�erent experiments we per-formed. In Table 1 it emerges that the LR test is more liberal when the innovationproess is a martingale di�erene than in the ase of strong innovation for the sample
T = 100. In addition note that from Figure 7.1 the LR test is over-rejeting forinreasing values of k in the weak white noise (5.1). From Figure 7.2 the sameonlusion an be made when the ARCH e�et inreases and the moment of ordertwo exist. From Table 1 it seems that the LR test is more onservative by omparisonto the strong ase when the error proess follows an all-pass model. This is on�rmedfrom Figure 7.3 when the all-pass e�et inreases. In general aording to the resultsof our experiments the LR test has some di�ulties to assess the ointegrating rankfor small samples when the errors are not iid.Note however that the rejetion frequenies for Case 1 in Table 2 are inside thesigni�ant limits 3.65% and 6.35%. In addition Figure 7.2 shows that the results arebetter for samples of size T = 400 than for T = 100 when a11 < 1. This on�rmsthat the LR test remains valid for unorrelated errors when ‖ǫt‖2+ν+η < ∞. This alsoon�rms the result of Rahbek et al (2002) who showed that the LR test remains validin the framework of martingale di�erenes, assuming the existene of moments of ordertwo. However the rejetion frequenies inreases for a11 < 1. When the moments oforder two do not exist (a11 > 1), it seems that the LR test is no longer valid. SimilarlyFigure 7.3 learly shows that the results are better for samples of length T = 400than for samples of length T = 100. The same an be stated from Figure 7.1 whenthe dependene of the error proess is not strongly marked. Note that the results forsamples T = 400 are not better from those of samples T = 100 for great values of k.Then the theoretial results are beared out by the results of our experiments.Finally from Figures 7.4-7.7 it seems that the LR test beomes more onservativefor small values of the trend parameters. This ould be explained by the fat thatwhen θ ≈ 0 the model (5.4) resembles to a model without trend. In the ase of VECMwithout trend one should use other ritial values.In order to interpret the results of Cases 2 and 3 reall that the parameters are loseto the boundary of the parameter spae in these two ases. In Case 2 the root z2 isnear the point z = 1, and in Case 3 the root z2 is near the unit irle but far fromthe point z = 1. From Tables 1 and 2, it seems that the �nite sample performane ofthe LR test is not a�eted too muh for Case 2. Note that from Figure 7.8 the LRtest is learly more liberal in Case 2 than in Case 1 when the error proess follows anall-pass model. However for Case 3, aording to Tables 1 and 2 the LR test has badperformanes unless when the error proess follows an ARCH model. Then, for a givenkind of weak white noise, the small sample properties of the LR test an hange when



THE LR TEST UNDER UNCORRELATED ERRORS 13the parameters are lose to the boundary.Now we will study the validity of the asymptoti distribution of the LR test in (3.1)when the error terms are orrelated. We onsider a DGP of the form (5.4) with thefollowing orrelated error proess
ǫt = cos(0.5 arcsin(2δ))ηt + sin(0.5 arcsin(2δ))ηt−1.It is easy to hek that V ar(ǫt) = I2 and Corr(ǫt, ǫt−1) = δI2. We apply the LRtest based on the asymptoti ritial value of level 5% to a DGP of the form (5.4)for testing the hypothesis r0 = 1. Clearly from Figure (7.9) the LR test turns outto be over-rejeting when δ is far from zero. In addition the results are worst forsamples T = 400 than for T = 100. Then, from the results of our experiment, wean speulate that the LR test is no longer valid when the errors are orrelated. Thisspeulation seems reasonable sine it an be seen from Phillips (1988) (see also Phillipsand Durlauf (1986)) that the standard results we use to prove Proposition 3.1 hangewhen the assumption of unorrelated errors is relaxed.Finally we onsider the following non onditionally heterosedasti errors

ǫt = (1 + f × t)ηt (5.5)where f is real positive, and study the small sample properties of the LR test inthis ase. Similarly to the previous experiment, we apply the LR test based on theasymptoti ritial value of level 5% to the bivariate DGP (5.4) testing the hypothesis
r0 = 1. From Table 3 the LR test seems to be too onservative in presene ofheterosedasti errors. In addition the results for samples T = 400 are worst thanfor T = 100, so that we an also speulate in this ase that the LR test is no longervalid.5.2. Empirial powerNow we repeat the same experiments, onsidering the following bivariate AR(1)model written in error orretion form

(

∆X1t

∆X2t

)

=

(

π1 eπ1

π2 eπ2 +̟

) (

X1t−1

X2t−1

)

−

(

π1

π2

)

(t− 1) +

(

ǫ1t

ǫ2t

) (5.6)where we hoose ̟ 6= 0 suh that the matrix Π =

(

π1 eπ1

π2 eπ2 +̟

) is of full rank(rk(Π) = 2) and det (Id − (Id + Π)z) 6= 0 for all | z |≤ 1. We shall test the hypothesis
H0 : r0 = 1 for eah of the noises onsidered in Tables 1 and 2. The rejetion frequeniesof H0 are displayed in Tables 4-7 for an asymptoti ritial value of level 5%.Note that for Tables 4 and 5 we simulated a model (5.6) for whih we have eπ2+π1 =
−0.85. From the results of Table 4 it seems that the LR test is slightly less powerfulin small samples when the innovations are all-pass than when they are iid. The samean be noted in Table 6 for an error proess whih follows an ARCH model when thesimulated model (5.6) is suh that eπ2 + π1 = −1.8 ≈ −2. In general, from Tables 5and 7, the power inreases for samples of size T = 400 when the values of ̟ are nottoo small. Surprisingly the power dereases for small values of ̟ in Table 7.



14 6. ConlusionIn this work we established the onsisteny of the estimators of the long-run pa-rameters β0c and the adjustment parameters α0c in the presene of unorrelated butnonindependent errors. We also established the robustness of the LR test in thisframework, in the sense that the LR test statisti has the same asymptoti distributionas in the iid gaussian errors ase. However from the simulations results it seems that the�nite sample performane of the LR test strongly depends on the kind of error proess.The �nite sample performane also strongly depends on the position in the parameterspae. More preisely the simulations results show an important size distortion whenthe dependene inreases or when the deterministi trend is lose to zero. Similaronlusions were found by Rahbek et al (2002) for ARCH type errors. Note alsothat it appears from our experiments that the LR test is no longer valid when theerrors are orrelated. From these �ndings we an draw the onlusion that, despite theasymptoti validity of the LR test, one should use it warily when the error proess issuspeted to be non-independent. 7. AppendixLemma 7.1. Let H and K be symmetri and positive de�nite matries of dimension
d× d. De�ne the following funtion

f(x) =| x′Hx | / | x′Kx |where x is a full rank matrix of dimension d × r. De�ne also the ordered solutions
δd ≥ · · · ≥ δ1 > 0 of the generalized eigenvalue problem

| δI −K− 1

2HK− 1

2 |= 0. (7.1)Then f(x) is minimized among all d× r matries by any matrix of the form
x̂ = K− 1

2 (ei1 , . . . , eir
), (7.2)where ei1 , . . . , eir

are non-ollinear eigenvetors orresponding to a hoie of r eigen-values δik
of (7.1) whih are suh that δik

≤ δr. The minimal value is given by ∏r
i=1 δi.Proof of Lemma 7.1. Let a d× d-dimensional matrix l = (lij). Using the relation

log(| Id + l |) = tr(l) + o(‖ l ‖2) where ‖ l ‖= maxi

d
∑

i=1

| lij |,we expand the expression
log | (x+ h)′H(x+ h) |

= log | x′Hx | + log | I + (x′Hx)−1(x′Hh+ h′Hx+ h′Hh) |

= log | x′Hx | +2tr{(x′Hx)−1(x′Hh)} + o(‖ h ‖2), (7.3)where h is a matrix of dimension d× r. Sine we have
log f(x) = log | x′Hx | − log | x′Kx |



THE LR TEST UNDER UNCORRELATED ERRORS 15and using the expression (7.3), we write the derivative of the funtion log f(x) at thepoint x in the diretion h
lim
s→0

log f(x+ sh) − log f(x)

s
= lim

s→0

2tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)sh}

s

= 2tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)h}.The funtion log f(x) has a stationary point x̂ if the derivative at x̂ in the diretion his zero for all h, hene the �rst order ondition is
tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)h} = 0. (7.4)De�ning κ = (x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K the matrix of general omponent κij thisondition beomes

r
∑

i=1

d
∑

j=1

κijhji = 0 for all h.Then the ondition (7.4) is equivalent to κ = 0, that is
Hx̂(x̂′Hx̂)−1 = Kx̂(x̂′Kx̂)−1 or cb = b(b′b)−1(b′cb) where x̂ = K− 1

2 b.This means that cb is in the spae spanned by b, and hene that the spae sp(b) isinvariant under linear mapping c. To see this note that the matrix (b′b)−1(b′cb) is ofdimension r × r, then the olumns of b(b′b)−1(b′cb) are linear ombinations of thoseof b, and hene cb is in sp(b). Using the property that any invariant subspae isspanned by a subset of eigenvetors, we have sp(b) = sp(ei1 , . . . , eir
) for some hoieof non-ollinear eigenvetors ei1 , . . . , eir

of the matrix c. Sine we have x̂ = K− 1

2 b weobtain sp(x̂) = sp(K− 1

2 (ei1 , . . . , eir
)). In addition noting that | x̂′Kx̂ |=| b′b | and

| x̂′Hx̂ |=| b′cb |=| b′b |
∏r

k=1 δik
, we obtain f(x̂) =

∏r
k=1 δik

whih is learly minimalif we hoose i1, . . . , ir among the set of the eigenvalues δik
suh that δik

≤ δr. Thisomplete the proof of Lemma 7.1. �In our framework we have to minimize the expression
| β′∗(S11 − S10S

−1
00 S01)β

∗ | / | β′∗S11β
∗ | . (7.5)First we will proove that S11 is de�nite positive almost surely. Note that if S11 is notde�nite positive, then there exists ι0 ∈ Rd+1 suh that

ι′0S11ι0 =
1

T

T
∑

t=1

ι′0R1tR
′
1tι0 = 0whih entails ι′0R1t = 0 for t = 1, 2, . . . , T . From (2.2) we write

ι′0R1t = ι̃′0Kǫt−1 + rt−1, (7.6)where rt−1 is not orrelated with ǫt−1 and ι̃0 is given by the d �rst omponents of ι0.Note that if the matrix K is not of full rank, then then there exists ι0 6= 0 suh thatone an predit ι′0R1t from it past values. It is easy to see that this is not onsistent



16with the fat that Σǫ is positive de�nite and then K is of full rank. From (7.6) wehave V ar(ι′0R1t) = V ar(ι̃′0ǫt−1) + V ar(rt−1) ≥ ι̃′0Σǫι̃0 > 0. Therefore ι′0R1t = 0 is notalmost surely equal to zero, and then S11 is almost surely positive de�nite. Note thatusing parallel arguments one an proove that S00 is almost surely de�nite positive.Now we will proove that the matrix S11 −S10S
−1
00 S01 is de�nite positive. Consider thefollowing matrix

Θ =

(

S00 S01

S10 S11

)

.Similarly the assertion that Θ is not de�nite positive is equivalent to say that thereexists ι = (ι1, ι2) 6= 0 suh that ι′1R0t + ι′2R1t = 0 where ι1 ∈ Rd and ι2 ∈ Rd+1. Sinewe assumed that Σǫ is positive de�nite, this not onsistent with (2.9), and hene Θ ispositive de�nite. Then writing
Θ =

(

Id 0
S10S

−1
00 Id+1

) (

S00 0
0 S11 − S10S

−1
00 S01

) (

Id S−1
00 S01

0 Id+1

)

= ̥i̥′,and noting that ̥ is of full rank, it is easy to see that i is de�nite positive. Thensine all the prinipal minors of i are positive implies that all the prinipal minors of
S11 − S10S

−1
00 S01 are positive, the result follow.Thus from Lemma 7.1 the expression (7.5) is minimized by onsidering the eigen-vetors orresponding to the r smallest solutions δ̂r ≥ · · · ≥ δ̂1 > 0 of the eigenvalueproblem

| (1 − δ)Id − S
− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0,or equivalently the r largest solutions λ̂1 ≥ · · · ≥ λ̂r of the eigenvalue problem
| λI − S

− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0, (7.7)taking λ̂i = 1− δ̂i. The minimal value is therefore given by ∏r
i=1(1− λ̂i) and we obtain

β̂∗ = S
− 1

2

11 (v1, . . . , vr)where v1, . . . , vr are the eigenvetors orresponding to the r largest solutions of (7.7).Remark 7.1. In Lemma 7.1 note that if we have δr+q = · · · = δr for q ∈ {1, . . . , d−r},the spae spanned by the various matries of the form given in (7.2) is not unique. Tosee this suppose that δr+1 = δr then sine the hoie of the orresponding eigenvetors
er+1 and er in this ase is not unique one an replae a given er by any vetor ofthe eigenspae of δr. However in our ase we show in the proof of Proposition 3.1below that λ̂r0

tends to a positive number and λ̂r0+1 tends to zero at the rate T−1 as
T → ∞. Then there exists T0 for whih λ̂r0

6= λ̂r0+1 for all T > T0. Thereby, underthe null hypothesis, the uniqueness of the spae spanned by β̂ is ensured for a largeenough T sine it orresponds to the spae spanned by the eigenspaes of the r0 largesteigenvalues of (7.7) with λ̂r0
6= λ̂r0+1.In our framework it is also important to see that we are estimating the spae spannedby the olumns of β∗

0 . Therefore noting that when λ̂i1 = · · · = λ̂iq
with i1 6= · · · 6=

iq and i1, . . . , iq are smaller than r0, the orresponding eigenvetors vi1 , . . . , viq
aretaken arbitrarily sine the hoie of these eigenvetors is not unique. Similarly we



THE LR TEST UNDER UNCORRELATED ERRORS 17hoose an arbitrarily order for the eigenvetors v1, . . . , vr0
by taking β̂∗ = (v1, . . . , vr0

).In fat from the kind of normalization we use in setion 2 these hoies does notmatter. Consider β̂∗
1 = (β̂′

1, τ̂1)
′ and β̂∗

2 = (β̂′
2, τ̂2)

′ suh that β̂∗
1 6= β̂∗

2 . Using a similaromputations of (2.4), it is easy to see that β̂1c = β̂2c and β̂∗
1c = β̂∗

2c.Finally note that if we have r0 = 0 we take sp(β̂∗) = {0} and therefore we do notneed to apply Lemma 7.1 in this ase.In order to prove the results of our paper we have to state some intermediateasymptoti results. First we will state the following Lemma in whih we use themixing properties of the proess (ǫt).Lemma 7.2. Under A2 and A4 we have
sup
i,j

+∞
∑

h=−∞

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |<∞,where m1,m2,m

′
1,m

′
2 ∈ {1, . . . , d}.Proof of Lemma 7.2. Note that without loss of generality, we an take h ≥ 0 and

0 ≤ i ≤ j. Then we write
+∞
∑

h=0

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |= a1 + a2.where

a1 =
i−1
∑

h=0

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |and

a2 =
+∞
∑

h=i

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) | .Using the Davydov inequality (Davydov (1968)) and the Hölder inequality we have

a2 ≤ K0 ‖ ǫt ‖
4
4+2ν

∞
∑

h=0

{αǫ(h)}
ν/(2+ν) <∞,where K0 is an universal onstant. To deal with the terms for h < i we writeCov (

ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h

)

= Cov (

ǫm1tǫm′

1
t−h, ǫm2t−iǫm′

2
t−j−h

)

+E
{

ǫm1tǫm′

1
t−h

}

E
{

ǫm2t−iǫm′

2
t−j−h

}

−E {ǫm1tǫm2t−i}E
{

ǫm′

1
t−hǫm′

2
t−j−h

} (7.8)so that we have a1 ≤ a3 + a4 + a5 where
a3 =

i−1
∑

h=0

Cov (

ǫm1tǫm′

1
t−h, ǫm2t−iǫm′

2
t−j−h

)

,
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a4 =

i−1
∑

h=0

E
{

ǫm1tǫm′

1
t−h

}

E
{

ǫm2t−iǫm′

2
t−j−h

}and
a5 =

i−1
∑

h=0

{ǫm1tǫm2t−i}E
{

ǫm′

1
t−hǫm′

2
t−j−h

}

.Now it remains to hek that the terms a3, a4 and a5 are bounded. First note that
a3 ≤ K0 ‖ ǫt ‖

4
4+2ν

i−1
∑

h=0

{αǫ(i− h)}ν/(2+ν) <∞.In addition we have using the Cauhy-Shwartz inequality and the Davydov inequality
a4 ≤ ‖ ǫt ‖

2
2

i−1
∑

h=0

E
{

ǫm1tǫm′

1
t−h

}

≤ K0 ‖ ǫt ‖
2
2‖ ǫt ‖

2
2+ν

∞
∑

h=0

{αǫ(h)}
ν/(2+ν),and

a5 ≤ ‖ ǫt ‖
2
2 iE {ǫm1tǫm2t−i}

≤ K0 ‖ ǫt ‖
2
2‖ ǫt ‖

2
2+ν sup

i≥0
i{αǫ(i)}

ν/(2+ν).Sine supi≥0 i{αǫ(i)}ν/(2+ν) <∞, these two above expressions are bounded, and thenthe result follow. �Now de�ne the linear proess
Vt =

∞
∑

i=0

ψiǫt−iwhere ψ(z) =
∑∞

i=0 ψiz
i is onvergent for | z |≤ 1 + δ for some δ > 0. In the sequelwe take ∑j

i=1 ǫt = 0 when j < 1. The two following Lemmas provide us some usefulresults in our framework.Lemma 7.3. Under A2 and A3 we have
T− 1

2

[Tu]
∑

t=1

Vt ⇒ ψ(1)W (u), (7.9)
T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)V
′
t ⇒

∫ 1

0

W (u)(dW )′ψ(1)′ + Σǫ(
∞
∑

i=1

ψi)
′, (7.10)

T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)V
′

t−1 ⇒

∫ 1

0

W (u)(dW )′ψ(1)′ + Σǫψ(1)′, (7.11)
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T− 3

2

T
∑

t=1

tVt = Op(1), (7.12)
T− 3

2

T
∑

t=1

tVt−1 = Op(1), (7.13)where W (u) is a brownian motion of variane Σǫ.Note that the result (7.9) is given in Phillips and Solo (1992) under the assumptionthat the proess is a martingale di�erene, and similar results of (7.10), (7.10) and(7.12) an be found in Johansen (1995) in the iid ase.Proof of Lemma 7.3. To prove (7.9) we use the well known deomposition
ψ(z) = ψ(1) + (1 − z)ψ∗(z)where ψ∗(z) = −

∑∞
i=0(

∑∞
j=i+1 ψj)z

i and V ∗
t = ψ∗(L)ǫt, so that we obtain

Vt = ψ(1)ǫt + ∆V ∗
t . (7.14)Then we write

t
∑

i=1

Vi = ψ(1)
t

∑

i=1

ǫt + V ∗
t − V ∗

0 .From the assumptions of our Lemma we have
‖V ∗

t ‖2+ν+η = ‖ψ∗(L)ǫt‖2+ν+η <∞,where L is the usual lag operator. Then using the Chebyshev inequality, we have
P{ max

1≤t≤T
‖ V ∗

t ‖≥ ǫT
1

2 } ≤
T

∑

t=1

P{‖ V ∗
t ‖≥ ǫT

1

2 }

≤ ǫ−sT
2−s
2 E(‖ V ∗

1 ‖s) → 0, (7.15)for some 2 < s < 2 + ν + η.Noting that from the assumptions we made in our Lemma the proess (ǫt) alsoveri�es the mixing and moment onditions of A3, it follows from Herrndorf (1984,Corollary 1, p. 142) that
T− 1

2

[Tu]
∑

t=1

ǫt ⇒W (u),and then we obtain (7.9).For the proof of (7.10) we write from (7.14)
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)V
′
t = T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)ǫ
′
tψ(1)′ + T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t .



20Using the result in Phillips (1988) we obtain
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)ǫ
′
tψ(1)′ ⇒

∫ 1

0

W (u)(dW )′ψ(1)′.In addition we have
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗

t = T−1(

T
∑

t=1

ǫt)V
′∗
T − T−1

T
∑

t=1

ǫtV
′∗
t

= T−1

2 (

T
∑

t=1

ǫt)T
− 1

2V ′∗
T − T−1

T
∑

t=1

ǫtV
′∗
t . (7.16)Using again the CLT given in Herrndorf (1984) and using (7.15), the �rst term in theright hand side of (7.16) onverge to zero in probability by the Slutsky Lemma. Forthe seond term using the fat that ψ∗

0 = −
∑∞

i=1 ψi we obtain
T−1

T
∑

t=1

ǫtV
′∗
t

P
→ −E(ǫtV

′∗
t ) = Σǫ(

∞
∑

i=1

ψi)
′.Then the result (7.10) follow. For the proof of (7.11) we write

T−1
T

∑

t=1

(
t−1
∑

i=1

ǫi)V
′
t−1 = T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)ǫ
′
t−1ψ(1)′ + T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)∆V
′∗

t−1

= T−1
T

∑

t=2

ǫt−1ǫ
′
t−1ψ(1)′ + T−1

T
∑

t=1

(

t−2
∑

i=1

ǫi)ǫ
′
t−1ψ(1)′

+T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t−1.Using a similar deomposition of (7.16) we have

T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t−1

P
→ −E(ǫtV

′∗
t−1) = 0.Noting that T−1

∑T
t=1 ǫt−1ǫ

′
t−1

P
→ Σǫ, it is easy to see that we obtain (7.11) usingsimilar arguments of the proof of (7.10).For the proof of (7.12) note that ‖ t

T Vt ‖≤‖ Vt ‖ and then the statement (7.12)follows from (7.9). Finally for the proof of (7.13), noting that from (7.9) it an beshown that T− 1

2

∑T
t=1 Vt−1 = Op(1), the result (7.13) follow in a similar way of (7.12).

�Lemma 7.4. Under A2 and A4 we have
T− 1

2

T
∑

t=1

vec(ǫtV
′
t−1) ⇒ N (0,Ξ),
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Ξ =

∞
∑

h=−∞

E {Vt−1 ⊗ ǫt} {Vt−h−1 ⊗ ǫt−h}
′ .If we assume that the error proess is iid, we obtain Ξ = ΣV ⊗ Σǫ where ΣV =

E(VtV
′
t ).Proof of Lemma 7.4. Let us de�ne ut = vec(ǫtV

′
t−1) =

∑∞
i=0 vec(ǫtǫ

′
t−i−1ψ

′
i). Wealso de�ne uq,t =

∑q
i=0 vec(ǫtǫ

′
t−i−1ψ

′
i), where q ∼ T γ for some γ ∈]0, 1[. With thesenotations we write

ut = uq,t + eq,t where eq,t =
∞
∑

i=q+1

vec(ǫtǫ
′
t−i−1ψ

′
i).From Lemma 7.2 and using the Chebyshev inequality and the fat that the oe�ientsof the matries ψi deay exponentially it an be shown that T− 1

2

∑T
t=1 eq,t = op(1).Then we an dedue that T− 1

2

∑T
t=1 ut and T− 1

2

∑T
t=1 uq,t has the same asymptotibehaviour.From the expression of uq,t we obviously have ‖uq,t‖4+2ν < ∞. In addition we have

αuq
(h− q) ≤ αǫ(h), so that ∑∞

h=0{αuq
(h)}ν/(2+ν) <∞. Noting that

uq,t =

q
∑

i=0

vec(ǫtǫ
′
t−i−1ψ

′
i) =

q
∑

i=0

(ψi ⊗ Id)(ǫt−i−1 ⊗ ǫt),we write using the Lebesgue theorem and the stationarity of uq,t

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1

ov(uq,t, uq,s) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)ov(uq,t, uq,t−h)

= lim
T→∞

1

T

q
∑

i,j=1

∑

|h|<T

(T− | h |)(ψi ⊗ Id)ov{(ǫt−i−1 ⊗ ǫt), (ǫt−i−h−1 ⊗ ǫt−h)′}

(ψ′
i ⊗ Id) =

∞
∑

i,j=1

∞
∑

h=−∞

(ψi ⊗ Id)ov{(ǫt−i−1 ⊗ ǫt), (ǫt−i−h−1 ⊗ ǫt−h)′}

(ψ′
i ⊗ Id).The existene of this last sum is ensured by Lemma 7.2 and using the fat thatthe oe�ients of the matries ψi deay exponentially. Then from the CLT givenin Herrndorf (1984), T− 1

2

∑T
t=1 uq,t is normally distributed with mean zero. We obtainthe expression of Ξ writing

ut = vec(ǫtV
′
t−1) = (Vt−1 ⊗ Id)ǫt = Vt−1 ⊗ ǫt,and

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1

ov(ut, us) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)ov(ut, ut−h)

=

∞
∑

h=−∞

ov (ut, ut−h) =

∞
∑

h=−∞

E {Vt−1 ⊗ ǫt} {Vt−h−1 ⊗ ǫt−h}
′
.



22This omplete the proof of our Lemma. �The following Lemmas are equivalent to Lemmas 10.2 and 10.3 in Johansen (1995).Reall that β̄0⊥ = β0⊥(β′
0⊥β0⊥)−1.Lemma 7.5. Under A1, A2 and A3, the proess Z1t satis�es

T− 1

2C′
T (Z1[Tu] − Z̄1) ⇒ G(u) (7.17)where

G(u) =

(

β̄′
0⊥C(W (u) − W̄ )

−u+ 1
2

)

, Z̄1 = T−1
T

∑

t=1

Z1t, W̄ =

∫ 1

0

W (u)du,and
CT =

(

β̄0⊥ 0

ρ′o1β̄0⊥ T− 1

2

)

.Proof of Lemma 7.5. From (2.2) we have
T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z1[Tu] = T− 1

2 β̄′
0⊥C

[T (u− 1

T
)]

∑

i=1

ǫi + T− 1

2 β̄′
0⊥Y[Tu]−1

+T− 1

2 β̄′
0⊥(ρo1 + ρo0 +A). (7.18)It an be easily shown that the seond term on the right hand side tends to zeroin probability using the Chebyshev inequality. In addition the third term does notdepends on time and vanishes by the fator T− 1

2 . From A3 and using the entral limittheorem given by Herrndorf (1984) it follows
T− 1

2 β̄′
0⊥C

[Tu]
∑

i=1

ǫi ⇒ β̄′
0⊥CW (u).Finally onsidering the ontinuous mapping x −→

∫ 1

0 x(u)du, we obtain from theontinuous mapping theorem
T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1t = T−1

T
∑

t=1

T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z1t ⇒ β̄′

0⊥CW̄ . (7.19)The asymptoti behaviour of the last omponent an be obtained noting that
lim

T→∞

−[Tu] + 1

T
= lim

T→∞

−[Tu] + Tu

T
+

1

T
− u = −u,and

lim
T→∞

−T−2
T

∑

t=1

(−t+ 1) = lim
T→∞

T (T + 1)

2T 2
−

T

T 2
=

1

2
.
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� The results of Lemmas 7.6, 7.7 and the proof of Proposition 4.1 are not modi�ed bythe hoie of a normalization. Then we will onsider for these results any β∗

0 .Lemma 7.6. Under A1, A2 and A3, the residuals R1t satisfy
T−1C′

TS11CT ⇒

∫ 1

0

GG′du (7.20)
C′

T (S10 − S11β
∗
0α

′
0) ⇒

∫ 1

0

G(dW )′ (7.21)
C′

TS11β
∗
0 = Op(1) (7.22)

C′
TS10 = Op(1). (7.23)Proof of Lemma 7.6. First note that from (2.2) we have

Z0t = ∆Xt = Cǫt + ρo1 + ∆Yt, (7.24)and sine β′
0ρo0 = τ0 we write

β′∗
0 Z1t = β′

0Xt−1 − τ0(t− 1) = β′
0ρo0 + β′

0Yt−1. (7.25)Sine the proess Yt is a stationary linear proess, then it is easy to see that the enteredproesses β′∗
0 (Z1t − Z̄1) and (Z0t − Z̄0) are I(0) and that these proesses an also bewritten as linear proesses. Then we an use the results in Lemma 7.3 when needed.De�ne the entered stationary proess (Z̃2t −

¯̃Z2) where Z̃2t = (Z ′
0t−1, . . . , Z

′
0t−p+1)

′,and let us introdue the following notations
N11 = T−1

T
∑

t=1

(Z1t − Z̄1)(Z1t − Z̄1)
′,

N22 = T−1
T

∑

t=1

(Z̃2t −
¯̃Z2)(Z̃2t −

¯̃Z2)
′,

N12 = T−1
T

∑

t=1

(Z1t − Z̄1)(Z̃2t −
¯̃Z2)

′,

N10 = T−1
T

∑

t=1

(Z1t − Z̄1)(Z0t − Z̄0)
′,and

N20 = T−1
T

∑

t=1

(Z̃2t −
¯̃Z2)(Z0t − Z̄0)

′.



24 To prove (7.20) note that sine we have Ψ0(Z2t − Z̄2) = Ψ̃0(Z̃2t −
¯̃Z2) where Ψ̃ =

(Γ1, . . . ,Γp−1), we write from (2.7)
Z0t − Z̄0 = α0β

′∗
0 (Z1t − Z̄1) + Ψ̃0(Z̃2t −

¯̃Z2) + ǫt.Sine we de�ned the R1t
′s as the residuals of the regression of Z1t on Z2t we have

T−1C′
TS11CT = T−1C′

TN11CT − T−1C′
TN12N

−1
22 N21CT . (7.26)Using (7.18) the d �rst rows of C′

TN12 are of the form
T−1

T
∑

t=1

(β̄′
0⊥, β̄

′
0⊥ρo1)(Z1t − Z̄1)(Z̃2t −

¯̃Z2)
′ =

T−1β̄′
0⊥C

T
∑

t=1

(
t−1
∑

i=1

ǫi)(Z̃2t −
¯̃Z2)

′ + T−1β̄′
0⊥

T
∑

t=1

Yt−1(Z̃2t −
¯̃Z2)

′

+T−1
T

∑

t=1

β̄′
0⊥(ρo1 + ρo0 +A)(Z̃2t −

¯̃Z2)
′

−T−1
T

∑

t=1

(β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1(Z̃2t −

¯̃Z2)
′. (7.27)Note that from the expression of (Z̃2t −

¯̃Z2) it is easy to see that this proess is of theform
Z̃2t −

¯̃Z2 =

∞
∑

i=0

ψ̇i(ǫ
′
t−i−1, . . . , ǫ

′
t−i−p+1)

′.Then using (7.11) the �rst term on the right hand side of (7.27) is normalized toonverge. The proesses in the seond and third terms in (7.27) are stationary ergodi,and then using the ergodi theorem it is easy to see that these terms are normalizedto onverge. Finally note that sine Z̄1 does not depend on t the last term anbe written as {T−1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1}{T−1

2

∑T
t=1(Z̃2t −

¯̃Z2)
′}. From (7.19) the term

T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1 onverge weakly, and using (7.9) the term {T−1

2

∑T
t=1(Z̃2t−

¯̃Z2)
′}also onverge. Moreover the last row of C′

TN12 is of the form
T−3

2

T
∑

t=1

{−t+ 1 −
T

∑

t=1

−t+ 1

T
}(Z̃2t −

¯̃Z2)
′ =

1

2
T− 1

2

T
∑

t=1

(Z̃2t −
¯̃Z2)

′

+
1

2
T−3

2

T
∑

t=1

(Z̃2t −
¯̃Z2)

′ − T− 3

2

T
∑

t=1

t(Z̃2t −
¯̃Z2)

′. (7.28)From (7.9) the �rst and the seond term in the right hand side of (7.28) onverge,whereas the third term onverge from (7.13). Thus we an onlude that the matrix
C′

TN12 is normalized to onverge. In addition using the ergodi theorem for thestritly stationary proess (Z̃2t−1−
¯̃Z2) the term N22 onverges to its population value.Therefore the seond term in the right hand side of (7.26) tends to zero by the fator
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T−1. On the other hand onsidering the ontinuous mapping x −→

∫ 1

0 x(u)x(u)
′du, itfollow from the ontinuous mapping theorem and Lemma 7.5 that

T−1C′
TN11CT ⇒

∫ 1

0

GG′du,whih ompletes the proof of (7.20).Similarly for the proof of (7.22) we write
C′

TS11β
∗
0 = C′

TN11β
∗
0 − C′

TN12N
−1
22 N21β

∗
0 . (7.29)First note that the rows of the matrix C′

TN11β
∗
0 an be written in the same way ofthose of the matrix C′

TN12 replaing only Z̃2t −
¯̃Z2 by β′∗

0 (Z1t − Z̄1). Sine the proess
β′∗

0 (Z1t− Z̄1) is also stationary and an be written as a linear proess, then onsideringthe arguments we used for the matrix C′
TN12 one an show that the matrix C′

TN11β
∗
0 isnormalized to onverge. Finally noting that the proesses (Z̃2t −

¯̃Z2) and β′∗
0 (Z1t− Z̄1)are stationary ergodi the term N21β

∗
0 onverges using the Cauhy-Shwarz inequalityand the ergodi theorem. Then sine the terms in the right hand side of (7.29) areonvergent we obtain the result (7.22).For the proof of (7.23) we write

C′
TS10 = C′

TN10 − C′
TN12N

−1
22 N20. (7.30)Similarly we an show that the matrix C′

TN10 onverge using the same argumentsonsidered for the matrix C′
TN12 and replaing Z̃2t −

¯̃Z2 by Z0t − Z̄0. However notethat sine from (7.24) the term Z0t − Z̄0 is of the form
Z0t − Z̄0 =

∞
∑

i=0

ψ̈iǫt−i,we shall use in this ase relations (7.10) and (7.12) to onlude. In addition sine theproess (Z0t − Z̄0) is stationary a proess, then the matrix N20 onverge. Thereforethe matries in the right hand side of (7.30) are all normalized to onverge and theresult (7.23) follows.To prove (7.21) note that from (2.9) we have
C′

T (S10 − S11β
∗
0α

′
0) = C′

TNǫ = C′
TN1ǫ − C′

TN12N
−1
22 N2ǫ (7.31)where

Nǫ = T−1
T

∑

t=1

R1tǫ
′
t, N1ǫ = T−1

T
∑

t=1

(Z1t − Z̄1)ǫ
′
t,and N2ǫ = T−1

T
∑

t=1

(Z̃2t −
¯̃Z2)ǫ

′
t.From the ergodi theorem and sine Z̃2t and ǫt are unorrelated, the term N2ǫ tendsto zero in probability. Then the seond term in the right hand side of (7.31) tend tozero. Finally using Lemma (7.5) and the ontinuous mapping theorem we write

C′
TN1ǫ ⇒

∫ 1

0

G(dW )′. (7.32)



26This omplete the proof of our Lemma. �Now let us de�ne the following matries
Σij = Λij − Λi2Λ

−1
22 Λ2jfor i, j = 0, 2, β and where the matries Λij are de�ned by,

Λββ = V ar(β′∗
0 Z1t), Λ00 = V ar(Z0t), Λ22 = V ar(Z̃2t),

Λβ0 = Cov(β′∗
0 Z1t, Z0t), Λβ2 = Cov(β′∗

0 Z1t, Z̃2t) and Λ20 = Cov(Z̃2t, Z0t).Note that when β∗
0 is normalized by the matrix c, we have Σββ = Σc, where Σc isde�ned in Setion 3. The following Lemma provides us a result on the asymptotibehaviour of the matries S11, S00 and S10 in terms of the above de�ned matries.Lemma 7.7. Under A1, A2 and A3 we have

β′∗
0 S11β

∗
0

P
→ Σββ (7.33)

β′∗
0 S10

P
→ Σβ0 (7.34)

S00
P
→ Σ00 (7.35)where the matries Σ00, Σβ0 and Σββ verify

Σ00 = α0Σβ0 + Σǫ, Σ0β = α0Σββ, (7.36)and
Σǫ = Σ00 − α0Σββα

′
0. (7.37)Moreover we have

Σ−1
00 − Σ−1

00 α0(α
′
0Σ

−1
00 α0)

−1α′
0Σ

−1
00 = α0⊥(α′

0⊥Σǫα0⊥)−1α′
0⊥. (7.38)Proof of Lemma 7.7. Similarly to (7.26) we write

β′∗
0 S11β

∗
0 = β′∗

0 N11β
∗
0 − β′∗

0 N12N
−1
22 N21β

∗
0 .On the other hand from (7.24) and (7.25) the proesses (β′∗

0 Z1t), (Z0t) and (Z̃2t) arestationary ergodi sine (Yt) is stationary ergodi. Thus we have from the ergoditheorem
β′∗

0 N11β
∗
0

P
→ Λββ, β′∗

0 N12
P
→ Λβ2, and N22

P
→ Λ22,whih gives us the result (7.33). The proof of (7.34) and (7.35) are similar.For the proof of the relations in (7.36), multiplying the expression (2.7) by (Z0t −Z0)

′and (Z1t − Z̄1)
′β∗

0 on the right, we have
Λ00 = α0Λβ0 + Ψ̃Λ20 + Σǫ and Λ0β = α0Λββ + Ψ̃Λ2β (7.39)



THE LR TEST UNDER UNCORRELATED ERRORS 27sine we assumed that the error proess (ǫt) is unorrelated. Using again the expression(2.7) we write
Ψ̃ = Λ02Λ

−1
22 − α0Λβ2Λ

−1
22 . (7.40)Inserting (7.40) in the expressions in (7.39) we obtain the desired results. The expres-sion (7.37) is a straightforward onsequene of (7.36). The relation in (7.38) an beobtained using the following projetion identity

Id = Σ−1
00 α0(α

′
0Σ

−1
00 α0)

−1α′
0 + α0⊥(α′

0⊥Σ00α0⊥)−1α′
0⊥Σ00,and noting that from (7.36) α0⊥Σ00 = α0⊥Σǫ. �For the proof of Propositions 3.1 and 4.1 note that the solutions λ̂1 ≥ · · · ≥ λ̂d+1of the equation (2.11) are the same of those of the following eigenvalue problem

| λS11 − S10S
−1
00 S01 |= 0. (7.41)The eigenvetors ei of (7.41) whih verify

S10S
−1
00 S01ei = λ̂iS11ei,are suh that ei = S

− 1

2

11 vi. Using this notation we write β̂∗ = (e1, . . . , er0
). Note alsothat sine the matrix S10S

−1
00 S01 is of dimension d+ 1 but has rank d, then λ̂d+1 = 0.Proof of Proposition 3.1. We �rst show that the roots λ̂r0+1, . . . , λ̂d of (7.41)derease at the rate T−1. Let the matrix AT = (β∗

0 , T
−1

2 CT ). Multiplying (7.41) by
A′

T and AT , and noting that the matrix AT is an invertible matrix, the equation
| A′

T (λS11 − S10S
−1
00 S01)AT |=

β′∗
0 S(λ)β∗

0 T− 1

2 β′∗
0 S(λ)CT

T− 1

2C′
TS(λ)β∗

0 T
−1C′

TS(λ)CT
= 0, (7.42)has the same eigenvalues as (7.41). From Lemmas 7.6 and 7.7 and sine the solutionsof (7.41) are ontinuous funtions of the oe�ient of the matries S11, S10, S00, and

S01, it follows that
| A′

T (λS11 − S10S
−1
00 S01)AT | ⇒

∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0 GG
′du

∣

∣

∣

∣

= | λΣββ − Σβ0Σ
−1
00 Σ0β || λ

∫ 1

0

GG′du | .Therefore there is r0 roots of the equation (7.42) whih onverge to the r0 positiveroots given by the equation | λΣββ − Σβ0Σ
−1
00 Σ0β | = 0, and d− r0 + 1 roots of (7.42)whih onverge to the d − r0 + 1 zero roots given by the solutions of the equation

| λ
∫ 1

0 GG
′du |= 0. De�ning S(λ) = λS11 − S10S

−1
00 S01 and using the relation

A11 A12

A21 A22
=| A11 || A22 −A21A

−1
11 A12 | (7.43)



28in (7.42) for λ suh that | β′∗
0 S(λ)β∗

0 |6= 0, we write
β′∗

0 S(λ)β∗
0 T− 1

2β′∗
0 S(λ)CT

T− 1

2C′
TS(λ)β∗

0 T
−1C′

TS(λ)CT
=| β′∗

0 S(λ)β∗
0 || λ{T−1C′

TS11CT }

−T−1{C′
TS10S

−1
00 S01CT + β′∗

0 S(λ)CT (β′∗
0 S(λ)β∗

0 )−1C′
TS(λ)β∗

0} | .It is seen that the roots whih orrespond to the eigenvalue problem | β′∗
0 S(λ)β∗

0 |
= 0 do not onverge to zero and have the same limit of the r greatest roots of (7.42).Then for a large T , the roots λ̂r0+1, . . . , λ̂d+1 annot be in the set of the r0 roots of
| β′∗

0 S(λ)β∗
0 |= 0 . It follows that λ̂r0+1, . . . , λ̂d+1 are solutions of the following equation

| λ{T−1C′
TS11CT } − T−1{C′

TS10S
−1
00 S01CT (7.44)

+β′∗
0 S(λ)CT (β′∗

0 S(λ)β∗
0 )−1C′

TS(λ)β∗
0} |= 0.Considering the roots λ̂r0+1, . . . , λ̂d whih onverge to zero, and using the results ofLemmas 7.6 and 7.7 the terms into brakets in (7.44) are normalized to onverge, thenit is seen that the roots λ̂r0+1, . . . , λ̂d of (7.41) derease at the rate T−1.Now we will establish the asymptoti behaviour of the likelihood ratio test statisti.Using again the relation (7.43) we write

| (β∗
0 , CT )′S(λ)(β∗

0 , CT ) |=
β′∗

0 S(λ)β∗
0 β

′∗
0 S(λ)CT

C′
TS(λ)β∗

0 C
′
TS(λ)CT

=| β′∗
0 S(λ)β∗

0 || C′
TS(λ)CT

−C′
TS(λ)β∗

0 (β′∗
0 S(λ)β∗

0 )−1β′∗
0 S(λ)CT |= 0. (7.45)For the rest of the proof we will fous on the seond term of the right hand side of(7.45) and only onsider the d − r0 + 1 smallest roots λ̂r0+1, . . . , λ̂d+1. Noting thatfrom the �rst part of the proof the roots λ̂r0+1, . . . , λ̂d derease at the rate T−1, wetherefore de�ne η = Tλ where η is real. From Lemma 7.7 and using (7.22) we have

β′∗
0 S(λ)β∗

0 = ηT−1β′∗
0 S11β

∗
0 − β′∗

0 S10S
−1
00 S01β

∗
0 = −Σβ0Σ

−1
00 Σ0β + op(1), (7.46)

C′
TS(λ)β∗

0 = ηT−1C′
TS11β

∗
0 − C′

TS10S
−1
00 S01β

∗
0

= −C′
TS10Σ

−1
00 Σ0β + op(1). (7.47)Then inserting (7.46) and (7.47) into the seond fator in (7.45) we obtain

C′
TS(λ)CT − C′

TS(λ)β∗
0 (β′∗

0 S(λ)β∗
0 )−1β′∗

0 S(λ)CT

= ηT−1C′
TS11CT − C′

TS10Σ
−1
00 S01CT

+C′
TS10Σ

−1
00 Σ0β(Σβ0Σ

−1
00 Σ0β)−1Σβ0Σ

−1
00 S01CT + op(1)

= ηT−1C′
TS11CT − C′

TS10DS01CT + op(1), (7.48)where from (7.36) and (7.38) the matrix D is given by
D = Σ−1

00 − Σ−1
00 Σ0β(Σβ0Σ

−1
00 Σ0β)−1Σβ0Σ

−1
00

= Σ−1
00 − Σ−1

00 α0Σββ(Σββα
′
0Σ

−1
00 α0Σββ)−1Σββα

′
0Σ

−1
00

= Σ−1
00 − Σ−1

00 α0(α
′
0Σ

−1
00 α0)

−1α′
0Σ

−1
00

= α0⊥(α′
0⊥Σǫα0⊥)−1α′

0⊥ = α0⊥(V ar(α′
0⊥W ))−1α′

0⊥. (7.49)



THE LR TEST UNDER UNCORRELATED ERRORS 29From Lemma 7.6 we have
C′

TS10α0⊥ = C′
T (S10 − S11β

∗
0α

′
0)α0⊥ ⇒

∫ 1

0

G(dW )′α0⊥and
T−1C′

TS11CT ⇒

∫ 1

0

GG′du.Noting that S(λ) = S(η/T ) = ηT−1S11 − S10S
−1
00 S01 and using the transformations(7.48) and (7.49), the roots of the equation

| C′
TS(η/T )CT − C′

TS(η/T )β∗
0(β′∗

0 S(η/T )β∗
0)−1β′∗

0 S(η/T )CT |= 0onverge to those of the following equation
| η

∫ 1

0

GG′du−

∫ 1

0

G(dW )′α0⊥(V ar(α′
0⊥W ))−1α′

0⊥{

∫ 1

0

G(dW )′}′ |= 0. (7.50)Let us de�ne the following invertible matrix
J =

(

(β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 0
0 1

)

.Noting that
(α′

0⊥W )′(V ar(α′
0⊥W ))−1α′

0⊥W =

((β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W )′

(V ar((β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W ))−1

(β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W,and multiplying by J and J ′ the equation (7.50), the roots of (7.50) are the same ofthe following relation

| η

∫ 1

0

FF ′du−

∫ 1

0

F (dB)′{

∫ 1

0

F (dB)′}′ |= 0, (7.51)where B = (β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥CW is suh that V ar(B) = Id−r0

, and F = (F1, F2)where F1 = B and F2 = u− 1
2 . The equation (7.51) is equivalent to

| ηId−r0+1 −

∫ 1

0

F (dB)′{

∫ 1

0

F (dB)′}′[

∫ 1

0

FF ′du]−1 |= 0, (7.52)so that denoting by ηi the eigenvalues of (7.52) we write
d

∑

r0+1

ηi = tr{{

∫ 1

0

F (dB)′}′[

∫ 1

0

FF ′du]−1

∫ 1

0

F (dB)′}. (7.53)Noting that as indiated above the roots of (7.45) are ontinuous funtions of thematries S11, S10, S00, and S01, we have
T

d
∑

i=r0+1

λ̂i ⇒
d

∑

r0+1

ηi. (7.54)



30Now writing the expression of the LR test statisti and sine the the roots λ̂r0+1, . . . , λ̂dof (7.41) tends to zero at the rate T−1, we �nd
−2 logQr0

= −T
d

∑

i=r0+1

log(1 − λ̂i) = T [

d
∑

i=r0+1

λ̂i + op(T
−1)]

= T

d
∑

i=r0+1

λ̂i + op(1).Then using (7.54) and (7.53) the result follow. �In order to prove Proposition 4.1 we have to state some additional asymptoti results.First note that in (7.17) multiplying by C′
T is equivalent (asymptotially) to multiplyingby the transpose of

C̃T =

(

β̄0⊥ 0

0 T− 1

2

)and suppose that the parameters in the deterministi part of (2.3) are equal to zero.To see this note that in this ase the expression (2.2) beomes
Xt = C

t
∑

i=1

ǫi + Yt +Awhere Yt is a stationary proess, so that we have
T− 1

2 (β̄′
0⊥, 0)Z1[Tu] = T− 1

2 β̄′
0⊥C

[Tu]
∑

i=1

ǫi + T− 1

2 β̄′
0⊥Y[Tu] + T− 1

2 β̄′
0⊥A. (7.55)Therefore starting with (7.55) it is easy to see that one an retrieve the results ofLemma 7.5 and 7.6 replaing CT by the new normalization matrix C̃T . Then in thesequel we an assume without loss of generality that the parameters ν0 and τ0 are equalto zero. Now onsider the following normalization of β̂∗

β̃∗ = (β̃′, τ̃ )′ = ((β̂(β̄′
0cβ̂)−1)′, ((β̂′β̄0c)

−1τ̂ ))′,where β̄0c = β0c(β
′
0cβ0c)

−1 and de�ne α̃ = α̂β̂′β̄0c. Reall that τ̂ and τ̃ are vetors ofdimension r0. For the rest of the paper we will use this normalization for theoretialderivations only sine the matrix of unknown parameters β0c appears in the expressionof β̃∗. Note also that we take β̄0c as a normalization matrix. Then in this ase β∗
0c isthe normalized matrix. With this notation and sine we assumed τ0c = 0, we have

β̃∗ = β∗
0c + C̃TUT β̃

∗ (7.56)where
UT =

(

β′
0⊥ 0

0 T
1

2

)

.Note that (7.56) is obtained by projeting β̃∗ in the diretions of β∗
0c, β∗

0⊥ = (β′
0⊥, 0)′and γ = (0, 1)′, where γ is a vetor of dimension d + 1. Then it is seen from the d



THE LR TEST UNDER UNCORRELATED ERRORS 31�rst rows of (7.56) that with this hoie of normalization β̃ − β0c is inluded in thespae spanned by β0⊥. In the following Lemma we will state some asymptoti resultswe need using this normalization.Lemma 7.8. Under A1, A2 and A3, we have
α̃

P
→ α0c, Σ̂ǫ

P
→ Σǫ, β̃ − β0c = op(T

− 1

2 ) and τ̃ − τ0c = op(T
−1).Moreover the estimators β̃ and τ̃ are suh that

(

Tβ′
0⊥(β̃ − β0c)

T
3

2 τ̃

)

⇒ [

∫ 1

0

GG′du]−1

∫ 1

0

G(dVα)′ (7.57)where
Vα = (α′

0cΣ
−1
ǫ α0c)

−1α′
0cΣ

−1
ǫ Wis independent of G.Proof of Lemma 7.8. In a �rst time we will prove that β̃ − β0c = op(T

− 1

2 ) and
τ̃ − τ0c = op(T

−1). Let us de�ne the matrix
BT =

(

β0c T− 1

2 β̄0⊥ 0
0 0 T−1

)

.Multiplying (7.41) by B′
T and BT , we obtain

| B′
T (λS11 − S10S

−1
00 S01)BT |= 0. (7.58)Similarly to the proof of Proposition 3.1 and sine we assumed that the deterministiterms are equal to zero, we have

| B′
T (S11 − S10S

−1
00 S01)BT |⇒

∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0
GG′du

∣

∣

∣

∣

.The eigenvetors gi orresponding to the r0 positive eigenvalues of the equation
∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0 GG
′du

∣

∣

∣

∣

= 0,verify the equation
(

Σβ0Σ
−1
00 Σ0β 0
0 0

)

gi =

(

λΣββ 0

0 λ
∫ 1

0
GG′du

)

gi.In addition the eigenvalues λ̂1 ≥ · · · ≥ λ̂r of (7.41) onverge to those of the equation
| λΣββ − Σβ0Σ

−1
00 Σ0β |= 0, then it an be seen that the spae spanned by the r0eigenvetors orresponding to the eigenvalues λ̂1 ≥ · · · ≥ λ̂r onverges to the spaespanned by the r0 �rst unit vetors (the d−r0 +1 last oordinates of these eigenvetorsonverging to zero).



32 Thus sine the eigenvetors of (7.58) are obtained by multiplying by B−1
T theeigenvetors of (7.41) on the left, we write

B−1
T β̃∗ =





Ir
T

1

2β′
0⊥β̃

T τ̃



 =





Ir
op(1)
op(1)



 ,where B−1
T is given by the following equation

B−1
T =





β̄′
0c 0

T
1

2β′
0⊥ 0

0 T



 =

(

β̄′∗
0c

T
1

2UT

)

.Thus we an onlude that τ̃ = op(T
−1). In addition sine β̃ − β0c is inluded in thespae of β0⊥, we have (β̃ − β0c) = op(T

− 1

2 ).In this part of the proof we will show the onsisteny of α̃ and Σ̂ǫ. From Lemma(7.7) we have
α0c = Σ0βΣ−1

ββ and Σǫ = Σ00 − α0cΣββα
′
0c.Sine UT β̃

∗ = op(T
− 1

2 ), and using the relations (7.20) and (7.22) we have
β̃′∗S11β̃

∗ = (β∗
0c + C̃TUT β̃

∗)′S11(β
∗
0c + C̃TUT β̃

∗) = β′∗
0cS11β

∗
0c + op(1). (7.59)Then from Lemma (7.7) we obtain

β̃′∗S11β̃
∗ P
→ Σββ.Similarly we have

β̃′∗S10 = β′∗
0cS10 + op(T

− 1

2 )
P
→ Σβ0. (7.60)Finally writing the expressions of α̃ and Σ̂ we �nd

α̃ = S01β̃
∗(β̃′∗S11β̃

∗)−1 P
→ α0c,

Σ̂ǫ = S00 − S01β̃
∗(β̃′∗S11β̃

∗)−1β̃′∗S10
P
→ Σǫ.In order to prove the last statement of our Lemma, let us write the derivatives ofthe onentrated likelihood funtion (2.8) with respet to β∗ in the diretion h

Dβ∗ logL(α, β∗,Σǫ) = lim
s→0

logL(α, β∗ + sh,Σǫ) − logL(α, β∗,Σǫ)

s

= T tr{α′Σ−1
ǫ (S01 − αβ′∗S11)h}.Noting that the matries α̃ and β̃∗ veri�es the likelihood equation, this derivative isequal to zero at the point (α̃, β̃∗, Σ̂ǫ) in all diretions. Then we have

α̃′Σ̂−1
ǫ (S01 − α̃β̃′∗S11) = 0. (7.61)



THE LR TEST UNDER UNCORRELATED ERRORS 33Reall that we have de�ned Nǫ = T−1
∑T

t=1R1tǫ
′
t. Inserting S01 = α0cβ

′∗
0cS11 +N ′

ǫ in(7.61) we get
α̃′Σ̂−1

ǫ (S01 − α̃β̃′∗S11) = α̃′Σ̂−1
ǫ (N ′

ǫ + α0cβ
′∗
0cS11 − α̃β̃′∗S11)

= α̃′Σ̂−1
ǫ (N ′

ǫ − α̃(β̃∗ − β∗
0c)

′S11 − (α̃− α0c)β
′∗
0cS11) = 0.Now multiplying by C̃T on the right and inserting β̃′∗ − β∗

0c = CTUT β̃
∗ we have

α̃′Σ−1
ǫ (N ′

ǫC̃T − α̃T β̃′∗U ′
T {T

−1C̃′
TS11C̃T } − (α̃ − α0c)β

′∗
0cS11C̃T ) = 0.From the onsisteny of α̃ and using (7.22) the last term tends to zero, so that weobtain

TUT β̃
∗ = (T−1C̃′

TS11C̃T )−1C̃′
TNǫΣ

−1
ǫ α0c(α

′
0cΣ

−1
ǫ α0c)

−1 + op(1).Finally using (7.20) and noting that from (7.31) and (7.32) we haveC′
TNǫ ⇒

∫ 1

0
G(dW )′,we an dedue that

TUT β̃
∗ ⇒ [

∫ 1

0

GG′du]−1

∫ 1

0

G(dVα)′.This omplete the proof of Lemma (7.8). �Proof of Proposition 4.1. In a �rst time we will prove statement (4.1). From (7.57)we have
Tβ′

0⊥(β̃ − β0c) ⇒ [

∫ 1

0

G1.2G
′
1.2du]

−1

∫ 1

0

G1.2(dVα)′.From the d �rst rows of (7.56) we write
β̃ − β0c = β̄0⊥β

′
0⊥(β̃ − β0c).Then using the expansion

(β̂c − β0c) = (Id − β0cc
′)(β̃ − β0c) +Op(‖ (β̃ − β0c) ‖

2) (7.62)and noting that sine β̃ − β0c is inluded in the spae of β0⊥ we have ‖ (β̃ − β0c) ‖2=

Op(T
−2) the result follow. Similarly writing τ̃ = (β̂′β̄0c)

−1(β̂′c)τ̂c, we an �nd that
τ̂c = τ0c + Op(T

− 3

2 ). Now let W1 and W2 two independent Brownian motions. Theform (4.2) an be found noting that givenW1, ∫ 1

0 W1(dW2)
′ is gaussian with mean zeroand variane matrix

∫ 1

0

W1W
′
1 ⊗ V ar(W2). �Reall that α̂c(β

∗
0c) = S01β

∗
0c(β

′∗
0cS11β

∗
0c)

−1 and α̂c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1. To proveProposition 4.2 we need to state the following Lemma.Lemma 7.9. Under A1, A2 and A3, we have
α̂c = α̂c(β

∗
0c) + op(T

− 1

2 ).



34Proof of Lemma 7.9. First note that we have
α̃ = α̂β̂′

0cβ̄0c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1β̂′
0cβ̄0c

= S01β̂
∗
0c(β̄

′
0cβ̂0c)

−1(β̄′
0cβ̂0c)(β̂

′∗
0cS11β̂

∗
0c)

−1(β̄′
0cβ̂0c)

′

= S01β̃
∗
0c(β̃

′∗
0cS11β̃

∗
0c)

−1.From (7.59) and (7.60) we obtain
α̃ = α̂c(β

∗
0c) + op(T

− 1

2 ). (7.63)Reall that α̂cβ̂
′
c = α̃β̃′. Noting that β′

0cc = β̂′
cc = Ir, we write

α̂c = α̃β̃′c

= α̃(β̃ − β′
0c)c+ α̃β′

0cc

= α̃(β̃ − β′
0c)c+ α̃.In view of the onsisteny of α̃ and sine β̃ = β0c +Op(T

−1), we have
α̂c = α̃+Op(T

−1),and then the result follow from (7.63). �Proof of Proposition 4.2. Multiplying (2.9) by R′
1tβ

∗
0c on the right we �nd

α0c = T−1
T

∑

t=1

(R0t − ǫt)R
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1

= T−1
T

∑

t=1

(R0t − ǫt)R
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1.Then from Lemma 7.9 and using (2.10) and (7.33) we have
T

1

2 vec(α̂c − α0c) = T
1

2 vec(α̂c − α̂c(β
∗
0c)) + T

1

2 vec(α̂c(β
∗
0c) − α0c)

= T− 1

2

T
∑

t=1

vec(ǫtR
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1) + op(1)

= T− 1

2

T
∑

t=1

{(β′∗
0cS11β

∗
0c)

−1β′∗
0cR1t ⊗ Id}ǫt + op(1)

= T− 1

2

T
∑

t=1

Σ−1
c β′∗

0cR̃1t ⊗ ǫt + op(1)

= (Σ−1
c ⊗ Id)T

− 1

2

T
∑

t=1

β′∗
0cR̃1t ⊗ ǫt + op(1)

= (Σ−1
c ⊗ Id)T

− 1

2

T
∑

t=1

vt + op(1)
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vt = vec(ǫtR̃

′
1tβ

∗
0c).Reall that we have de�ned

R̃1t = Z1t − M̃12M̃
−1
22 Z2t.Then using (7.24) and (7.25) it is easy to see that β′∗

0cR̃1t an be written as follows
β′∗

0cR̃1t = m+

∞
∑

i=0

ψ̃iǫt−i−1, (7.64)wherem is a vetor of onstants and the terms of the series {ψ̃i}i∈N deay exponentiallyfast. Then despite the fat that there is a onstant in the expression (7.64), we anshow following the same lines of the proof of Lemma 7.4 that T− 1

2

∑T
t=1 vt is normallydistributed. The form of the matrix Σα is obtained from the following omputations

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1

ov(vt, vs) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)ov(vt, vt−h)

=

∞
∑

h=−∞

ov (vt, vt−h) =

∞
∑

h=−∞

E
{

β′∗
0cR̃1t ⊗ ǫt

}{

β′∗
0cR̃1t−h ⊗ ǫt−h

}′

.Finally we obtain
Σα =

∞
∑

h=−∞

E
{

Σ−1
c β′∗

0cR̃1tR̃
′
1t−hβ

∗
0cΣ

−1
c ⊗ ǫtǫ

′
t−h

}
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38 Tables and FiguresTable 1: Empirial size (in %) of the LR test for VECM (5.4) in the strong and weak aseswith T = 100. ase 1 ase 2 ase 3MD (5.1) 8.2 6.6 1.6MD (5.2) 6.5 6.3 5.3WWN (5.3) 3.3 4.4 0.6SWN 5.2 5.2 2.6Parameters: π2 = 0.9 e = −1 θ = −1.5. Case 1: π1 = −0.1 and eπ2 + π1 = −1. Case 2:
π1 = 0.8 and eπ2 + π1 = −0.1. Case 3: π1 = −0.8 and eπ2 + π1 = −1.7.Table 2: As Table 1, but for T = 400.ase 1 ase 2 ase 3MD (5.1) 5.8 4.2 5.8MD (5.2) 5.2 5.5 6.4WWN (5.3) 4.0 5.0 2.9SWN 5.0 4.6 5.0Table 3: The relative rejetion frequenies (in %) of the LR test for VECM (5.4) withheterosedasti errors (5.5).
f 0 0.005 0.01 0.015 0.02
T = 100 5.2 3.1 2.1 1.1 0.8
T = 400 5.0 2.3 2.0 0.8 0.2



THE LR TEST UNDER UNCORRELATED ERRORS 39Table 4: Empirial power (in %) of the LR test for the AR(1) model (5.6) in the strong andweak ase with T = 100 and eπ2 + π1 = −0.85.
̟ 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35MD (5.1) 7.4 20.3 35.9 55.5 74.0 86.5 93.8 98.1MD (5.2) 6.3 18.8 36.9 57.6 78.3 90.8 96.6 99.0WWN (5.3) 3.8 13.9 28.6 52.1 75.6 90.7 97.8 99.5SWN 4.8 14.8 30.7 55.0 78.2 93.2 97.9 100.0Case: π1 = −0.7 π2 = 0.15 e = −1 θ = −1.5.Table 5: As Table 4, but for T = 400.

̟ 0 -0.05 -0.1 -0.15 -0.2MD (5.1) 6.3 72.2 99.7 100.0 100.0MD (5.2) 6.2 74.4 100.0 100.0 100.0WWN (5.3) 4.7 72.6 99.8 100.0 100.0SWN 5.9 74.3 99.9 100.0 100.0
Table 6: As Table 4, but for eπ2 + π1 = −1.8 ≈ −2.

̟ 0 -0.03 -0.04 -0.05 -0.06 -0.07 -0.09 -0.11MD (5.1) 0.3 16.0 32.2 52.4 67.8 80.3 91.6 99.8MD (5.2) 5.5 7.1 20.6 43.8 65.8 81.6 94.3 98.9WWN (5.3) 0.1 18.3 33.6 52.6 69.0 80.3 94.1 98.1SWN 1.3 13.1 30.4 51.2 67.8 82.2 95.4 98.8Case: π1 = −0.9 π2 = 0.9 e = −1 θ = −1.5.Table 7: As Table 6, but for T = 400.
̟ 0 -0.03 -0.04 -0.05 -0.06 -0.07 -0.09 -0.11MD (5.1) 4.9 0.5 20.2 72.1 96.3 99.9 100.0 100.0MD (5.2) 6.1 0.0 2.8 62.4 97.3 99.9 100.0 100.0WWN (5.3) 2.2 3.7 27.6 72.5 96.9 99.9 100.0 100.0SWN 4.3 0.3 22.9 74.4 98.0 99.9 100.0 100.0
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Figure 7.1: The relative rejetion frequenies (in %) of the LR test for di�erent values of k in theweak white noise (5.1) for T = 100 (full line) and T = 400 (dotted line). Case 1: π1 = −0.1 π2 = 0.9

e = −1 θ = −1.5. Number of repliations n = 1000.
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Figure 7.2: The same as in Figure 7.1 with a weak white noise whih follow an ARCH model (5.2)with a11 = a22 and a21 = a12 = 0.
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Figure 7.3: The same as in Figure 7.1 with a weak white noise whih follow an all-pass model (5.3)with φ1 = φ2.
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Figure 7.4: E�et of the trend parameter θ in the strong ase: Relative rejetion frequenies (in%) of the LR test for di�erent values of θ in model (5.4) with iid errors for T = 100 (full line) and
T = 400 (dotted line). Case: π1 = −0.1 π2 = 0.9 e = −1. Number of repliations n = 1000.
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Figure 7.5: E�et of trend parameter θ, the weak white noise (5.1) ase: The same as in Figure 7.4but for an error proess whih follow (5.1) with k = 1.
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Figure 7.6: E�et of trend parameter θ, the ARCH ase: The same as in Figure 7.4 but for an errorproess whih follow (5.2) with a12 = a21 = 0.1, a11 = 0.2 and a22 = 0.3.
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Figure 7.7: E�et of trend parameter θ, the all-pass ase: The same as in Figure 7.4 but for anerror proess whih follow (5.3) with φ1 = φ2 = 0.7 for T = 100 (full line) and T = 800 dotted line.
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Figure 7.8: The relative rejetion frequenies (in %) of the LR test for di�erent values of φ1 = φ2in weak white noise (5.3) for T = 100. Case1: eπ2 + π1 = −1 (full line). Case 2: eπ2 + π1 = −0.1(dotted line). Number of repliations n = 1000.
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Figure 7.9: The relative rejetion frequenies (in %) of the LR test with orrelated errors for
T = 100 (full line) and T = 400 (dotted line). Case: π1 = 0.9 π2 = −1 e = 1 θ = −0.5. Numberof repliations n = 1000.

Figure 7.10: The daily exhange rates of U.S. Dollars to one British Pound and of U.S. Dollarsto one Euro. Data soure: The Researh Division of the Federal Reserve Bank of St. Louiswww.researh.stlouisfed.org.
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Figure 7.11: Autoorrelations of the residuals of the VECM with r0 = 1 and p = 2 for the the dailyexhange rates of U.S. Dollars to one British Pound and of U.S. Dollars to one Euro. The left graphirepresent the autoorrelations r̂11(h) of the residuals ǫ̂1t and the right the autoorrelations r̂22(h) ofthe residuals ǫ̂2t. The horizontal lines about zero represent the approximate 5% signi�ane limits forthe sample autoorrelations (that is ±1.96/
√

T with T = 1578).
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Figure 7.12: The same as for the Figure 7.11 but for the rossorrelations of the ǫ̂1t's and the ǫ̂2t'swith obvious notations.
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Figure 7.13: The same as for the Figure 7.11 but for squared residuals of the analyzed series.



46

r̂12(h) r̂21(h)

h h2 4 6 8 10 12 14 16

-0.1

-0.05

0.05

0.1

2 4 6 8 10 12 14 16

-0.1

-0.05

0.05

0.1

Figure 7.14: The same as for the Figure 7.12 but for squared residuals of the analyzed series.


