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TESTING THE COINTEGRATING RANK WHEN THE ERRORS
ARE UNCORRELATED BUT NONINDEPENDENT

HAMDI RAISSI* Université Lille 3

Abstract

We study the asymptotic behaviour of the reduced rank estimator of the
cointegrating space and adjustment space for vector error correction time series
models with nonindependent innovations. It is shown that the distribution of
the adjustment space can be quite different for models with iid innovations
and models with nonindependent innovations. It is also shown that the
likelihood ratio test remains valid when the assumption of iid Gaussian errors
is relaxed. Monte Carlo experiments illustrate the finite sample performance
of the likelihood ratio test using various kinds of weak error processes.
Keywords: Cointegration, reduced rank regression, likelihood ratio test, strong
mixing condition, vector error correction model.

1. Introduction

Multivariate processes are often used in econometric applications because they allow
to understand the interactions between different variables. In order to describe long run
economic relationships, the cointegration theory has been developed by Granger (1981),
Engle and Granger (1987), Ahn and Reinsel (1990). This theory postulates that, in
some cases, a stationary process of lower dimension is obtained by considering linear
combinations of the components of a multivariate nonstationary process. The number
of independent linear combinations is the cointegrating rank and is an important piece
of information for the analysis of economic data.

The dominant test for the cointegrating rank is the likelihood ratio (LR) test
developed by Johansen (1988, 1991), Perron and Campbell (1993), Liitkepohl and
Saikkonen (1999) in the framework of vector error correction models (VECM). For
the cointegration analysis, the errors terms are generally supposed to be independent
and identically distributed (iid). When applied to economic data (see for instance
Johansen and Juselius (1990), Clements and Hendry (1996) or Trenkler (2003)), this
iid assumption seems too restrictive because macroeconomic time series often exhibit
conditional heteroscedasticity and/or other forms of nonlinearity.

Rahbek, Hansen and Dennis (2002) studied the effect of ARCH innovations on the
LR test. An important output of their work is that the LR test remains valid when the
error process is a martingale difference. However the assumption that the error process
is a martingale difference precludes other forms of dependence. Indeed there exist many
examples where the assumption of iid or martingale difference on the innovations is not
satisfied (see for instance Francq, Roy and Zakoian (2005) in the univariate ARMA
case or Francq and Raissi (2005) in the VAR case). The first aim of this paper is to
study the validity of the LR test in a general context of uncorrelated errors.
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The second aim is to study the asymptotic behaviour of the usual estimators of
the cointegration and adjustment spaces, in the general framework of VECM with
uncorrelated, but possibly dependent errors. We will compare our findings to the
usual iid case and results of Seo (2007) which shows in particular that the asymptotic
distribution of the reduced rank estimator of the cointegrating space is robust to
conditional heteroskedasticity. We will use the standard reduced rank procedure to
estimate the cointegration space, relaxing the assumption of iid gaussian innovations.

The structure of the paper is as follows. In Section 2 we present the model and we
derive the estimators of the parameters. In Section 3 we give the asymptotic behaviour
of the LR test. In section 4 we state the consistency of the cointegration space and the
adjustment space. In Section 5 Monte Carlo experiments are performed. The proofs
are relegated to the appendix.

In the sequel the following notations are used. Weak convergence is denoted by =

and we denote by L the convergence in probability. For a full column rank matrix A
of dimension d x r with d > r, we define the orthogonal complement A, , which is a
full column rank matrix of dimension d x (d —r) and such that A’A; = 0. The symbol
® denotes the usual Kronecker product and vec(A) denotes the vector obtained by
stacking the column of the matrix A. We denote by t¢r(B) the trace of a square matrix
B. We denote by [m] the integer part of a given real m.

2. Characterization of the model

We consider the following VECM with linear trend

p—1
AX; =TI X—1 + Z ToiAXi—i + poo + fort + € (2.1)
=1

where 1,0 and p,1 are d-dimensional parameter vectors. The process (e;) is usually
assumed iid with mean zero and positive definite covariance matrix .. In the sequel
we will consider a weaker assumption for the error process. The Ty;, ¢ € {1,...,p — 1},
are d x d short run parameters matrices. By convention the sum vanishes in (2.1) when
p = 1. The following assumption gives us the general framework of our study.

Assumption A1 (Cointegration and restriction on the trend parameters)

(a) The matrix Iy is of rank rq (0 < g < d). If 7o > 0 then IIy can be written as
Iy = apB} where ap and Gy are full column rank matrices of dimension d X ry.

(b) The autoregressive polynomial A(z) = (1 — 2)Iq — gz — Ef:_ll Toi(1 — 2)2% is
such that | A(z) |= 0 implies that | z |> 1 or z = 1.

(c) The matrix af  T'ofBoy is of full rank d — ro, where I'o = Iy — f;ll To;.

(d) The vector pe1 is such that p,1 = —ag7o, where 79 # 0 is an rp-dimensional
vector.

Note that if 7o = 0 the relation (2.1) is a vector autoregressive model for the

process (AX;). Condition (d) is the less restrictive condition on the parameters of the
deterministic part of (2.1) which allows for trending behaviour for (X;). Indeed under
A1, from Granger’s representation theorem, the solution of (2.1) has the following
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representation
t

Xi=CY i+ port+ poo+Yi + A, (2.2)
=1

where C' = By (af, Tofor) ‘g, . The term A depends on initial values and is such
that 3)A = 0. The stationary process (Y;) is of the form

o0
Y, = E ©0i€t—is
i=0

where C(z) = 3.7 02" is convergent for | z |< 1+4, for some § > 0. Note that (2.2)
implies that (X;) is an I(1) process. From (a) and (d) we can write (2.1) as

p—1
AX; = Vg + aoﬁé*th + Z FOiAthi + € (23)
i=1

where Z1;, = (X,_1,—t+1) and 8§ = (8}, 7). The d-dimensional vector of constants
vo and the rg-dimensional vector 7y are functions of the parameters in (2.1). Note
that in (2.2) the vector p,1 is such that 3(p,1 = 7. Then it can be seen from (2.2)
that (8, X: — E(6,X:)) is trend stationary and the ro-dimensional process (85 Z1¢ —
E(By Z11)) is stationary. We say in this case that the cointegrating rank is 9. In this
study we test, for some r (0 < r < d), the null hypothesis

Hy:ro=r vS. Hy:rg>r.

Note that in (2.3) the parameters ag, 5y and 79 are not identified. Indeed for a given
o1, Bo1, and since we assumed that these matrices have full rank, we can take any
non singular matrix ¢ of dimension 79 x 7 such that Bp2 = Bo1¢ and cpe = a1 (¢')~?
will give the same matrix Ily. To get rid of this problem one can consider the following
normalization

Bie = (Boes 10e)" = ((Bo(¢Bo) ™)', (Bhe) '10)"  and e = afBje,

where the dimensional d x ry matrix c is such that ¢/ 3y has full rank. This normalization
ensures identifiability in the sense that we have (y1. = Bo2.. To see this, note that

dBore = Boze = Iy, = Bor(c'Bor) " = Bor(/ Bor¢) ™"
= Bor [('Bor) ™" = ¢(Bor¢) '] = 0. (2.4)

Then since ¢’y is a full rank matrix, this implies that
(¢Bor) " = <¢(¢Bor¢) "t =0. (2.5)

Multiplying (2.5) by Bo1 on the left, we obtain Bp1. = Bo2.. Once the parameter [y is
identified, it is easy to see that ag. and 7y, are also identified. It should be also noted
that the cointegration space and the adjustment space, that is the spaces spanned by
respectively (o and aq., do not depend on the choice of the matrix c.



In general the assumption that (e;) is iid gaussian may appear to be too strong.
Indeed it is questionable to assume that a linear combination of X;_1,..., Xy, is the
best predictor of X;. In addition note that, from a practical point of view, the order p
is often identified using tests that are only based on the autocorrelations of (). For
instance let us consider the daily exchange rates of U.S. Dollars to one British Pound
and of U.S. Dollars to one Euro from January 2, 2001 to April 12, 2007. The length of
the series is T' = 1578. The analyzed data are plotted in Figure 7.10. We adjusted the
model (2.1) to the series with ro = 1 and p = 2 using the software JMulTi. Figures
7.11-7.12 display the autocorrelations and crosscorrelations of the residuals. Figures
7.13-7.14 display the autocorrelations and crosscorrelations of the squared component
of the residuals. In view of Figures 7.11-7.12 the hypothesis of uncorrelated errors seems
plausible. Indeed most of the autocorrelations and crosscorrelations are inside the
5% significance limits. However since many autocorrelations and crosscorrelations are
outside the 5% significance limits in Figures 7.13-7.14, the hypothesis of independent
errors is clearly rejected.

Rahbek et al (2002) considered VECM with martingale difference innovations. In
our framework we will consider a more general assumption allowing for a large class of
€rTOr processes.

Assumption A2  The error process (€;) is strictly stationary and such that
Cov(eg, ei—p) =0 for all t € Z and all h # 0.

Such error processes are commonly named weak white noise. Note that Granger’s
representation theorem still holds when the assumption of iid gaussian innovations is
replaced by A2. The following are examples of error processes which verify A2 but
are not iid.

Example 2.1. Consider the process (e;) defined by the relation
€= ay + P{es1 O agl, (2.6)

where ® denotes the Hadamard product, (a;) is a d-dimensional iid centered process
such that | E(a;iaj:) |< 1, and the matrix ® is diagonal of dimension d x d and such
that | ®;; |< 1. Taking ®° = I, the equation (2.6) has a stationary solution of the form
€ = Z?io ®la;_; O - © ay. It is easy to see that the €,’s are uncorrelated. However

Cov(€gy, €5_1) = Elak,)Cov((1 + ®yesn—1)?,¢fy_1) # 0,
in general, showing that the process () is not iid.

Example 2.2. The univariate all-pass models (see for instance Breidt, Davis and
Trindade (2001)) constitute an important class which can be extended to the mul-
tivariate case. Assume that the process (e;) is the unique solution to the following
equation

€ — Po1€t—1 — *** — Pog€t—q = Wy + ¢Oq71¢aq1wt71 +-F ¢01¢8q1wt—q+1 - ¢5q1wt—q7
where ¢(z) = Ig — 012 - - — Poqz9 is such that ¢(z) # 0 for | z |[< 1. The centered
process (w;) is iid with variance X,,. Assume also that the matrices ¢o1,. .., o, are

diagonal. Writing the spectral density for each component (¢;;), it can be shown that
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the process (¢;) is uncorrelated (see Andrews, Davis and Breidt (2006)). However if yo
is not gaussian the process () is not independent. To see this consider the following
bivariate simple example

€ — Q€1 = Wy — ¢_1wt71

¢ 0
where ¢ = ( 0
¢1€1.—1. Since (€;) is uncorrelated, the process () follows an causal M A(1). Then
we have ey = > .- ¢"9¢_;. Straightforward computations show that E(e;; 97 ;) =
Eler(e1r—1—e€11-2)% = Bwi(1—¢;*)(14+¢1) and E(e197_ 1) = Elerr(e1s—1—e€11-2)%] =
(Ew} — 3)(1 — ¢7?)?¢y. Using the fact that 9;_; belongs to the o-field generated by
{€1u, u <t}, wehave E{97_ FE(e1; | €1t—1, )} # 0 for Ew} # 0 and E{9}_, E(ey; |
€1t-1,-)} # 0 for Ew} # 0. Thus the (e;) process is not a martingale difference in
general.

) and | ¢1 |< 1, | ¢2 |< 1. Let us introduce ¥ = €1 —

2.1. Derivation of the quasi maximum likelihood (QML) estimators

Now we turn to the derivation of the QML estimators of ag. and ;.. We use
here the QML method because we assume that the errors terms are uncorrelated
but not necessary gaussian independent. Note that the estimation procedure we
will describe is performed under Hy. In the framework of the VECM we shall see
that the methodology in Johansen (1988,1991) in the iid case remains valid under
uncorrelated errors assumption. We will use the following notation. Let Zy, = AXy,
th = (AX{?D .. "AXéprrl’ 1)’, \I/O = (F()l, NN ,Fopfl,Vo) where Xt = 0 for ¢ S 0.
The expression (2.3) becomes with these notations

Zot = aocfBnZi + WoZo + €. (2.7)
Here we can remark that since X is I(1) then the processes Zy; and Z; are stationary.

Using (2.7) and given the observations X, ..., Xy we write the quasi log-likelihood as
follows

1
1OgL(‘IJ,OzC,ﬂC, Ee) = _§T10g | Ye |
1 T
—§t7" {Z SoHZor — BB Z1y — W Zoy) (Zow — e Z1y — ‘IJZ2t)/} ;
=1

where
6: = (6::77—0)1 = ((6(0/6)_1)/7 (ﬁlc)_lT)l and o, = aﬁlc'

The maximum likelihood estimation method for the VECM with uncorrelated errors
implicates several steps. We first estimate the parameters in the matrix ¥, and obtain

U(ae, B) = MoaMsy' — aeB Mia Moy
where

T
My =T ZuZ,.
t=1



Now defining by Ry: and R;; the residuals of respectively the regressions of Zy; and
Zy: on Zo, we get the concentrated log-likelihood

1
log L(awe, B5,3e) = —§Tlog | 2 |
1 T
—gt’l” {Z E;l(ROt — Oécﬂé*th)(ROt — Olcﬁ(/:*th)/} (28)
t=1

where
Rot = Zot — MoaMyy' Zoy  and Ry = Zyy — MiaMayy' Zoy.

Since the Rj;’s are the residuals of the regression of the Zi;’s on the Z3’s, and
noting that the process (Z1;) is I(1) and the process (Za;) is 1(0), then the process
(Ri1¢) is I(1). The expression of the concentrated log-likelihood corresponds to the
regression equation

Ry = 060«:56*0th + €, (2.9)

so that we obtain the following unfeasible estimators of ag. and 3. in (2.9) by ordinary
least squares

Ge(B5.) = Sor B (B S1185) ™" (2.10)
Se(Be) = Soo — Ge(Bge) (BheS1185e) (55

where

T
Sij=T""> RuRj,.
=1
Note that replacing o, and X, by their estimates in (2.8) we write

tog L(6(52), 32, 5.(62) = —5 Tlos | S(57) | —dT:

Finally the parameters in ;. can be estimated using the results of the well known
reduced rank method of Anderson (1951). In this end we shall minimize the following
expression

| Se(82) 1= Soo — So1 35 (B S118;) ' B Sho | -
Using the relation

A A - Y
‘ M =] Ay || Ao — Asi AT Ara =] Ass || Aun — A1 A5y Asy |,

A21 A22

we find

(511 - SlOS&)lSOl)ﬁ: |
| B S By | '

1£3
| Soo — So185 (B S1185) B2 S10 |=| Soo | |5

Under the null hypothesis and using Lemma 7.1 the expression | 32 (S11—S10S50 So1)3; |
/ | B2¥S118; | is minimized for the following normalized expression
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where

B = (B, 7) = S;l%(vl,...,vr)

and vy,...,v, are eigenvectors corresponding to the r largest solutions 5\1 > > S\T
of the eigenvalue problem

| AT = S}, 810555 S0157,% |= 0. (2.11)

In addition the matrix ¢4 is of full rank. We obtain &, = So1 5. (355511 55,) " Noting

that we have | £.(6%) |= [T/, (1 — \;), the likelihood ratio test for r is given by

Then to test the null hypothesis, we consider the LR test statistic

d
—2log @, =-T Z log(1— \i),

1=r+1

where 5\1 > > j\d are the d greater solutions of the eigenvalue problem (2.11). In
the next section we will study the asymptotic behaviour of the LR test statistic.

3. Asymptotic properties of the LR statistic

To state the main results of the paper, the assumption that the process (e;) is
uncorrelated is not enough. Indeed we have to control the serial dependence of the
process (e;). To this end we introduce the mixing coefficients ag(h) for a given
stationary process (&)

ag(h) = sup |P(ANB) — P(A)P(B)],
A€o (&y,u<lt),BEo(Ey,u>t+h)

which measures the temporal dependence of the process (& ). Define |||, = (E||& )",
where ||.|| denotes the Euclidean norm. Then we need to make the following assumption
on the process ().

Assumption A3  The process (e;) satisfies |||y, , < 0o and the mixing coef-

ficients of the process (€;) are such that 372 ({ac(h)}*/?) < 0o for some v >
0 and 75 >0.

Note that the kind of dependence induced by A3 is mild for the error process (e;).
The following proposition gives us the asymptotic distribution of the LR test statistic.

Proposition 3.1.  Under A1, A2 and A3, the LR test statistic has the same asymp-
totic distribution as in the iid gaussian case, that is
1
[ / F(dB)’} NERY,
0

—2log Qr, = tr { [/01 F(dB)’} [/01 FF’du]

/ —1



where B is a standard d — o dimensional Brownian motion, and the components F; of
F are given by

E(u) = Bi(u)—Bi izl,...,d—T‘Q,

Fd*ToJrl(u) = u-

and B; = fol Bi(u)du.

The same result was found by Rahbek et al (2002) under the assumption that the
error process (€;) is a martingale difference and in the framework of VECM without
deterministic terms. A consequence of Proposition 3.1 is that the results for testing
the cointegrating rank using the LR test statistic can be directly extended from the
usual iid gaussian assumption on the error process. Then we can use the same critical
values as in the iid case to test the cointegrating rank (see Johansen (1995), Table
15.4). We reject the null hypothesis if —2log@, > ¢ for a given quantile ¢ of the
distribution given in (3.1). Therefore, following the Johansen procedure for selecting
the cointegrating rank, we apply successively this test to » = 0,1,2,...,d — 1 until
we obtain —2log @, < ¢. Note that if 79 = 0, we use a different test statistic and a
different limit distribution is obtained in this case. In the next section we will study
the asymptotic behaviour of the QML estimators.

4. Asymptotic properties of the QML estimators

In this section we suppose that the cointegrating rank is well identified and only
consider estimates of 3, with dimension (d x rp). In the sequel we will denote by W (u)
the d-dimensional brownian motion of variance ¥ and define W = fol W (u)du. We
also define the matrix 3y = (39(350) *. The following Proposition gives the asymptotic
behaviour of 3.

Proposition 4.1.  Under A1, A2 and A3, T(5. — Bo.) has the same asymptotic
distribution as in the iid gaussian case that is

. ~ 1 -1 1
T(Be — Boc) = (Ia — Boec")Bo L [/0 G1.2G/1,2du] /0 Gi1.2(dVy) (4.1)

T (R -(83)
G12=G1 — (/01 Gngdu) (/01 GQngu) B G,
and

Vi = (g, S ape) Lo B W

€

is independent of G. Then Bc 15 asymptotically distributed as mizture normal with
variance

-1

1
(Id — /BOCC/)BOL |:/ G1,2G’1.2du] (Id — Cﬂéc) ® (04602210406)71. (42)
0
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Moreover we have
o = Toe + O, (T 2). (4.3)

Seo (2007) also found that the asymptotic distribution of the reduced rank estimator
is not changed when the errors are conditionally heteroscedastic.

It is interesting to note that the results of Proposition 3.1 and Proposition 4.1 remain
valid considering Y = (85 Z1+)’, Z};) and replacing A3 by the following assumption.

Assumption A3’  The process (T;) satisfies || T¢||5,,, < oo, moreover the mixing
coefficients of the process (1) are such that

Z{ay(h)}”/@'“’) <oo for some v >0 and n>0. (4.4)
h=0

However assumptions A3 and A3’ are not equivalent. Note that using A3’ we con-
sider I(0) transformations of the process (X ), that is 3(* Z1, and Zy,, so that we are able
to use the theory of stationary mixing processes in our framework. Note also that the
summability condition (4.4), implies that ((65"Z1¢)’, Zot)" and ((B5* Zie4n)'s Zoiyp)' are
asymptotically independent while it is assumed there exist long-run relations between
the components of X;. A simple illustration of the kind of processes we consider is
given by the following bivariate I(1) process X; = (X1, X2:) such that

t

X1t =v1) o +vit+en
¥

Xor =12y, i€i+vat+ey

where the process (egt, €14, €2¢) is a mixing process, and 14 # 0 and vo # 0. Here taking
Bo = (va,—11) it is clear that the process ()X, AX}) is mixing.

In order to state the consistency of the estimator of c., we have to introduce the
following notations. Let us define

Bhe Ry = BonZhe — BheMia My, Zo (4.5)
where
6*01\_412 = Thm 6&‘;M12 and Mzg = Thm Mzg.

The existence of these limits is ensured by the ergodic theorem since the processes
(BheZ1t) and (Za;) are stationary ergodic. Define the matrix ¥ = E(G0;R1:R1,55,) =
Var(B5.Z1) — E(Boe(Z1 — Z1)(Zar — Za) )WV ar(Za) " E(Zay — Zat)(Z1e — Z1)' B3,
where Zoy = (Zgy_15- -+, Zoy—py1)’- We also need to consider the following assumption
which strengthens A3.

Assumption A4 The process (¢;) satisfies [|e;[|,, 5, < oo and the mixing coefficients
of the process (¢;) are such that ;- ({a.(h)}*/?*) < 0o for some v > 0.

The following Proposition give us the asymptotic behaviour of the estimator of ..



10

Proposition 4.2.  Under A1, A2 and A4, the expression Tévec(dc — ac) has the
following asymptotic distribution which is different from that of the usual iid gaussian
case,

T2vec(be — ane) = N(0, Sa) (4.6)

where

Sa= 3 B{SIhRR L HS @ ad )

h=—o00

In the iid gaussian case the asymptotic variance is given by
S =310 %,

so that in this case (4.6) corresponds to the result in Johansen (1995, Theorem 13.3 p
183). We also can obtain the result of Proposition 4.2 replacing A4 by the following
assumption.

Assumption A4’ The process () satisfies || T¢[|,,,, < oo , moreover the mixing
coefficients of the process (Y;) are such that

Z{ay(h)}”/(2+”) < oo for some v >0.
h=0

Then despite the fact that the assumption of iid gaussian noise is relaxed in the
estimation procedure, the estimates of . and 3, obtained in Section 2 are consistent.

5. Monte Carlo experiments

In this section we compare the small sample properties of the LR test in the cases
of iid and dependent innovations for bivariate processes. Throughout this section the
error process is normally distributed with mean zero and variance matrix I in the iid
case. We will consider several kinds of weak error processes. Consider the iid process
Ny = (nlt,nzt)/such that 7 ~ N(0,13). We first consider a bivariate error process

defined by
€ = ( MeMe—1---Mt—k ) , (5'1)
N2tN2t—1 - - MN2t—k

for some integer k. Note that the components of €; correspond to the univariate weak
white noise built by Romano and Thombs (1996). The innovations process defined in
(5.1) is obviously not independent. It can be shown that (¢;) is a martingale difference.
Note also that the error process is k-dependent, in the sense that ¢; and e;—; are
dependent for ¢ < k and independent for ¢ > k.

In order to illustrate the effect of ARCH innovations on the LR test statistic we
consider the model with constant correlation proposed by Jeantheau (1998). In our
simulations the process (¢;) follows the DGP given by

€1¢ o 0 M1t
= 5.2
<62t) <0 U2t><772t) (52)
ot \ _ ( 01 4 o a2 €Tr1 '
o3, 0.1 a1 a2z €511

where
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The elements a11, a12, a21 and ags are supposed to be positive. In addition we suppose
that the stationarity conditions hold (see Jeantheau (1998) for more details). In this
case the process (€;) is a martingale difference and presents conditional heteroscedas-
ticity.

The third weak error process follows an all-pass model of Example 2.2 defined by

€ — e = wy — ¢ ‘wy_1, where ¢ = < ¢1 0 ) (5.3)
0 ¢
and ¢1, ¢ are real and such that | ¢1 |< 1, | ¢2 |< 1. The terms w; are defined
by w; = yor ® Y211, where (y;) is iid M(0, I2). Note that the process (wy) is iid but
non gaussian. Contrary to the first and second case, the innovation process is not in
general a martingale difference.

5.1. Empirical size

We simulated n = 1000 independent trajectories of length 7" = 100 and 7" = 400
given by the following bivariate DGP

AXyy T em Xit-1 1 €1t
(AX2t>_<7T2 €7T2>(X2t1> 9<7T2>(t 1)+(€2t> (54)
where 71, me, e and 6 are real. The true cointegrating rank is rg = 1. Note that
the conditions (b) and (c) of A1 become in this case —2 < emy + m < 0. When the
equation | A(z) |= 0 has two solutions, they will be denoted by z; = 1 and 25. In the
sequel, we consider tests of the hypothesis Hy : g = 1 at the asymptotic nominal level
5%, assuming the order p = 1 is known.
In Tables 1 and 2, we consider three different cases of the model (5.4) to study the
behaviour of the LR test in different points of the parameter space. For the three

cases we take my = 0.9, e = —1 and 6 = —1.5 so that only 7 changes. We take
m1 = —0.1 for Case 1, m; = 0.8 for Case 2 and m; = —0.8 for Case 3. For Case 1
we have emry + m = —1 and the equation | A(z) |= 0 has a unique solution which

is equal to one. Note that when emy + 71 = 0, we have zo = 1 so that the process
(X¢) is integrated of order higher than one. Actually ems + 71 = 0 corresponds to
| & ToBor |=01in condition (c) of Al. Case 2 is close to this limiting since we have
ems +m = —0.1 0 and z2 =~ 1. When emy + m1 = —2, we have zo = —1 so that the
condition (b) of A1 is not satisfied. Case 3 is close to this limiting situation since we
have emy + 1 = —1.7 ~ —2 and 29 =~ —1. We will consider for each of these cases the
white noises presented above. Recall that in the iid case the error process is normally
distributed with mean zero and variance matrix I>. For the weak white noise (5.1)
we take k = 1. For the weak white noise (5.2) we take a11 = a21 = 0.2, a12 = 0.1,
ase = 0.4 and for the weak white noise (5.3) we take ¢1 = ¢o = 0.7. In the following
tables WWN stands for weak white noise, MD for martingale difference and SWN for
strong white noise. The relative rejection frequencies are displayed in bold type when
they are outside the 5% significant limits 3.65% and 6.35% in Tables 1 and 2.

In order to illustrate the behaviour of the LR test when the effect of the weak white
noises increases, we first apply the LR test when the error process follows (5.1) with
different values of k in Figure 7.1. We also apply the LR test when the error process
follows the ARCH model (5.2) with as; = a12 = 0 and different values of a;1 = aga.
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The results are presented in Figure 7.2. Since we assumed that 7 ~ N(0,I3), the
moments of order two exist for a;; < 1. The existence of this moment is indicated
by vertical lines. Note also that the error process is strictly stationary for a;; < 3.56.
The same experiment is made for the weak white noise (5.3) with different values of
¢1 = ¢2 in Figure 7.3. These experiments are performed for Case 1. We will also
study the behaviour of the the LR test for different values of the trend parameter 6 for
each of the noises considered above. We will take the same parameters for weak white
noises (5.2) and (5.3) as in Tables 1 and 2. We will also take k = 1 for weak white
(5.1) for these experiments. The results are presented in Figures 7.4-7.7 for 71 = —0.1,
7o = 0.9 and e = —1.

We will first interpret the results for Case 1 in the different experiments we per-
formed. In Table 1 it emerges that the LR test is more liberal when the innovation
process is a martingale difference than in the case of strong innovation for the sample
T = 100. In addition note that from Figure 7.1 the LR test is over-rejecting for
increasing values of k in the weak white noise (5.1). From Figure 7.2 the same
conclusion can be made when the ARCH effect increases and the moment of order
two exist. From Table 1 it seems that the LR test is more conservative by comparison
to the strong case when the error process follows an all-pass model. This is confirmed
from Figure 7.3 when the all-pass effect increases. In general according to the results
of our experiments the LR test has some difficulties to assess the cointegrating rank
for small samples when the errors are not iid.

Note however that the rejection frequencies for Case 1 in Table 2 are inside the
significant limits 3.65% and 6.35%. In addition Figure 7.2 shows that the results are
better for samples of size T" = 400 than for 7" = 100 when a1; < 1. This confirms
that the LR test remains valid for uncorrelated errors when [|e||,,,, < co. This also
confirms the result of Rahbek et al (2002) who showed that the LR test remains valid
in the framework of martingale differences, assuming the existence of moments of order
two. However the rejection frequencies increases for a;; < 1. When the moments of
order two do not exist (a11 > 1), it seems that the LR test is no longer valid. Similarly
Figure 7.3 clearly shows that the results are better for samples of length 7" = 400
than for samples of length 7' = 100. The same can be stated from Figure 7.1 when
the dependence of the error process is not strongly marked. Note that the results for
samples T = 400 are not better from those of samples T' = 100 for great values of k.
Then the theoretical results are beared out by the results of our experiments.

Finally from Figures 7.4-7.7 it seems that the LR test becomes more conservative
for small values of the trend parameters. This could be explained by the fact that
when 6 ~ 0 the model (5.4) resembles to a model without trend. In the case of VECM
without trend one should use other critical values.

In order to interpret the results of Cases 2 and 3 recall that the parameters are close
to the boundary of the parameter space in these two cases. In Case 2 the root z3 is
near the point z = 1, and in Case 3 the root 25 is near the unit circle but far from
the point z = 1. From Tables 1 and 2, it seems that the finite sample performance of
the LR test is not affected too much for Case 2. Note that from Figure 7.8 the LR
test is clearly more liberal in Case 2 than in Case 1 when the error process follows an
all-pass model. However for Case 3, according to Tables 1 and 2 the LR test has bad
performances unless when the error process follows an ARCH model. Then, for a given
kind of weak white noise, the small sample properties of the LR test can change when
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the parameters are close to the boundary.

Now we will study the validity of the asymptotic distribution of the LR test in (3.1)
when the error terms are correlated. We consider a DGP of the form (5.4) with the
following correlated error process

e: = cos(0.5 arcsin(28))n; + sin(0.5 aresin(26))n—1.

It is easy to check that Var(e;) = I and Corr(e;,e;.—1) = 6lo. We apply the LR
test based on the asymptotic critical value of level 5% to a DGP of the form (5.4)
for testing the hypothesis 1o = 1. Clearly from Figure (7.9) the LR test turns out
to be over-rejecting when § is far from zero. In addition the results are worst for
samples T = 400 than for 7" = 100. Then, from the results of our experiment, we
can speculate that the LR test is no longer valid when the errors are correlated. This
speculation seems reasonable since it can be seen from Phillips (1988) (see also Phillips
and Durlauf (1986)) that the standard results we use to prove Proposition 3.1 change
when the assumption of uncorrelated errors is relaxed.
Finally we consider the following non conditionally heteroscedastic errors

e = (1+f x t)n, (5.5)

where f is real positive, and study the small sample properties of the LR test in
this case. Similarly to the previous experiment, we apply the LR test based on the
asymptotic critical value of level 5% to the bivariate DGP (5.4) testing the hypothesis
ro = 1. From Table 3 the LR test seems to be too conservative in presence of
heteroscedastic errors. In addition the results for samples 7' = 400 are worst than
for T = 100, so that we can also speculate in this case that the LR test is no longer
valid.

5.2. Empirical power

Now we repeat the same experiments, considering the following bivariate AR(1)
model written in error correction form

AXyt m em Xit-1 T €1t
( AXot ) B < Ty emy +w > < Xot—1 ) a ( o )(t_1)+ < €t ) (56)
m €m ) is of full rank
T €T+ w
(rk(I) = 2) and det (I — (Ig + II)z) # 0 for all | z |< 1. We shall test the hypothesis
Hy : 7 = 1 for each of the noises considered in Tables 1 and 2. The rejection frequencies
of Hy are displayed in Tables 4-7 for an asymptotic critical value of level 5%.

Note that for Tables 4 and 5 we simulated a model (5.6) for which we have ery+m; =
—0.85. From the results of Table 4 it seems that the LR test is slightly less powerful
in small samples when the innovations are all-pass than when they are iid. The same
can be noted in Table 6 for an error process which follows an ARCH model when the
simulated model (5.6) is such that ery + 7 = —1.8 & —2. In general, from Tables 5
and 7, the power increases for samples of size T" = 400 when the values of w are not
too small. Surprisingly the power decreases for small values of w in Table 7.

where we choose w # 0 such that the matrix II = (
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6. Conclusion

In this work we established the consistency of the estimators of the long-run pa-
rameters (o, and the adjustment parameters ag. in the presence of uncorrelated but
nonindependent errors. We also established the robustness of the LR test in this
framework, in the sense that the LR test statistic has the same asymptotic distribution
as in the iid gaussian errors case. However from the simulations results it seems that the
finite sample performance of the LR test strongly depends on the kind of error process.
The finite sample performance also strongly depends on the position in the parameter
space. More precisely the simulations results show an important size distortion when
the dependence increases or when the deterministic trend is close to zero. Similar
conclusions were found by Rahbek et al (2002) for ARCH type errors. Note also
that it appears from our experiments that the LR test is no longer valid when the
errors are correlated. From these findings we can draw the conclusion that, despite the
asymptotic validity of the LR test, one should use it warily when the error process is
suspected to be non-independent.

7. Appendix

Lemma 7.1. Let H and K be symmetric and positive definite matrices of dimension
d x d. Define the following function

fle)=|a'He | /| 2'Ka |

where x is a full rank matrixz of dimension d x r. Define also the ordered solutions
0q > --- > 01 > 0 of the generalized eigenvalue problem

|61 — K *HK" 2 |=0. (7.1)

Then f(x) is minimized among all d X r matrices by any matriz of the form
E=K (e, e5), (7.2)
where €;,,...,e;,. are non-collinear eigenvectors corresponding to a choice of r eigen-

values 6;, of (7.1) which are such that &;, < 6,. The minimal value is given by [],_, &;.

Proof of Lemma 7.1. Let a d x d-dimensional matrix [ = (l;;). Using the relation

d
log(| Ly +1[) = tr(l) +o(| L||*) where |1 |l=max;y_ ||,

i=1
we expand the expression
log | (z+h)H(z+h) |
=log|2'Hz | +log| I+ (’Hx) ' (' Hh+h Hx + h'Hh) |
=log | o' Hx | +2tr{(«'Hz) " (x'Hh)} + o(|| b ||?), (7.3)

where h is a matrix of dimension d x r. Since we have

log f(z) =log | ' Hx | —log | 2’ Kz |
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and using the expression (7.3), we write the derivative of the function log f(z) at the
point x in the direction A

_ SLITAN—1 47 YA 7 Nt P Y
lin% log f(z 4+ sh) —log f(x) lin% 2tr{((#'Hz) " '¢'H — (¥'K&)"'2'K)sh}
S— S S— S

= 2r{((¥’Hz) '#'H — (¥'Kz) '’ K)h}.

The function log f(z) has a stationary point & if the derivative at & in the direction h
is zero for all h, hence the first order condition is

tr{((z'Hz) '2'H — (i’K2)"'2’K)h} = 0. (7.4)

Defining x = (2’H#)"'2'H — (#/K%)~'#'K the matrix of general component x;; this

condition becomes
r d

> kijhji=0 forall h.

i=1 j=1

Then the condition (7.4) is equivalent to x = 0, that is
Hi(#'H2) ' = K2(#K2)™' or cb=bb'b) " (Vcb) where &= K %b.

This means that cb is in the space spanned by b, and hence that the space sp(b) is
invariant under linear mapping c. To see this note that the matrix (b'b) = (b cb) is of
dimension 7 x 7, then the columns of b(b'b)~1(b'cb) are linear combinations of those
of b, and hence ¢b is in sp(b). Using the property that any invariant subspace is
spanned by a subset of eigenvectors, we have sp(b) = sp(e;,,...,e;, ) for some choice
of non-collinear eigenvectors e;,, ..., e; of the matrix ¢. Since we have 2 = K~ 2b we
obtain sp(2) = sp(K~2(ei,,...,e;)). In addition noting that | #/K# |=| b'b | and
| & Hi |=| b'eb |=] b'b | [Ti—; dip» we obtain f(&) = [],_, ;. which is clearly minimal
if we choose i1, ...,i, among the set of the eigenvalues ¢;, such that d;, < d,. This
complete the proof of Lemma 7.1. ]

In our framework we have to minimize the expression

| 3 (S11 — 510500 S01)B* | / | B S118* | - (7.5)

First we will proove that S7; is definite positive almost surely. Note that if S7; is not
definite positive, then there exists ¢g € R%*! such that

T
1
L6S11L0 = T ; L6R1tR/1tL0 =0
which entails (yRy; = 0 for ¢t = 1,2,...,T. From (2.2) we write
L6R1t = L~6K6t71 + -1, (76)

where 7,1 is not correlated with €,_1 and 7y is given by the d first components of ¢¢.
Note that if the matrix K is not of full rank, then then there exists 1o # 0 such that
one can predict ¢(R1; from it past values. It is easy to see that this is not consistent
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with the fact that 3. is positive definite and then K is of full rank. From (7.6) we
have Var(iyR1) = Var(lyei—1) + Var(ri—1) > iyXelo > 0. Therefore 1y Ry, = 0 is not
almost surely equal to zero, and then S7; is almost surely positive definite. Note that
using parallel arguments one can proove that Syo is almost surely definite positive.
Now we will proove that the matrix S1; — 5’105&)1 So1 is definite positive. Consider the

following matrix
Soo  Sot
0= .
( S0 Sn >

Similarly the assertion that © is not definite positive is equivalent to say that there
exists ¢ = (11,t2) # 0 such that ¢} Ro; + 15 R1; = 0 where ¢; € R? and 15 € R4, Since
we assumed that 3. is positive definite, this not consistent with (2.9), and hence © is
positive definite. Then writing

7 Iy 0 Soo 0 Io See'Sor \ _ ’
0= ( S10S00 Lat1 ) ( 0 Si1— S1055 Son > < 0 lina ) =FJF
and noting that f is of full rank, it is easy to see that 3 is definite positive. Then
since all the principal minors of 3 are positive implies that all the principal minors of

S11 — 5105’&)1 So1 are positive, the result follow.

Thus from Lemma 7.1 the expression (7.5) is minimized by considering the eigen-
vectors corresponding to the r smallest solutions 6p > --- > 6, > 0 of the eigenvalue
problem

| (1 —68)Iq— S1,%S1055'S0151,° |= 0,

or equivalently the r largest solutions 5\1 > .. > 5\T of the eigenvalue problem
_1 _1
| AT = S}, 810555 S0151,% |= 0, (7.7)
taking Ai = 1—4;. The minimal value is therefore given by [];_,(1— 5\1) and we obtain

. _1
B* =82 (v1,...,0p)
where v1, ..., v, are the eigenvectors corresponding to the r largest solutions of (7.7).

Remark 7.1. In Lemma 7.1 note that if we have 0,44 =--- =4, forg € {1,...,d—7},
the space spanned by the various matrices of the form given in (7.2) is not unique. To
see this suppose that 4,11 = §, then since the choice of the corresponding eigenvectors
er+1 and e, in this case is not unique one can replace a given e, by any vector of
the eigenspace of 4,. However in our case we show in the proof of Proposmon 3 1
below that /\T0 tends to a positive number and /\T0+1 tends to zero at the rate T~
T — oo. Then there exists Ty for which )\TO #+ )\T0+1 for all T > Ty. Thereby, under
the null hypothesis, the uniqueness of the space spanned by B is ensured for a large
enough 7" since it corresponds to the space spanned by the eigenspaces of the rq largest
eigenvalues of (7.7) with Ay, # A1

In our framework it is also important to see that we are estimating the space spanned
by the columns of 3j. Therefore noting that when X\;; = --- = \; with iy # --- #
ig and i1,...,%, are smaller than rg, the corresponding eigenvectors v;,,...,v;, are
taken arbitrarily since the choice of these eigenvectors is not unique. Similarly we
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choose an arbitrarily order for the eigenvectors vy, ..., v, by taking B = (U1, Upg)-
In fact from the kind of normalization we use in section 2 these choices does not
matter. Consider 57 = (51,71)" and 5 = (65, 72)" such that 7 # (5. Using a similar
computations of (2.4), it is easy to see that 1. = (2 and 37, = 3.

Finally note that if we have rqg = 0 we take sp(5*) = {0} and therefore we do not
need to apply Lemma 7.1 in this case.

In order to prove the results of our paper we have to state some intermediate
asymptotic results. First we will state the following Lemma in which we use the
mixing properties of the process (e;).

Lemma 7.2. Under A2 and A4 we have

—+o0
SUP § | COU(emltemgt—iuEm/lt—hemét—j—h) |< o0,
b h=—co
where my, ma,mj, mh € {1,...,d}.

Proof of Lemma 7.2. Note that without loss of generality, we can take h > 0 and
0 <17 <j. Then we write

“+oo
Z | COV(6m1t6m2t—iu 6771/1t—h@ngt—j—h) |: a1 + as.
h=0
where
i—1
ay = Z | Cov(emltemﬁfi;Em’ltfhem’ztfjfh) |
h=0
and
—+oo
az = Z | cov(emltemﬁfiyem’ltfhem’ztfjfh) | .
h=i

Using the Davydov inequality (Davydov (1968)) and the Holder inequality we have

az < Ko || e Iliy2, D fac(h)}/®) < oo,
h=0

where K is an universal constant. To deal with the terms for A < i we write

Cov (€myt€mai—is emgt,hemfzt,j,h) = Cov (emltemflt,h, emﬁ,iemét,j,h)
+FE {emltem’lt—h}E {Emzt—iem'gt—j—h}
—E{em,t€mqt—i }E {Gm’lt—hem;t—j—h} (7.8)
so that we have a1 < a3z + a4 + a5 where
i—1

az = E COV (emltem’lt—ha emzt—iemét—j—h) B
h=0
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i—1
ag = Z E{emt€mit—n B {€myt—i€my—j—n}
h=0
and
i—1
as = Z {emltemgt—i}E {Em’lt—hemét—j—h} .
h=0

Now it remains to check that the terms as, a4 and a5 are bounded. First note that

i—1

a3 < Ko || e Il{42, ) facli = h)}/CH) < oo
h=0

In addition we have using the Cauchy-Schwartz inequality and the Davydov inequality

i—1
|| €t ||§ ZE {6m1t6m’1t—h}

IN

a4

< Kolle 3l e 34, Z{a () /),

and

as < e ||§ iE {€m,t€mat—i}
<

Ko [l e l3l e 1134, S_ggi{ae(i)}”/(””)-
1=

Since sup;s i{ae(i)}*/ 1) < oo, these two above expressions are bounded, and then
the result follow. O

Now define the linear process

oo
= Z Vi€i—;
i=0

where ¢(z) = Y2 ;2" is convergent for | z |< 1+ § for some § > 0. In the sequel
we take Zl 1 €6 = 0 when j < 1. The two following Lemmas provide us some useful
results in our framework.

Lemma 7.3. Under A2 and A3 we have

[Tu]
T2 Y V= (L)W (), (7.9)
T t—1
T O eV, :»/ W (u)(dW) 4h(1) + B ( Zm : (7.10)
t=1 i=1
T t—1 1
TS Vi > [ W@y vy + S (7.11)

~
Il

1 =1



THE LR TEST UNDER UNCORRELATED ERRORS 19

T
7753tV = 0,(1), (7.12)
T
T3 Vo = 0,(1), (7.13)

where W (u) is a brownian motion of variance ..

Note that the result (7.9) is given in Phillips and Solo (1992) under the assumption
that the process is a martingale difference, and similar results of (7.10), (7.10) and
(7.12) can be found in Johansen (1995) in the iid case.

Proof of Lemma 7.3. To prove (7.9) we use the well known decomposition
P(z) = (1) + (1 = 2)97(2)
where 9*(2) = =372 0(3072,4 1 ¥5)2" and V=% (L)es, so that we obtain
Vi = (1)e + AV, (7.14)

Then we write
t t

D Vi=vM)) e+ V-V

=1 i=1

From the assumptions of our Lemma we have

Vi ll24v4n = [[* (L)etll244+9 < 00,

where L is the usual lag operator. Then using the Chebyshev inequality, we have

T
1 1
> €T3} < *||> €T=
Pl | Vi |12 %) < ST P{I V|2 TF)

< T B(| Vi |I°) — 0, (7.15)

for some 2 < s <24 v +1n.
Noting that from the assumptions we made in our Lemma the process (e;) also
verifies the mixing and moment conditions of A3, it follows from Herrndorf (1984,

Corollary 1, p. 142) that
[Tu]

T2 Z e = W(u),

t=1

and then we obtain (7.9).
For the proof of (7.10) we write from (7.14)
i—1 i—1 t—1

T T
T3 O eV =T O e)enp(1) + 771> (O e AV

t=1 =1 t=1 =1 t=1 =1
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Using the result in Phillips (1988) we obtain

T t-1
T (O eenb(1) :>/W (dW)p(1).

t=1 i=1

In addition we have

T t—1 T
T O e)AVr = T eV - T ZetVt’*
t=1 i=1 t=1
T
= T—%(Zet)T—%VT’*—T—lzetvt’*. (7.16)
t=1 t=1

Using again the CLT given in Herrndorf (1984) and using (7.15), the first term in the
right hand side of (7.16) converge to zero in probability by the Slutsky Lemma. For
the second term using the fact that ¢§ = — > .~; ¢; we obtain

T ZGV;*—» —E(eV]*) = Zm.

t=1

Then the result (7.10) follow. For the proof of (7.11) we write

T t—1 T t—1 T t-1
1 / 1 / 1 1%
T g gethl = T g €)e, (1) + T~ g €)AV*
t=1 i=1 t=1 i=1 t=1 i=1
T t—2
-1 ) 1
=T E €16 (1) + T ei)er_1(1
t=2 t=1 z:l
T t-1
+771 g €)A
t=1 i=1

Using a similar decomposition of (7.16) we have

T t—1
Ty O @AV 5 —B(aV/) = 0.

t=1 i=1

Noting that 71 Zthl €1-1€5_4 L 5., it is easy to see that we obtain (7.11) using
similar arguments of the proof of (7.10).

For the proof of (7.12) note that || ~V; [|[<|| V; || and then the statement (7.12)
follows from (7.9). Finally for the proof of (7.13), noting that from (7.9) it can be
shown that 72 Zthl Vi—1 = Op(1), the result (7.13) follow in a similar way of (7.12).
(]

Lemma 7.4. Under A2 and A4 we have

T
T7%Zvecetvt 1) = N(0,2),

t=1
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where the matrix = is of the form

E= > E{Via®a}{(Vina®e n} .

h=—o00

If we assume that the error process is iid, we obtain = = Xy ® X, where Xy =
EVVY),

Proof of Lemma 7.4. Let us define u; = vec(e,V/_ ) = Y oo vec(ee,_;_11}). We
also define uq; = Y 7, vec(ere,_;_q1}), where ¢ ~ T for some ~ €]0,1[. With these
notations we write

oo

U = Uqt +eqr where eg; = Z vec(erey_;_q0L).
i=q+1
From Lemma 7.2 and using the Chebyshev inequality and the fact that the coefficients
of the matrices v; decay exponentially it can be shown that T2 Z;f:l eqt = op(1).

Then we can deduce that -2 Y, u; and T~2 3, u,, has the same asymptotic
behaviour.

From the expression of u,; we obviously have ||ug,[, 5, < co. In addition we have
v, (h — q) < ae(h), so that 3 pe({ow, (h)}/3+) < co. Noting that

q

q
g = Y _veclere,__107) = Y (1 @ L) (e1—i1 @ er),

i=0 i=0
we write using the Lebesgue theorem and the stationarity of ug

T T
.1 .1
TILH;O T ZZcov(uq,t,uq,s) = Thm T Z (T— | h [)cov(ug,t; ug,i—n)

— 00

t=1 s=1 |h|<T

lim = Z Z — | h )(¥i @ Ig)cov{(e—i—1 @ &), (er—i—n—1 @ €)'}

i,j=1|n|<T

(Vi ® 1) = Z Z (i ® Ia)cov{(et—i—1 ® €t), (€t—i—n—1 @ €1—1)'}

1,j=1 h=—00
(i @ 1a).

The existence of this last sum is ensured by Lemma 7.2 and using the fact that
the coefficients of the matrices ¢; decay exponentially. Then from the CLT given
in Herrndorf (1984), T2 Zthl ug,¢ is normally distributed with mean zero. We obtain
the expression of = writing

u = vec(e Vi) = (Vi1 @ Ln)er = Vi1 Q e,
and

T T
o1 .1
Th—IgoT E E cov(ug, ug) :Thm T g (T— | h|)cov(ug, ue—p)

t=1 s=1 |h|<T

= > cov(upun)= Y E{Via@ea}{Viona®e n} .

h=—o00 h=—o00
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This complete the proof of our Lemma. O

The following Lemmas are equivalent to Lemmas 10.2 and 10.3 in Johansen (1995).
Recall that o1 = Bor (85, Bor) ™

Lemma 7.5. Under A1, A2 and A3, the process Z1; satisfies
T2 C(Zajru) — Z1) = G(u) (7.17)

where

_ r )
G(u) = (ﬁ“ <_u<+>2 W) ) leT‘lzth,W:/o W (u)du

and

BoL 0 )
C = — 1 .
T ( Pifor T2

Proof of Lemma 7.5. From (2.2) we have

(T (u—)]
T3y By po) Zira = T72B0,C > e +T 253, Yirw
=1
+T72 3}, (po1 + poo + A). (7.18)

It can be easily shown that the second term on the right hand side tends to zero
in probability using the Chebyshev inequality. In addition the third term does not
depends on time and vanishes by the factor T—z. From A3 and using the central limit
theorem given by Herrndorf (1984) it follows

[Tu]
T 3283, C Z € = By, OW (u).
i=1
Finally considering the continuous mapping * — fo u)du, we obtain from the
continuous mapping theorem
7%
2(BoLs Borpor)Zre =T ZT (BoLs Borpor)Zre = By CW. (7.19)

The asymptotic behaviour of the last component can be obtained noting that

lim 7_[TU] 1 lim ———
T— o0 T o T—o0 T T

and
T(T+1 T 1
lim—T2§ —t+1) imw——:—.

T—o0
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The results of Lemmas 7.6, 7.7 and the proof of Proposition 4.1 are not modified by

the choice of a normalization. Then we will consider for these results any [;.

Lemma 7.6. Under A1, A2 and A3, the residuals Ry satisfy

1
T‘lO’TSuCT:>/ GG'du
0

1
Cr(S10 — S1165aq) = / G(dW)'
0

CrS11 B85 = Op(1)
C%Slo = Op(l).

Proof of Lemma 7.6. First note that from (2.2) we have

Zot = AXy =

and since f)po0 = 70 we write

0 Ze = By Xi—1 — 1o(t — 1)

Oet + pol + A}/t,

= BLpoo + B Yi-1.

(7.20)

(7.21)

(7.22)
(7.23)

(7.24)

(7.25)

Since the process Y; is a stationary linear process, then it is easy to see that the centered
Zy) are I(0) and that these processes can also be
written as linear processes. Then we can use the results in Lemma 7.3 when needed.

processes (35 (Z1, — Z1) and (Zoy —

Define the centered stationary process (Zzt -

and let us introduce the following notations

and

Ny = T_ Z(th - Zl)(th - 21)/,

Nop =T7!

Nipg=T71

Ny =T7"

Nop =

T

t=1

!

(Zoy — 52)(221: -

e I 1

&
Il
A

(Z1s — Z1)(Zay —

(Z1i — Z1)(Zow —

Zs) where Zoy = (Zb,_ 1, ..

22)/7
22)/7

ZO)/v

T —
TN (Zar — Za)(Zor — Zo).
t=1

/ !/
) Z0t7p+1) )
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To prove (7.20) note that since we have Wy (Zo — Z3) = \i/O(ZQt — 22) where U =
(T1,...,Tp_1), we write from (2.7)

Zot — Zo = oy (Z1e — Z1) + Yo(Zar — Za) + €.
Since we defined the Ry;’'s as the residuals of the regression of Z;; on Zo; we have
T7'C811Cr = T7'CH N1 Cp — T~ Ch N1aNyy' Noy Cp. (7.26)

Using (7.18) the d first rows of C/.N12 are of the form

T =
T Z (Bo1» B por)(Zre — Z1)(Zoy — Za)) =
=1

T ot-1 T
T_lgélcz Zez Zoy — Zo) + T~ 1ﬁMZYt 1(Zay — Zn)
t=1 i=1 =1
T — ~ =
+T7 Z Bo1 (por + poo + A)(Zar — Za)'
=1
T
T (Bos»Bo1por) Z1(Zar — Z). (7.27)
=1

Note that from the expression of (Zzt — Zg) it is easy to see that this process is of the
form

oo
Lyt — 2y = Zl/fi(eéﬂ'fu s €ipy) -

Then using (7.11) the first term on the right hand side of (7.27) is normalized to
converge. The processes in the second and third terms in (7.27) are stationary ergodic,
and then using the ergodic theorem it is easy to see that these terms are normalized
to converge. Finally note that since Z; does not depend on t the last term can
be written as {T~2 (B}, B, po1) Z1}{T ™2 Y21 (Zor — Z5)'}. From (7.19) the term
T=2(B,,, B}, po1)Z1 converge weakly, and using (7.9) the term {72 2321(22,5 —75)'}
also converge. Moreover the last row of C}. N3 is of the form

4 T t+1 1 a
2 - 1
T2 E {—t—Fl— E T }(th _ET 2 E th
t=1 t=1 t=1
1 T T
3 3
=T 2 Z -T2 t( V4 7.28
5Ty - >t - (725)

From (7.9) the first and the second term in the right hand side of (7.28) converge,
whereas the third term converge from (7.13). Thus we can conclude that the matrix
CpNiz is normalized to converge. In addition using the ergodic theorem for the
strictly stationary process (Zzt,l — Zg) the term Nao converges to its population value.
Therefore the second term in the right hand side of (7.26) tends to zero by the factor
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T~1. On the other hand considering the continuous mapping x — fol z(uw)z(u) du, it
follow from the continuous mapping theorem and Lemma 7.5 that

1
T_lcéwNuCTi/ GG'du,
0

which completes the proof of (7.20).
Similarly for the proof of (7.22) we write

ChS1165 = CrN11 B — CpN1aNyy' Noy 35 (7.29)

First note that the rows of the matrix C/.N1q B can be written in the same way of

those of the matrix C7, N1 replacing only Zor — Zy by B5*(Z11 — Z1). Since the process
B4 (Z1¢ — Z1) is also stationary and can be written as a linear process, then considering
the arguments we used for the matrix C/- N2 one can show that the matrix C/HN11 35 is

normalized to converge. Finally noting that the processes (Zzt - Zg) and B (Zv — Z1)
are stationary ergodic the term Noj 35 converges using the Cauchy-Schwarz inequality
and the ergodic theorem. Then since the terms in the right hand side of (7.29) are
convergent we obtain the result (7.22).

For the proof of (7.23) we write

C).S10 = CN1g — Cr N1 Ny Nog. (7.30)

Similarly we can show that the matrix C}.Nyg converge using the same arguments

considered for the matrix C7-Ni2 and Eeplacing th — Zz by Zo: — Zy. However note
that since from (7.24) the term Zy; — Zj is of the form

Zor— 2o =Y _ ieri,
i=0
we shall use in this case relations (7.10) and (7.12) to conclude. In addition since the
process (Zos — ZO) is stationary a process, then the matrix Nog converge. Therefore
the matrices in the right hand side of (7.30) are all normalized to converge and the
result (7.23) follows.
To prove (7.21) note that from (2.9) we have

Cl(S10 — S1fiay) = Cp N, = Cp N1 — CpNigNyy' No. (7.31)
where
T T
Ne=T"'> Rue;, Nie=T"'> (Zu— Z1)e,
t=1 t=1
T

and NQE = T_l Z(ZQt — 22)62.
t=1

From the ergodic theorem and since Zzt and ¢; are uncorrelated, the term Ny, tends
to zero in probability. Then the second term in the right hand side of (7.31) tend to
zero. Finally using Lemma (7.5) and the continuous mapping theorem we write

1
C) Ny = / G(dW). (7.32)
0
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This complete the proof of our Lemma. O
Now let us define the following matrices
Bij = Nij — Nz, Ao
for 4,5 = 0,2, 8 and where the matrices A;; are defined by,
Aps = Var(By Zit), Moo = Var(Zo), Asa = Var(Za),

Aﬁo = CO’U(ﬁé*th, Zot), Agg = CO’U(ﬁ{)*th, Z2t) and A20 = COU(Z~2t, ZOt)-

Note that when (3§ is normalized by the matrix ¢, we have Xgg = X, where X, is
defined in Section 3. The following Lemma provides us a result on the asymptotic
behaviour of the matrices S11, Sgp and Sig in terms of the above defined matrices.

Lemma 7.7. Under A1, A2 and A3 we have

S 6 L e (7.33)
B S0 2 S (7.34)
Soo 2 o0 (7.35)

where the matrices Yoo, Y30 and Xgg verify

200 = O[()Zgo + Ee, Eog = OéoZgg, (736)
and
Ee = 200 - 040255046. (737)
Moreover we have
Zo0 — Too a0(apTgg a0) T apBgg = aoL (g, Eeaor) T ag, - (7.38)

Proof of Lemma 7.7. Similarly to (7.26) we write
0" S1185 = 85 N11 35 — By N12Nog' Now 35

On the other hand from (7.24) and (7.25) the processes (85 Z1:), (Zo;) and (Zo;) are
stationary ergodic since (Y;) is stationary ergodic. Thus we have from the ergodic
theorem

0 N11 3 it Asg, By Ni2 L Aga, and Na L Ags,

which gives us the result (7.33). The proof of (7.34) and (7.35) are similar.
For the proof of the relations in (7.36), multiplying the expression (2.7) by (Zo: — Zo)’
and (Z1: — Z1)' 8§ on the right, we have

Aoo = apAgo + ‘ijAQO +Xc and Agg = apAgs+ @Agg (7.39)
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since we assumed that the error process (¢;) is uncorrelated. Using again the expression
(2.7) we write

\if = A02A2_21 - aoAﬁzAz_;. (740)

Inserting (7.40) in the expressions in (7.39) we obtain the desired results. The expres-
sion (7.37) is a straightforward consequence of (7.36). The relation in (7.38) can be
obtained using the following projection identity

I, = 2601040(0462601040)71046 + OZOL(OZBJ_ZO()OAOL)ilCMBJ_Eoo,
and noting that from (736) Q1 Y00 = QoL e

For the proof of Propositions 3.1 and 4.1 note that the solutions M o> > 5\d+1
of the equation (2.11) are the same of those of the following eigenvalue problem

| AS11 — 510550 So1 |=0. (7.41)
The eigenvectors e; of (7.41) which verify

71 <
S10505 Soiei = AiSii€;,

1 .
are such that e; = S;,%v;. Using this notation we write 5* = (e1,...,ey,). Note also
that since the matrix 5105’&)1501 is of dimension d + 1 but has rank d, then Ay = 0.

Proof of Proposition 3.1. We first show that the roots 5\T0+1,...,;\d of (7.41)

decrease at the rate T~'. Let the matrix Ap = (85,72 Cr). Multiplying (7.41) by
Al and Ar, and noting that the matrix Ay is an invertible matrix, the equation

BESNBs T72rS(\Cr

Ap(AS11 = 810550 So1) Ar |=| 0
| 7(AS11 10900 01) T| TﬁEO}S()\)ﬁa T*lcéﬂS(/\)OT

=0, (742

has the same eigenvalues as (7.41). From Lemmas 7.6 and 7.7 and since the solutions
of (7.41) are continuous functions of the coefficient of the matrices S11, S10, Soo, and
So1, it follows that

XZs5 — BaoZoo Zog 0

| A% (AS11 — 510559 So1)Ar | = ‘ 0 A fy GG'du

1
= | )\255 - 2502601205 || )\/ GG’du | .
0

Therefore there is ro roots of the equation (7.42) which converge to the ry positive

roots given by the equation | A5 — X50500 Zos | = 0, and d — ro + 1 roots of (7.42)

which converge to the d — ry + 1 zero roots given by the solutions of the equation
| )\fol GG'du |= 0. Defining S(\) = AS11 — S10S55 So1 and using the relation

A A _

‘ A; A;z =| A1 || Aso — An A Ava | (7.43)
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in (7.42) for X such that | 3i*S(N\)G; |# 0, we write

< S(N) B2 T2 8 S(\)Cr _
v o v =| B SN B || MT1CLS811C:
~T~HC1810500 Son O + B5 SNCr (85" S(NB) ' CrS(NB3 -

It is seen that the roots which correspond to the eigenvalue problem | Bi*S(\)G5 |

= 0 do not converge to zero and have the same limit of the r greatest roots of (7.42).

Then for a large T', the roots Ary+1,..., Ad+1 cannot be in the set of the rg roots of

| B S(N)BE |= 0. It follows that Apo41, ..., A¢y1 are solutions of the following equation
| MT1CLS11C0r} — T~ H{C5810554 So1Cr (7.44)
+B5"S(NCr (B S (V) B5) ™ CpS (B3} 1= 0.

Considering the roots 5\T0+1, ..., Aqg which converge to zero, and using the results of

Lemmas 7.6 and 7.7 the terms into brackets in (7.44) are normalized to converge, then

it is seen that the roots Ay, 41, .., Aq of (7.41) decrease at the rate T-1.

Now we will establish the asymptotic behaviour of the likelihood ratio test statistic.
Using again the relation (7.43) we write

« / X oSN Bs BLES(N)Cr
| (QOaOT) S(A)(ﬁoch) |: CzSEAgﬁg C%SE)\%CT
=| B5"S(N)B5 1| CoS(\)Cr
~CrS(NB5 (85 S(N)B3) By S(NCr |= 0. (7.45)
For the rest of the proof we will focus on the second term of the right hand side of
(7.45) and only consider the d — ro + 1 smallest roots Arg+1s -+ -5 Ad+1. Noting that

from the first part of the proof the roots 5\T0+1, ..., \q decrease at the rate 77!, we
therefore define n = T'A where 7 is real. From Lemma 7.7 and using (7.22) we have

0 S(A)Bs =0T~ 86" S1185 — B S10500 S0155 = —Ss05g0 Sop + 0p(1),  (7.46)

CrSNB; = 1T~ 'CrSuf; — CrS10Seg So15;
= —ChS10%05 Zos + 0p(1). (7.47)
Then inserting (7.46) and (7.47) into the second factor in (7.45) we obtain
CrS(N)Cr — CpS(N) B3 (85" S(N)B5) ™ 65" S(\)Cr
= ’I]T_IC%SHCT — 0%51020_015010'1"
+C1 810550 Zos(20800 Zos) ' B0 So1Cr + 0p(1)

= UTilc%SHOT — C’T810D801OT + Op(l), (748)
where from (7.36) and (7.38) the matrix D is given by
D = %5 — S5 Zos(S00T50 Z0s) TpoTog

= To0 — Zoo a0Zss(SesapSag a0Xss) T Sapah Soo
= anl - anlao(aéanlao)‘laéanl

= aol(ozqueozoL)_losz = aol(Var(ang))_losz (7.49)
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From Lemma 7.6 we have
1
C%Slooéoj_ = C%(Slo — Sllﬁgaé)aoj_ = / G(dW)IOfQJ_
0

and

1
T_lc{rSuCT:>/ GG du.
0

Noting that S(\) = S(n/T) = nT~S11 — 5105’&)1501 and using the transformations
(7.48) and (7.49), the roots of the equation
| C3S(n/T)Cr — CpS(n/T) 535 (65°S(n/T)B5) ™" By S(n/T)Cr |= 0

converge to those of the following equation

| 77/0 GG'du _/0 G(dW)’aoL(Var(agj_W))104&_{/() GdWw)'} |=0.  (7.50)

Let us define the following invertible matrix

J = ( (84, C2C"Bor) ™ 0 ) .
0 1

Noting that
ag W) (Var(ag, W) ag W =

(
((ByLCEeC"Bor) ™2 By Bor (g Tofor) tap, W)’
(Var((By.CSe C/ﬁoﬂ 234, Boi (a1 Tofor) Lap, W)~
(ﬂOchéclﬁoL) 3 60J_60L (OZBJ_FOQOL)ilaéJJ_VVv

and multiplying by J and J’ the equation (7.50), the roots of (7.50) are the same of
the following relation

1 1 1
|n/0 FF du—/o F(dB) {/O F(dB)'} |=0, (7.51)

where B = (3}, C%.C"Bo1) "2 B, CW is such that Var(B) = I4_r,, and F = (Fy, Fy)
where Fy = B and F, = u — %. The equation (7.51) is equivalent to

1 1 1
| nlq_ror1 —/O F(dB)’{/O F(dB)’}’[/O FF'du]™ |=0, (7.52)

so that denoting by 7; the eigenvalues of (7.52) we write

Zm tr{{ / (dB)’ /OFF’du]—l /0 lF(dB)’}. (7.53)

ro+1

Noting that as indicated above the roots of (7.45) are continuous functions of the
matrices S11, 810, SOO, and S()l, we have

d d

1=ro+1 ro+1
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Now writing the expression of the LR test statistic and since the the roots 5\T0+1, R ¥
of (7.41) tends to zero at the rate 7!, we find

d d

—2logQ,, = -T Z log(1—X;) = Z i +o,(T7h)]
1=ro+1 i=ro
d

Then using (7.54) and (7.53) the result follow. O

In order to prove Proposition 4.1 we have to state some additional asymptotic results.
First note that in (7.17) multiplying by C/. is equivalent (asymptotically) to multiplying

by the transpose of ~
= Bor O
Or = < 0 Tz

and suppose that the parameters in the deterministic part of (2.3) are equal to zero.
To see this note that in this case the expression (2.2) becomes

t
=C) a+Yi+A

i=1
where Y; is a stationary process, so that we have

(Tu]
T3 (B51,0) Z1iu) = Tﬁ%BﬁLC Z € + Tﬁ%B(/)L}/[Tu] + Tﬁ%B{)LA' (7.55)

i=1
Therefore starting with (7.55) it is easy to see that one can retrieve the results of
Lemma 7.5 and 7.6 replacing Cr by the new normalization matrix Cp. Then in the

sequel we can assume without loss of generality that the parameters v and 79 are equal
to zero. Now consider the following normalization of 5*

B = (0, 7) = ((B(BocB) ), (5 Boc)~'9))

where Bo. = Boc(BheBoc) ! and define & = dﬁ’ﬁoc. Recall that 7 and 7 are vectors of
dimension ry. For the rest of the paper we will use this normalization for theoretical
derivations only since the matrix of unknown parameters 3y, appears in the expression
of B* Note also that we take (o, as a normalization matrix. Then in this case B, is
the normalized matrix. With this notation and since we assumed 79, = 0, we have

B* = B, + CrUpf* (7.56)

_( Bor O
Ur = ( b 0.
Note that (7.56) is obtained by projecting 4* in the directions of 3z, B = (85.,0)
and v = (0,1)’, where v is a vector of dimension d + 1. Then it is seen from the d

where

=
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first rows of (7.56) that with this choice of normalization § — o, is included in the
space spanned by [p . In the following Lemma we will state some asymptotic results
we need using this normalization.

Lemma 7.8. Under A1, A2 and A3, we have

al Qoes De LA Y, B—Boc= op(T_%) and T — Toe = op(T_l).

Moreover the estimators B and T are such that
- 1 1
( TBOJ_(6§~ 606) ) = [/ GG'du]_l/ G(dVa)/ (757)
T2T 0 0
where

Vi = (g, S ape) Lo B W

€

is independent of G.

Proof of Lemma 7.8. In a first time we will prove that § — (o, = op(T_%) and
7 — Toc = 0p(T1). Let us define the matrix

Br = 600 Tﬁ%BOJ_ 0
r 0 0 T-1 )
Multiplying (7.41) by B/, and Br, we obtain
| Bir(AS11 — S10S5¢ S01)Br |= 0. (7.58)

Similarly to the proof of Proposition 3.1 and since we assumed that the deterministic
terms are equal to zero, we have

X2p5 — SpoXgg Bog 0

| B7(S11 — $10S50' So1) Br |= 0 MGG du |

The eigenvectors g; corresponding to the r¢ positive eigenvalues of the equation

} Ass — X000 Lop 0 0

0 A fy GG du

verify the equation

Sp0Eg5 Sog 0 AXigg 0
gi = 1 ’ 9i-
0 0 0 AJ)GGdu

In addition the eigenvalues 5\1 > > 5\T of (7.41) converge to those of the equation
| A255 — 0800 Xos |= 0, then it can be seen that the space spanned by the g
eigenvectors corresponding to the eigenvalues 5\1 > .. > ;\T converges to the space
spanned by the rg first unit vectors (the d—ro+ 1 last coordinates of these eigenvectors
converging to zero).



32

Thus since the eigenvectors of (7.58) are obtained by multiplying by B:Fl the
eigenvectors of (7.41) on the left, we write

~ IT IT
Bp'p = 128,68 | = op(1) |,
TT

where B, ! is given by the following equation

1 IB{)C 0 76*
B = | T2 0 = ¢ .
T (?OL T < T%UT )

Thus we can conclude that 7 = 0,(T~"). In addition since § — o, is included in the
space of By, we have (8 — fBoc) = 0, (T~ 2).

In this part of the proof we will show the consistency of & and 3. From Lemma
(7.7) we have
Qe = 2052561 and X, =Xg — aOnggozgc.

Since Up(* = op(T_%), and using the relations (7.20) and (7.22) we have
37 5110° = (Bse + CrUr*) Su (B, + CrUrf*) = BouSuBi. +0p(1).  (7.59)
Then from Lemma (7.7) we obtain
B0 = S,

Similarly we have
B/*Slo e 68;810 + Op(Tié) 5 250. (760)

Finally writing the expressions of & and 3 we find
~ D% ([ A% 2xy—1 P
a = So1 5 (8" S118") 7" = aqe,

e = So0 — So15* (6 S118°) 13" S1o L.

In order to prove the last statement of our Lemma, let us write the derivatives of
the concentrated likelihood function (2.8) with respect to §* in the direction h

1 L i hzﬁ _1 L ) *726
Dy log L{a, 5, %) = lim og L(a, B* + sh, %) — log L(e, 5%, %)
S— S

= Ttr{a’S"(So1 — " S11)h}.

Noting that the matrices & and @* verifies the likelihood equation, this derivative is
equal to zero at the point (&, 5*,3,) in all directions. Then we have

&1 (So1 — af’*S11) = 0. (7.61)
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Recall that we have defined N, = T~* Zil Ry}, Inserting So1 = aeB06S11 + N, in
(7.61) we get
&SN (So1 —af*S) = BN+ ancBSi — & S11)
&SN = @5 = B5.) S — (@ — aoe) BeSn) = 0.
Now multiplying by Cr on the right and inserting B — B = CrUrf3* we have
&SN NCr — aTB*UM{T 10451107} — (& — ape) B5511Cr) = 0.
From the consistency of & and using (7.22) the last term tends to zero, so that we
obtain

TUrf* = (T71CS1107) L CENE  aoe (g 27 awne) L + 0, (1).

Finally using (7.20) and noting that from (7.31) and (7.32) we have C/-N, = fol G dw),
we can deduce that

1 1
TUrB* = | /0 GG du] ™ /O G(dV,)'.

This complete the proof of Lemma (7.8). O

Proof of Proposition 4.1. In a first time we will prove statement (4.1). From (7.57)
we have

- 1 1
T8), (3 — foo) = | /0 Gr oG o] ! / Gra(dVaY.

0
From the d first rows of (7.56) we write

B = Boc = BorB. (B — Boc)-
Then using the expansion

(Be — Boc) = (Ia — Bocc' V(B — Boe) + Op(|| (B — Boe) 1) (7.62)

and noting that since 3 — Sy, is included in the space of By we have || (6 — Boc) ||>=
0,(T~2) the result follow. Similarly writing 7 = (3'Boc) " (3'¢)7e, we can find that
Te = Toe + Op(T’%). Now let W7 and W5 two independent Brownian motions. The
form (4.2) can be found noting that given Wy, fol W1 (dWs)' is gaussian with mean zero
and variance matrix

1
/ W1W1/ ® Va’l“(Wz). O
0

Recall that &.(85,) = So185. (85511 85.) " and é. = So135.(34.511 55.) ~*- To prove
Proposition 4.2 we need to state the following Lemma.

Lemma 7.9. Under A1, A2 and A3, we have

be = Ge(B5.) + 0p(T2).
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Proof of Lemma 7.9. First note that we have
0 =& AécBOC = 501380(36*0511BSC)_lﬁA(IJcBOC
= SOlﬂSc(ﬁécﬁoc)il(660606)( 61811/86‘0)71(660/806)/
= So185.(BoS1156.) "
From (7.59) and (7.60) we obtain

& = Ge(B5.) + 0p(T72). (7.63)
Recall that .3, = @f'. Noting that 8¢ = B.c = I, we write

A ~ 31

G = c
ﬁ: - ﬁ(l)c)c + dﬁ{)cc
6 - /860)6 + a.

In view of the consistency of & and since 3 = fo. + O,(T~1), we have

=

= a

(
(

Ge=a+ 0, (T,
and then the result follow from (7.63). O

Proof of Proposition 4.2. Multiplying (2.9) by R},5;. on the right we find

T
ae = T (Ror — &) Ry, B (BhS1165.) "

&
Il
=

= T7') (Rot — e) Ry, 55 (B6e51185.) "

[M]=

&
Il
A

Then from Lemma 7.9 and using (2.10) and (7.33) we have

T%vec(dc —age) = T%vec(olc — &e(B5.)) + T%vec(dc(ﬁgc) — Qoe)

T
= T vec(er Ry, Boe (B5S11550) ) + 0p(1)

t=1

T
= TE Y (B0 B)  Bi R © Lader + op(1)

t=1

T
= T_% ZE;lﬁétl:th@et—i—op(l)

t=1

T
= (S'@I)T 2> BhRu @ +0p(1)

&
Il
=

M=

= (B71@I)TTY v+ op(1)

&
Il
A
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where R
vy = vec(er Ry55.)-

Recall that we have defined
Ry = Zy — M12M2_21Z2t-

Then using (7.24) and (7.25) it is easy to see that G4 R can be written as follows

BoeRie = m + Z bi€r—io1, (7.64)
=0

where m is a vector of constants and the terms of the series {@}ieN decay exponentially
fast. Then despite the fact that there is a constant in the expression (7.64), we can

show following the same lines of the proof of Lemma 7.4 that T2 Z;f:l v is normally
distributed. The form of the matrix >, is obtained from the following computations

T T
1 .1
Thl};o T tg 1 E 1 cov(vy,vs) = Tlgr;o 7 hgl T(T— | b |)cov(ve, ve—p)
=1 s= <

oo o0

= Z cov (Vg, Vg—p) = Z E {ﬁ(/)*célt & €t} {ﬂ(/fkcéltfh b2 €t7h}/ .

h=—o00 h=—o00

Finally we obtain

Sa= > E{SBRul 1855 @ ety )

h=—o00

using the well known identity (A ® B)(C ® D) = AC ® BD. O
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TABLE 1: Empirical size (in %) of the LR test for VECM (5.4) in the strong and weak cases

Tables and Figures

with 7" = 100.
| | case 1 case 2 case 3

MD (5.1) 8.2 6.6 1.6

MD (5.2) 6.5 6.3 5.3

WWN (5.3) 3.3 4.4 0.6

SWN 5.2 5.2 2.6
Parameters: 72 =09 e= -1 0= —-1.5. Case 1: m1 = —0.1 and emrs + 71 = —1. Case 2:

m1 = 0.8 and emy +m = —0.1. Case 3: m1 = —0.8 and ems + 71 = —1.7.

TABLE 2: As Table 1, but for T" = 400.

| | case 1 case 2 case 3
MD (5.1) 5.3 12 5.8
MD (5.2) 5.2 5.5 6.4
WWN (5.3) 4.0 5.0 2.9
SWN 5.0 4.6 5.0

TABLE 3: The relative rejection frequencies (in %) of the LR test for VECM (5.4) with

heteroscedastic errors (5.5).

7 [ 0 [ 0005 [ 001 [ 0015 [ 002 |
T =100 5.2 3.1 2.1 1.1 0.8
T =400 5.0 2.3 2.0 0.8 0.2
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TABLE 4: Empirical power (in %) of the LR test for the AR(1) model (5.6) in the strong and
weak case with 7" = 100 and ems + m1 = —0.85.

| w 0 -0.05 -0.1 -0.15  -0.2 -0.25 -0.3 -0.35
MD (5.1) 7.4 20.3 35.9 55.5 74.0 86.5 93.8 98.1
MD (5.2) 6.3 18.8 36.9 57.6 78.3 90.8 96.6 99.0
WWN (5.3) 3.8 13.9 28.6 52.1 75.6 90.7 97.8 99.5
SWN 4.8 14.8 30.7 55.0 78.2 93.2 97.9 100.0

Case: m1 = —0.7 71 =0.15 e=-1 0=-1.5.

TABLE 5: As Table 4, but for 7' = 400.
| w | 0 -0.05  -0.1 -0.15 -0.2
MD (5.1) 6.3 72.2 99.7 100.0 100.0
MD (5.2) 6.2 74.4 100.0 100.0 100.0
WWN (5.3) 4.7 72.6 99.8 100.0 100.0
SWN 5.9 74.3 99.9 100.0 100.0
TABLE 6: As Table 4, but for ems +m1 = —1.8 = —2.

| w 0 -0.03 -0.04 -0.05 -0.06 -0.07 -0.09 -0.11
MD (5.1) 0.3 16.0 32.2 52.4 67.8 80.3 91.6 99.8
MD (5.2) 5.9 7.1 20.6 43.8 65.8 81.6 94.3 98.9
WWN (5.3) 0.1 18.3 33.6 52.6 69.0 80.3 94.1 98.1
SWN 1.3 13.1 30.4 51.2 67.8 82.2 95.4 98.8

Case: m =—09 m =09 e=-1 0=-1.5.

TABLE 7: As Table 6, but for 7" = 400.
w 0 -0.03 -0.04 -0.06  -0.06 -0.07 -0.09 -0.11 |
MD (5.1) 4.9 0.5 20.2 72.1 96.3 99.9 100.0 100.0
MD (5.2) 6.1 0.0 2.8 62.4 97.3 99.9 100.0 100.0
WWN (5.3) 2.2 3.7 27.6 72.5 96.9 99.9 100.0 100.0
SWN 4.3 0.3 22.9 74.4 98.0 99.9 100.0 100.0
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2 4 6 8 10 12 14

FIGURE 7.1: The relative rejection frequencies (in %) of the LR test for different values of k in the
weak white noise (5.1) for T'= 100 (full line) and T" = 400 (dotted line). Case 1: 71 = —0.1 w2 =0.9
e=—1 6= —1.5. Number of replications n = 1000.

a1

FIGURE 7.2: The same as in Figure 7.1 with a weak white noise which follow an ARCH model (5.2)
with a11 = a22 and as1 = a12 = 0.
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0.2 0.4 0.6 0.8

FIGURE 7.3: The same as in Figure 7.1 with a weak white noise which follow an all-pass model (5.3)
with ¢1 = ¢a.
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FIGURE 7.4: Effect of the trend parameter 6 in the strong case: Relative rejection frequencies (in
%) of the LR test for different values of 6 in model (5.4) with iid errors for T = 100 (full line) and
T = 400 (dotted line). Case: m1 = —0.1 72 =0.9 e = —1. Number of replications n = 1000.
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-3 -2 -1 1 2 3

FIGURE 7.5: Effect of trend parameter 6, the weak white noise (5.1) case: The same as in Figure 7.4
but for an error process which follow (5.1) with k = 1.

B i 2 3 0

FIGURE 7.6: Effect of trend parameter 6, the ARCH case: The same as in Figure 7.4 but for an error
process which follow (5.2) with a12 = a21 = 0.1, a11 = 0.2 and ag2 = 0.3.
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FIGURE 7.7. Effect of trend parameter 6, the all-pass case: The same as in Figure 7.4 but for an
error process which follow (5.3) with ¢1 = ¢2 = 0.7 for T'= 100 (full line) and T" = 800 dotted line.

b1

FIGURE 7.8: The relative rejection frequencies (in %) of the LR test for different values of ¢1 = ¢2
in weak white noise (5.3) for T = 100. Casel: ema + m1 = —1 (full line). Case 2: emp + 71 = —0.1
(dotted line). Number of replications n = 1000.
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0
0.2 0.4

FIGURE 7.9: The relative rejection frequencies (in %) of the LR test with correlated errors for
T =100 (full line) and T = 400 (dotted line). Case: 11 =0.9 w2 =—-1 e=1 6= —0.5. Number
of replications n = 1000.
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FIGURE 7.10: The daily exchange rates of U.S. Dollars to one British Pound and of U.S. Dollars
to one Euro. Data source: The Research Division of the Federal Reserve Bank of St. Louis
www.research.stlouisfed.org.



THE LR TEST UNDER UNCORRELATED ERRORS 45

711(h) Toa(h)

0.1 0.1
0.05

-0.05

-0.1

FIGURE 7.11: Autocorrelations of the residuals of the VECM with rg = 1 and p = 2 for the the daily
exchange rates of U.S. Dollars to one British Pound and of U.S. Dollars to one Euro. The left graphic
represent the autocorrelations 711(h) of the residuals é1; and the right the autocorrelations 722(h) of
the residuals é2¢. The horizontal lines about zero represent the approximate 5% significance limits for
the sample autocorrelations (that is £1.96/+/T with T = 1578).
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FIGURE 7.12: The same as for the Figure 7.11 but for the crosscorrelations of the é1;’s and the é2¢’s
with obvious notations.
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FIGURE 7.13: The same as for the Figure 7.11 but for squared residuals of the analyzed series.
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FIGURE 7.14: The same as for the Figure 7.12 but for squared residuals of the analyzed series.



