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TESTING THE COINTEGRATING RANK WHEN THE ERRORSARE UNCORRELATED BUT NONINDEPENDENTHAMDI RAÏSSI,∗ Université Lille 3Abstra
tWe study the asymptoti
 behaviour of the redu
ed rank estimator of the
ointegrating spa
e and adjustment spa
e for ve
tor error 
orre
tion time seriesmodels with nonindependent innovations. It is shown that the distribution ofthe adjustment spa
e 
an be quite di�erent for models with iid innovationsand models with nonindependent innovations. It is also shown that thelikelihood ratio test remains valid when the assumption of iid Gaussian errorsis relaxed. Monte Carlo experiments illustrate the �nite sample performan
eof the likelihood ratio test using various kinds of weak error pro
esses.Keywords: Cointegration, redu
ed rank regression, likelihood ratio test, strongmixing 
ondition, ve
tor error 
orre
tion model.1. Introdu
tionMultivariate pro
esses are often used in e
onometri
 appli
ations be
ause they allowto understand the intera
tions between di�erent variables. In order to des
ribe long rune
onomi
 relationships, the 
ointegration theory has been developed by Granger (1981),Engle and Granger (1987), Ahn and Reinsel (1990). This theory postulates that, insome 
ases, a stationary pro
ess of lower dimension is obtained by 
onsidering linear
ombinations of the 
omponents of a multivariate nonstationary pro
ess. The numberof independent linear 
ombinations is the 
ointegrating rank and is an important pie
eof information for the analysis of e
onomi
 data.The dominant test for the 
ointegrating rank is the likelihood ratio (LR) testdeveloped by Johansen (1988, 1991), Perron and Campbell (1993), Lütkepohl andSaikkonen (1999) in the framework of ve
tor error 
orre
tion models (VECM). Forthe 
ointegration analysis, the errors terms are generally supposed to be independentand identi
ally distributed (iid). When applied to e
onomi
 data (see for instan
eJohansen and Juselius (1990), Clements and Hendry (1996) or Trenkler (2003)), thisiid assumption seems too restri
tive be
ause ma
roe
onomi
 time series often exhibit
onditional heteros
edasti
ity and/or other forms of nonlinearity.Rahbek, Hansen and Dennis (2002) studied the e�e
t of ARCH innovations on theLR test. An important output of their work is that the LR test remains valid when theerror pro
ess is a martingale di�eren
e. However the assumption that the error pro
essis a martingale di�eren
e pre
ludes other forms of dependen
e. Indeed there exist manyexamples where the assumption of iid or martingale di�eren
e on the innovations is notsatis�ed (see for instan
e Fran
q, Roy and Zakoïan (2005) in the univariate ARMA
ase or Fran
q and Raïssi (2005) in the VAR 
ase). The �rst aim of this paper is tostudy the validity of the LR test in a general 
ontext of un
orrelated errors.
∗ Postal address: Université Lille 3, EQUIPPE Universités de Lille BP 60149 Villeneuve D'As
qCedex, Fran
e. E-mail: hamdi.raissi�etu.univ-lille3.fr.1



2 The se
ond aim is to study the asymptoti
 behaviour of the usual estimators ofthe 
ointegration and adjustment spa
es, in the general framework of VECM withun
orrelated, but possibly dependent errors. We will 
ompare our �ndings to theusual iid 
ase and results of Seo (2007) whi
h shows in parti
ular that the asymptoti
distribution of the redu
ed rank estimator of the 
ointegrating spa
e is robust to
onditional heteroskedasti
ity. We will use the standard redu
ed rank pro
edure toestimate the 
ointegration spa
e, relaxing the assumption of iid gaussian innovations.The stru
ture of the paper is as follows. In Se
tion 2 we present the model and wederive the estimators of the parameters. In Se
tion 3 we give the asymptoti
 behaviourof the LR test. In se
tion 4 we state the 
onsisten
y of the 
ointegration spa
e and theadjustment spa
e. In Se
tion 5 Monte Carlo experiments are performed. The proofsare relegated to the appendix.In the sequel the following notations are used. Weak 
onvergen
e is denoted by ⇒and we denote by P
→ the 
onvergen
e in probability. For a full 
olumn rank matrix Aof dimension d × r with d > r, we de�ne the orthogonal 
omplement A⊥, whi
h is afull 
olumn rank matrix of dimension d× (d− r) and su
h that A′A⊥ = 0. The symbol

⊗ denotes the usual Krone
ker produ
t and ve
(A) denotes the ve
tor obtained bysta
king the 
olumn of the matrix A. We denote by tr(B) the tra
e of a square matrix
B. We denote by [m] the integer part of a given real m.2. Chara
terization of the modelWe 
onsider the following VECM with linear trend

∆Xt = Π0Xt−1 +

p−1
∑

i=1

Γ0i∆Xt−i + µo0 + µo1t+ ǫt (2.1)where µo0 and µo1 are d-dimensional parameter ve
tors. The pro
ess (ǫt) is usuallyassumed iid with mean zero and positive de�nite 
ovarian
e matrix Σǫ. In the sequelwe will 
onsider a weaker assumption for the error pro
ess. The Γ0i, i ∈ {1, ..., p− 1},are d×d short run parameters matri
es. By 
onvention the sum vanishes in (2.1) when
p = 1. The following assumption gives us the general framework of our study.Assumption A1 (Cointegration and restri
tion on the trend parameters)(a) The matrix Π0 is of rank r0 (0 ≤ r0 < d). If r0 > 0 then Π0 
an be written as

Π0 = α0β
′
0 where α0 and β0 are full 
olumn rank matri
es of dimension d× r0.(b) The autoregressive polynomial A(z) = (1 − z)Id − Π0z −

∑p−1
i=1 Γ0i(1 − z)zi, issu
h that | A(z) |= 0 implies that | z |> 1 or z = 1.(
) The matrix α′

0⊥Γ0β0⊥ is of full rank d− r0, where Γ0 = Id −
∑p−1

i=1 Γ0i.(d) The ve
tor µo1 is su
h that µo1 = −α0τ0, where τ0 6= 0 is an r0-dimensionalve
tor.Note that if r0 = 0 the relation (2.1) is a ve
tor autoregressive model for thepro
ess (∆Xt). Condition (d) is the less restri
tive 
ondition on the parameters of thedeterministi
 part of (2.1) whi
h allows for trending behaviour for (Xt). Indeed underA1, from Granger's representation theorem, the solution of (2.1) has the following



THE LR TEST UNDER UNCORRELATED ERRORS 3representation
Xt = C

t
∑

i=1

ǫi + ρo1t+ ρo0 + Yt +A, (2.2)where C = β0⊥(α′
0⊥Γ0β0⊥)−1α′

0⊥. The term A depends on initial values and is su
hthat β′
0A = 0. The stationary pro
ess (Yt) is of the form

Yt =

∞
∑

i=0

ϕ0iǫt−i,where C(z) =
∑∞

i=0 ϕ0iz
i is 
onvergent for | z |≤ 1+ δ, for some δ > 0. Note that (2.2)implies that (Xt) is an I(1) pro
ess. From (a) and (d) we 
an write (2.1) as

∆Xt = ν0 + α0β
′∗
0 Z1t +

p−1
∑

i=1

Γ0i∆Xt−i + ǫt (2.3)where Z1t = (X ′
t−1,−t+ 1)′ and β∗

0 = (β′
0, τ0)

′. The d-dimensional ve
tor of 
onstants
ν0 and the r0-dimensional ve
tor τ0 are fun
tions of the parameters in (2.1). Notethat in (2.2) the ve
tor ρo1 is su
h that β′

0ρo1 = τ0. Then it 
an be seen from (2.2)that (β′
0Xt − E(β′

0Xt)) is trend stationary and the r0-dimensional pro
ess (β′∗
0 Z1t −

E(β′∗
0 Z1t)) is stationary. We say in this 
ase that the 
ointegrating rank is r0. In thisstudy we test, for some r (0 ≤ r < d), the null hypothesis

H0 : r0 = r vs. H1 : r0 > r.Note that in (2.3) the parameters α0, β0 and τ0 are not identi�ed. Indeed for a given
α01, β01, and sin
e we assumed that these matri
es have full rank, we 
an take anynon singular matrix ζ of dimension r0 × r0 su
h that β02 = β01ζ and α02 = α01(ζ

′)−1will give the same matrix Π0. To get rid of this problem one 
an 
onsider the followingnormalization
β∗

0c = (β′
0c, τ0c)

′ = ((β0(c
′β0)

−1)′, (β′
0c)

−1τ0)
′ and α0c = α0β

′
0c,where the dimensional d×r0 matrix c is su
h that c′β0 has full rank. This normalizationensures identi�ability in the sense that we have β01c = β02c. To see this, note that

c′β01c = c′β02c = Ir0
⇒ c′β01(c

′β01)
−1 = c′β01ζ(c

′β01ζ)
−1

⇒ c′β01

[

(c′β01)
−1 − ζ(c′β01ζ)

−1
]

= 0. (2.4)Then sin
e c′β01 is a full rank matrix, this implies that
(c′β01)

−1 − ζ(c′β01ζ)
−1 = 0. (2.5)Multiplying (2.5) by β01 on the left, we obtain β01c = β02c. On
e the parameter β0c isidenti�ed, it is easy to see that α0c and τ0c are also identi�ed. It should be also notedthat the 
ointegration spa
e and the adjustment spa
e, that is the spa
es spanned byrespe
tively β0c and α0c, do not depend on the 
hoi
e of the matrix c.



4 In general the assumption that (ǫt) is iid gaussian may appear to be too strong.Indeed it is questionable to assume that a linear 
ombination of Xt−1, . . . , Xt−p is thebest predi
tor of Xt. In addition note that, from a pra
ti
al point of view, the order pis often identi�ed using tests that are only based on the auto
orrelations of (ǫt). Forinstan
e let us 
onsider the daily ex
hange rates of U.S. Dollars to one British Poundand of U.S. Dollars to one Euro from January 2, 2001 to April 12, 2007. The length ofthe series is T = 1578. The analyzed data are plotted in Figure 7.10. We adjusted themodel (2.1) to the series with r0 = 1 and p = 2 using the software JMulTi. Figures7.11-7.12 display the auto
orrelations and 
ross
orrelations of the residuals. Figures7.13-7.14 display the auto
orrelations and 
ross
orrelations of the squared 
omponentof the residuals. In view of Figures 7.11-7.12 the hypothesis of un
orrelated errors seemsplausible. Indeed most of the auto
orrelations and 
ross
orrelations are inside the
5% signi�
an
e limits. However sin
e many auto
orrelations and 
ross
orrelations areoutside the 5% signi�
an
e limits in Figures 7.13-7.14, the hypothesis of independenterrors is 
learly reje
ted.Rahbek et al (2002) 
onsidered VECM with martingale di�eren
e innovations. Inour framework we will 
onsider a more general assumption allowing for a large 
lass oferror pro
esses.Assumption A2 The error pro
ess (ǫt) is stri
tly stationary and su
h that
Cov(ǫt, ǫt−h) = 0 for all t ∈ Z and all h 6= 0.Su
h error pro
esses are 
ommonly named weak white noise. Note that Granger'srepresentation theorem still holds when the assumption of iid gaussian innovations isrepla
ed by A2. The following are examples of error pro
esses whi
h verify A2 butare not iid.Example 2.1. Consider the pro
ess (ǫt) de�ned by the relation

ǫt = at + Φ{ǫt−1 ⊙ at}, (2.6)where ⊙ denotes the Hadamard produ
t, (at) is a d-dimensional iid 
entered pro
esssu
h that | E(aitajt) |≤ 1, and the matrix Φ is diagonal of dimension d × d and su
hthat | Φii |< 1. Taking Φ0 = Id, the equation (2.6) has a stationary solution of the form
ǫt =

∑∞
i=0 Φiat−i ⊙ · · · ⊙ at. It is easy to see that the ǫt's are un
orrelated. However

Cov(ǫ2it, ǫ
2
it−1) = E(a2

it)Cov((1 + Φiiǫit−1)
2, ǫ2it−1) 6= 0,in general, showing that the pro
ess (ǫt) is not iid.Example 2.2. The univariate all-pass models (see for instan
e Breidt, Davis andTrindade (2001)) 
onstitute an important 
lass whi
h 
an be extended to the mul-tivariate 
ase. Assume that the pro
ess (ǫt) is the unique solution to the followingequation

ǫt − φ01ǫt−1 − · · · − φ0qǫt−q = wt + φ0q−1φ
−1
0q wt−1 + · · · + φ01φ

−1
0q wt−q+1 − φ−1

0q wt−q,where φ(z) = Id − φ01z · · · − φ0qz
q is su
h that φ(z) 6= 0 for | z |≤ 1. The 
enteredpro
ess (wt) is iid with varian
e Σw. Assume also that the matri
es φ01, . . . , φ0q arediagonal. Writing the spe
tral density for ea
h 
omponent (ǫit), it 
an be shown that



THE LR TEST UNDER UNCORRELATED ERRORS 5the pro
ess (ǫt) is un
orrelated (see Andrews, Davis and Breidt (2006)). However if y0is not gaussian the pro
ess (ǫt) is not independent. To see this 
onsider the followingbivariate simple example
ǫt − φǫt−1 = wt − φ−1wt−1where φ =

(

φ1 0
0 φ2

) and | φ1 |< 1, | φ2 |< 1. Let us introdu
e ϑt = ǫ1t −

φ1ǫ1t−1. Sin
e (ǫt) is un
orrelated, the pro
ess (ϑt) follows an 
ausal MA(1). Thenwe have ǫ1t =
∑

i≥0 φ
iϑt−i. Straightforward 
omputations show that E(ǫ1tϑ

2
t−1) =

E[ǫ1t(ǫ1t−1−ǫ1t−2)
2] = Ew3

t (1−φ−2
1 )(1+φ1) and E(ǫ1tϑ

3
t−1) = E[ǫ1t(ǫ1t−1−ǫ1t−2)

3] =

(Ew4
t − 3)(1 − φ−2

1 )2φ1. Using the fa
t that ϑt−1 belongs to the σ-�eld generated by
{ǫ1u, u < t}, we have E{ϑ2

t−1E(ǫ1t | ǫ1t−1, · · · )} 6= 0 for Ew3
t 6= 0 and E{ϑ3

t−1E(ǫ1t |
ǫ1t−1, · · · )} 6= 0 for Ew4

t 6= 0. Thus the (ǫt) pro
ess is not a martingale di�eren
e ingeneral.2.1. Derivation of the quasi maximum likelihood (QML) estimatorsNow we turn to the derivation of the QML estimators of α0c and β∗
0c. We usehere the QML method be
ause we assume that the errors terms are un
orrelatedbut not ne
essary gaussian independent. Note that the estimation pro
edure wewill des
ribe is performed under H0. In the framework of the VECM we shall seethat the methodology in Johansen (1988,1991) in the iid 
ase remains valid underun
orrelated errors assumption. We will use the following notation. Let Z0t = ∆Xt,

Z2t = (∆X ′
t−1, . . . ,∆X

′
t−p+1, 1)′, Ψ0 = (Γ01, . . . ,Γ0p−1, ν0) where Xt = 0 for t ≤ 0.The expression (2.3) be
omes with these notations

Z0t = α0cβ
′∗
0cZ1t + Ψ0Z2t + ǫt. (2.7)Here we 
an remark that sin
e Xt is I(1) then the pro
esses Z0t and Z2t are stationary.Using (2.7) and given the observations X1, . . . , XT we write the quasi log-likelihood asfollows

logL(Ψ, αc, βc,Σǫ) = −
1

2
T log | Σǫ |

−
1

2
tr

{

T
∑

t=1

Σ−1
ǫ (Z0t − αcβ

′∗
c Z1t − ΨZ2t)(Z0t − αcβ

′∗
c Z1t − ΨZ2t)

′

}

,where
β∗

c = (β′
c, τc)

′ = ((β(c′β)−1)′, (β′c)−1τ)′ and αc = αβ′c.The maximum likelihood estimation method for the VECM with un
orrelated errorsimpli
ates several steps. We �rst estimate the parameters in the matrix Ψ0 and obtain
Ψ̂(αc, β

∗
c ) = M02M

−1
22 − αcβ

′∗
c M12M

−1
22where

Mij = T−1
T

∑

t=1

ZitZ
′
jt.



6Now de�ning by R0t and R1t the residuals of respe
tively the regressions of Z0t and
Z1t on Z2t, we get the 
on
entrated log-likelihood

logL(αc, β
∗
c ,Σǫ) = −

1

2
T log | Σǫ |

−
1

2
tr

{

T
∑

t=1

Σ−1
ǫ (R0t − αcβ

′∗
c R1t)(R0t − αcβ

′∗
c R1t)

′

} (2.8)where
R0t = Z0t −M02M

−1
22 Z2t and R1t = Z1t −M12M

−1
22 Z2t.Sin
e the R1t's are the residuals of the regression of the Z1t's on the Z2t's, andnoting that the pro
ess (Z1t) is I(1) and the pro
ess (Z2t) is I(0), then the pro
ess

(R1t) is I(1). The expression of the 
on
entrated log-likelihood 
orresponds to theregression equation
R0t = α0cβ

′∗
0cR1t + ǫ̃t, (2.9)so that we obtain the following unfeasible estimators of α0c and Σǫ in (2.9) by ordinaryleast squares

α̂c(β
∗
0c) = S01β

∗
0c(β

′∗
0cS11β

∗
0c)

−1, (2.10)
Σ̂ǫ(β

∗
0c) = S00 − α̂c(β

∗
0c)(β

′∗
0cS11β

∗
0c)α̂

′
c(β

∗
0c)where

Sij = T−1
T

∑

t=1

RitR
′
jt.Note that repla
ing αc and Σǫ by their estimates in (2.8) we write

logL(α̂(β∗
c ), β∗

c , Σ̂ǫ(β
∗
c )) = −

1

2
T log | Σ̂ǫ(β

∗
c ) | −

1

2
dT.Finally the parameters in β∗

0c 
an be estimated using the results of the well knownredu
ed rank method of Anderson (1951). In this end we shall minimize the followingexpression
| Σ̂ǫ(β

∗
c ) |=| S00 − S01β

∗
c (β′∗

c S11β
∗
c )−1β′∗

c S10 | .Using the relation
A11 A12

A21 A22
=| A11 || A22 −A21A

−1
11 A12 |=| A22 || A11 −A12A

−1
22 A21 |,we �nd

| S00 − S01β
∗
c (β′∗

c S11β
∗
c )−1β′∗

c S10 |=| S00 |
| β′∗

c (S11 − S10S
−1
00 S01)β

∗
c |

| β′∗
c S11β∗

c |
.Under the null hypothesis and using Lemma 7.1 the expression | β′∗

c (S11−S10S
−1
00 S01)β

∗
c |

/ | β′∗
c S11β

∗
c | is minimized for the following normalized expression

β̂∗
c = (β̂′

c, τ̂c)
′ = ((β̂(c′β̂)−1)′, ((β̂′c)−1τ̂ ))′,



THE LR TEST UNDER UNCORRELATED ERRORS 7where
β̂∗ = (β̂′, τ̂)′ = S

− 1

2

11 (v1, . . . , vr)and v1, . . . , vr are eigenve
tors 
orresponding to the r largest solutions λ̂1 ≥ · · · ≥ λ̂rof the eigenvalue problem
| λI − S

− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0. (2.11)In addition the matrix c′β̂ is of full rank. We obtain α̂c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1. Notingthat we have | Σ̂ǫ(β̂
∗
c ) |=

∏r
i=1(1 − λ̂i), the likelihood ratio test for r is given by

Q
− 2

T
r =

∏r
i=1(1 − λ̂i)

∏d
i=1(1 − λ̂i)

=

d
∏

i=r+1

(1 − λ̂i)
−1.Then to test the null hypothesis, we 
onsider the LR test statisti


−2 logQr = −T
d

∑

i=r+1

log(1 − λ̂i),where λ̂1 ≥ · · · ≥ λ̂d are the d greater solutions of the eigenvalue problem (2.11). Inthe next se
tion we will study the asymptoti
 behaviour of the LR test statisti
.3. Asymptoti
 properties of the LR statisti
To state the main results of the paper, the assumption that the pro
ess (ǫt) isun
orrelated is not enough. Indeed we have to 
ontrol the serial dependen
e of thepro
ess (ǫt). To this end we introdu
e the mixing 
oe�
ients αξ(h) for a givenstationary pro
ess (ξt)

αξ(h) = sup
A∈σ(ξu,u≤t),B∈σ(ξu,u≥t+h)

|P (A ∩B) − P (A)P (B)| ,whi
h measures the temporal dependen
e of the pro
ess (ξt). De�ne ‖ξt‖q = (E‖ξt‖q)
1/q,where ‖.‖ denotes the Eu
lidean norm. Then we need to make the following assumptionon the pro
ess (ǫt).Assumption A3 The pro
ess (ǫt) satis�es ‖ǫt‖2+ν+η < ∞ and the mixing 
oef-�
ients of the pro
ess (ǫt) are su
h that ∑∞

h=0{αǫ(h)}ν/(2+ν) < ∞ for some ν >
0 and η > 0.Note that the kind of dependen
e indu
ed by A3 is mild for the error pro
ess (ǫt).The following proposition gives us the asymptoti
 distribution of the LR test statisti
.Proposition 3.1. UnderA1, A2 and A3, the LR test statisti
 has the same asymp-toti
 distribution as in the iid gaussian 
ase, that is

−2 logQr0
⇒ tr

{

[∫ 1

0

F (dB)′
]′ [∫ 1

0

FF ′du

]−1 [∫ 1

0

F (dB)′
]

}

, (3.1)



8where B is a standard d− r0 dimensional Brownian motion, and the 
omponents Fi of
F are given by

Fi(u) = Bi(u) − B̄i i = 1, . . . , d− r0,

Fd−r0+1(u) = u−
1

2
,and B̄i =

∫ 1

0 Bi(u)du.The same result was found by Rahbek et al (2002) under the assumption that theerror pro
ess (ǫt) is a martingale di�eren
e and in the framework of VECM withoutdeterministi
 terms. A 
onsequen
e of Proposition 3.1 is that the results for testingthe 
ointegrating rank using the LR test statisti
 
an be dire
tly extended from theusual iid gaussian assumption on the error pro
ess. Then we 
an use the same 
riti
alvalues as in the iid 
ase to test the 
ointegrating rank (see Johansen (1995), Table15.4). We reje
t the null hypothesis if −2 logQr > ς for a given quantile ς of thedistribution given in (3.1). Therefore, following the Johansen pro
edure for sele
tingthe 
ointegrating rank, we apply su

essively this test to r = 0, 1, 2, . . . , d − 1 untilwe obtain −2 logQr < ς. Note that if τ0 = 0, we use a di�erent test statisti
 and adi�erent limit distribution is obtained in this 
ase. In the next se
tion we will studythe asymptoti
 behaviour of the QML estimators.4. Asymptoti
 properties of the QML estimatorsIn this se
tion we suppose that the 
ointegrating rank is well identi�ed and only
onsider estimates of β∗
0c with dimension (d×r0). In the sequel we will denote byW (u)the d-dimensional brownian motion of varian
e Σǫ and de�ne W̄ =

∫ 1

0
W (u)du. Wealso de�ne the matrix β̄0 = β0(β

′
0β0)

−1. The following Proposition gives the asymptoti
behaviour of β∗
0c.Proposition 4.1. Under A1, A2 and A3, T (β̂c − β0c) has the same asymptoti
distribution as in the iid gaussian 
ase that is

T (β̂c − β0c) ⇒ (Id − β0cc
′)β̄0⊥

[∫ 1

0

G1.2G
′
1.2du

]−1 ∫ 1

0

G1.2(dVα)′ (4.1)where
G(u) =

(

β̄′
0⊥C(W (u) − W̄ )

−u+ 1
2

)

=

(

G1(u)
G2(u)

)

,

G1.2 = G1 −

(∫ 1

0

G1G2du

) (∫ 1

0

G2G2du

)−1

G2,and
Vα = (α′

0cΣ
−1
ǫ α0c)

−1α′
0cΣ

−1
ǫ Wis independent of G. Then β̂c is asymptoti
ally distributed as mixture normal withvarian
e

(Id − β0cc
′)β̄0⊥

[∫ 1

0

G1.2G
′
1.2du

]−1

(Id − cβ′
0c) ⊗ (α′

0cΣ
−1
ǫ α0c)

−1. (4.2)



THE LR TEST UNDER UNCORRELATED ERRORS 9Moreover we have
τ̂c = τ0c +Op(T

− 3

2 ). (4.3)Seo (2007) also found that the asymptoti
 distribution of the redu
ed rank estimatoris not 
hanged when the errors are 
onditionally heteros
edasti
.It is interesting to note that the results of Proposition 3.1 and Proposition 4.1 remainvalid 
onsidering Υt = ((β′∗
0 Z1t)

′, Z ′
0t)

′ and repla
ing A3 by the following assumption.Assumption A3' The pro
ess (Υt) satis�es ‖Υt‖2+ν+η < ∞ , moreover the mixing
oe�
ients of the pro
ess (Υt) are su
h that
∞
∑

h=0

{αΥ(h)}ν/(2+ν) <∞ for some ν > 0 and η > 0. (4.4)However assumptions A3 and A3' are not equivalent. Note that using A3' we 
on-sider I(0) transformations of the pro
ess (Xt), that is β′∗
0 Z1t and Z0t, so that we are ableto use the theory of stationary mixing pro
esses in our framework. Note also that thesummability 
ondition (4.4), implies that ((β′∗

0 Z1t)
′, Z ′

0t)
′ and ((β′∗

0 Z1t+h)′, Z ′
0t+h)′ areasymptoti
ally independent while it is assumed there exist long-run relations betweenthe 
omponents of Xt. A simple illustration of the kind of pro
esses we 
onsider isgiven by the following bivariate I(1) pro
ess Xt = (X1 t, X2 t) su
h that

X1 t = ν1
∑t

i=1 ǫ0i + ν1t+ ǫ1t

X2 t = ν2
∑t

i=1 ǫ0i + ν2t+ ǫ2twhere the pro
ess (ǫ0t, ǫ1t, ǫ2t) is a mixing pro
ess, and ν1 6= 0 and ν2 6= 0. Here taking
β0 = (ν2,−ν1) it is 
lear that the pro
ess (β′

0Xt,∆Xt) is mixing.In order to state the 
onsisten
y of the estimator of α0c, we have to introdu
e thefollowing notations. Let us de�ne
β′∗

0cR̃1t = β′∗
0cZ1t − β′∗

0cM̄12M̄
−1
22 Z2t (4.5)where

β′∗
0cM̄12 = lim

T→∞
β′∗

0cM12 and M̄22 = lim
T→∞

M22.The existen
e of these limits is ensured by the ergodi
 theorem sin
e the pro
esses
(β′∗

0cZ1t) and (Z2t) are stationary ergodi
. De�ne the matrix Σc = E(β′∗
0cR1tR

′
1tβ

∗
0c) =

V ar(β′∗
0cZ1t) − E(β′∗

0c(Z1t − Z̄1)(Z̃2t −
¯̃Z2)

′)V ar(Z̃2t)
−1E((Z̃2t −

¯̃Z2t)(Z1t − Z̄1)
′β∗

0c)where Z̃2t = (Z ′
0t−1, . . . , Z

′
0t−p+1)

′. We also need to 
onsider the following assumptionwhi
h strengthens A3.Assumption A4 The pro
ess (ǫt) satis�es ‖ǫt‖4+2ν <∞ and the mixing 
oe�
ientsof the pro
ess (ǫt) are su
h that ∑∞
h=0{αǫ(h)}ν/(2+ν) <∞ for some ν > 0.The following Proposition give us the asymptoti
 behaviour of the estimator of α0c.



10Proposition 4.2. Under A1, A2 and A4, the expression T 1

2 vec(α̂c −α0c) has thefollowing asymptoti
 distribution whi
h is di�erent from that of the usual iid gaussian
ase,
T

1

2 vec(α̂c − α0c) ⇒ N (0,Σα) (4.6)where
Σα =

∞
∑

h=−∞

E
{

Σ−1
c β′∗

0cR̃1tR̃
′
1t−hβ

∗
0cΣ

−1
c ⊗ ǫtǫ

′
t−h

}

.In the iid gaussian 
ase the asymptoti
 varian
e is given by
Σα = Σ−1

c ⊗ Σǫ,so that in this 
ase (4.6) 
orresponds to the result in Johansen (1995, Theorem 13.3 p183). We also 
an obtain the result of Proposition 4.2 repla
ing A4 by the followingassumption.Assumption A4' The pro
ess (Υt) satis�es ‖Υt‖4+2ν < ∞ , moreover the mixing
oe�
ients of the pro
ess (Υt) are su
h that
∞
∑

h=0

{αΥ(h)}ν/(2+ν) <∞ for some ν > 0.Then despite the fa
t that the assumption of iid gaussian noise is relaxed in theestimation pro
edure, the estimates of α0c and β∗
0c obtained in Se
tion 2 are 
onsistent.5. Monte Carlo experimentsIn this se
tion we 
ompare the small sample properties of the LR test in the 
asesof iid and dependent innovations for bivariate pro
esses. Throughout this se
tion theerror pro
ess is normally distributed with mean zero and varian
e matrix I2 in the iid
ase. We will 
onsider several kinds of weak error pro
esses. Consider the iid pro
ess

ηt = (η1t, η2t)
′ su
h that ηt ∼ N (0, I2). We �rst 
onsider a bivariate error pro
essde�ned by

ǫt =

(

η1tη1t−1 . . . η1t−k

η2tη2t−1 . . . η2t−k

)

, (5.1)for some integer k. Note that the 
omponents of ǫt 
orrespond to the univariate weakwhite noise built by Romano and Thombs (1996). The innovations pro
ess de�ned in(5.1) is obviously not independent. It 
an be shown that (ǫt) is a martingale di�eren
e.Note also that the error pro
ess is k-dependent, in the sense that ǫt and ǫt−i aredependent for i ≤ k and independent for i > k.In order to illustrate the e�e
t of ARCH innovations on the LR test statisti
 we
onsider the model with 
onstant 
orrelation proposed by Jeantheau (1998). In oursimulations the pro
ess (ǫt) follows the DGP given by
(

ǫ1t

ǫ2t

)

=

(

σ1t 0
0 σ2t

) (

η1t

η2t

) (5.2)where
(

σ2
1t

σ2
2t

)

=

(

0.1
0.1

)

+

(

a11 a12

a21 a22

) (

ǫ21t−1

ǫ22t−1

)

.



THE LR TEST UNDER UNCORRELATED ERRORS 11The elements a11, a12, a21 and a22 are supposed to be positive. In addition we supposethat the stationarity 
onditions hold (see Jeantheau (1998) for more details). In this
ase the pro
ess (ǫt) is a martingale di�eren
e and presents 
onditional heteros
edas-ti
ity.The third weak error pro
ess follows an all-pass model of Example 2.2 de�ned by
ǫt − φǫt−1 = wt − φ−1wt−1, where φ =

(

φ1 0
0 φ2

) (5.3)and φ1, φ2 are real and su
h that | φ1 |< 1, | φ2 |< 1. The terms wt are de�nedby wt = y2t ⊙ y2t−1, where (yt) is iid N (0, I2). Note that the pro
ess (wt) is iid butnon gaussian. Contrary to the �rst and se
ond 
ase, the innovation pro
ess is not ingeneral a martingale di�eren
e.5.1. Empiri
al sizeWe simulated n = 1000 independent traje
tories of length T = 100 and T = 400given by the following bivariate DGP
(

∆X1t

∆X2t

)

=

(

π1 eπ1

π2 eπ2

) (

X1t−1

X2t−1

)

− θ

(

π1

π2

)

(t− 1) +

(

ǫ1t

ǫ2t

) (5.4)where π1, π2, e and θ are real. The true 
ointegrating rank is r0 = 1. Note thatthe 
onditions (b) and (
) of A1 be
ome in this 
ase −2 < eπ2 + π1 < 0. When theequation | A(z) |= 0 has two solutions, they will be denoted by z1 = 1 and z2. In thesequel, we 
onsider tests of the hypothesis H0 : r0 = 1 at the asymptoti
 nominal level
5%, assuming the order p = 1 is known.In Tables 1 and 2, we 
onsider three di�erent 
ases of the model (5.4) to study thebehaviour of the LR test in di�erent points of the parameter spa
e. For the three
ases we take π2 = 0.9, e = −1 and θ = −1.5 so that only π1 
hanges. We take
π1 = −0.1 for Case 1, π1 = 0.8 for Case 2 and π1 = −0.8 for Case 3. For Case 1we have eπ2 + π1 = −1 and the equation | A(z) |= 0 has a unique solution whi
his equal to one. Note that when eπ2 + π1 = 0, we have z2 = 1 so that the pro
ess
(Xt) is integrated of order higher than one. A
tually eπ2 + π1 = 0 
orresponds to
| α′

0⊥Γ0β0⊥ |= 0 in 
ondition (
) of A1. Case 2 is 
lose to this limiting sin
e we have
eπ2 + π1 = −0.1 ≈ 0 and z2 ≈ 1. When eπ2 + π1 = −2, we have z2 = −1 so that the
ondition (b) of A1 is not satis�ed. Case 3 is 
lose to this limiting situation sin
e wehave eπ2 + π1 = −1.7 ≈ −2 and z2 ≈ −1. We will 
onsider for ea
h of these 
ases thewhite noises presented above. Re
all that in the iid 
ase the error pro
ess is normallydistributed with mean zero and varian
e matrix I2. For the weak white noise (5.1)we take k = 1. For the weak white noise (5.2) we take a11 = a21 = 0.2, a12 = 0.1,
a22 = 0.4 and for the weak white noise (5.3) we take φ1 = φ2 = 0.7. In the followingtables WWN stands for weak white noise, MD for martingale di�eren
e and SWN forstrong white noise. The relative reje
tion frequen
ies are displayed in bold type whenthey are outside the 5% signi�
ant limits 3.65% and 6.35% in Tables 1 and 2.In order to illustrate the behaviour of the LR test when the e�e
t of the weak whitenoises in
reases, we �rst apply the LR test when the error pro
ess follows (5.1) withdi�erent values of k in Figure 7.1. We also apply the LR test when the error pro
essfollows the ARCH model (5.2) with a21 = a12 = 0 and di�erent values of a11 = a22.



12The results are presented in Figure 7.2. Sin
e we assumed that ηt ∼ N (0, I2), themoments of order two exist for a11 < 1. The existen
e of this moment is indi
atedby verti
al lines. Note also that the error pro
ess is stri
tly stationary for a11 < 3.56.The same experiment is made for the weak white noise (5.3) with di�erent values of
φ1 = φ2 in Figure 7.3. These experiments are performed for Case 1. We will alsostudy the behaviour of the the LR test for di�erent values of the trend parameter θ forea
h of the noises 
onsidered above. We will take the same parameters for weak whitenoises (5.2) and (5.3) as in Tables 1 and 2. We will also take k = 1 for weak white(5.1) for these experiments. The results are presented in Figures 7.4-7.7 for π1 = −0.1,
π2 = 0.9 and e = −1.We will �rst interpret the results for Case 1 in the di�erent experiments we per-formed. In Table 1 it emerges that the LR test is more liberal when the innovationpro
ess is a martingale di�eren
e than in the 
ase of strong innovation for the sample
T = 100. In addition note that from Figure 7.1 the LR test is over-reje
ting forin
reasing values of k in the weak white noise (5.1). From Figure 7.2 the same
on
lusion 
an be made when the ARCH e�e
t in
reases and the moment of ordertwo exist. From Table 1 it seems that the LR test is more 
onservative by 
omparisonto the strong 
ase when the error pro
ess follows an all-pass model. This is 
on�rmedfrom Figure 7.3 when the all-pass e�e
t in
reases. In general a

ording to the resultsof our experiments the LR test has some di�
ulties to assess the 
ointegrating rankfor small samples when the errors are not iid.Note however that the reje
tion frequen
ies for Case 1 in Table 2 are inside thesigni�
ant limits 3.65% and 6.35%. In addition Figure 7.2 shows that the results arebetter for samples of size T = 400 than for T = 100 when a11 < 1. This 
on�rmsthat the LR test remains valid for un
orrelated errors when ‖ǫt‖2+ν+η < ∞. This also
on�rms the result of Rahbek et al (2002) who showed that the LR test remains validin the framework of martingale di�eren
es, assuming the existen
e of moments of ordertwo. However the reje
tion frequen
ies in
reases for a11 < 1. When the moments oforder two do not exist (a11 > 1), it seems that the LR test is no longer valid. SimilarlyFigure 7.3 
learly shows that the results are better for samples of length T = 400than for samples of length T = 100. The same 
an be stated from Figure 7.1 whenthe dependen
e of the error pro
ess is not strongly marked. Note that the results forsamples T = 400 are not better from those of samples T = 100 for great values of k.Then the theoreti
al results are beared out by the results of our experiments.Finally from Figures 7.4-7.7 it seems that the LR test be
omes more 
onservativefor small values of the trend parameters. This 
ould be explained by the fa
t thatwhen θ ≈ 0 the model (5.4) resembles to a model without trend. In the 
ase of VECMwithout trend one should use other 
riti
al values.In order to interpret the results of Cases 2 and 3 re
all that the parameters are 
loseto the boundary of the parameter spa
e in these two 
ases. In Case 2 the root z2 isnear the point z = 1, and in Case 3 the root z2 is near the unit 
ir
le but far fromthe point z = 1. From Tables 1 and 2, it seems that the �nite sample performan
e ofthe LR test is not a�e
ted too mu
h for Case 2. Note that from Figure 7.8 the LRtest is 
learly more liberal in Case 2 than in Case 1 when the error pro
ess follows anall-pass model. However for Case 3, a

ording to Tables 1 and 2 the LR test has badperforman
es unless when the error pro
ess follows an ARCH model. Then, for a givenkind of weak white noise, the small sample properties of the LR test 
an 
hange when
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lose to the boundary.Now we will study the validity of the asymptoti
 distribution of the LR test in (3.1)when the error terms are 
orrelated. We 
onsider a DGP of the form (5.4) with thefollowing 
orrelated error pro
ess
ǫt = cos(0.5 arcsin(2δ))ηt + sin(0.5 arcsin(2δ))ηt−1.It is easy to 
he
k that V ar(ǫt) = I2 and Corr(ǫt, ǫt−1) = δI2. We apply the LRtest based on the asymptoti
 
riti
al value of level 5% to a DGP of the form (5.4)for testing the hypothesis r0 = 1. Clearly from Figure (7.9) the LR test turns outto be over-reje
ting when δ is far from zero. In addition the results are worst forsamples T = 400 than for T = 100. Then, from the results of our experiment, we
an spe
ulate that the LR test is no longer valid when the errors are 
orrelated. Thisspe
ulation seems reasonable sin
e it 
an be seen from Phillips (1988) (see also Phillipsand Durlauf (1986)) that the standard results we use to prove Proposition 3.1 
hangewhen the assumption of un
orrelated errors is relaxed.Finally we 
onsider the following non 
onditionally heteros
edasti
 errors

ǫt = (1 + f × t)ηt (5.5)where f is real positive, and study the small sample properties of the LR test inthis 
ase. Similarly to the previous experiment, we apply the LR test based on theasymptoti
 
riti
al value of level 5% to the bivariate DGP (5.4) testing the hypothesis
r0 = 1. From Table 3 the LR test seems to be too 
onservative in presen
e ofheteros
edasti
 errors. In addition the results for samples T = 400 are worst thanfor T = 100, so that we 
an also spe
ulate in this 
ase that the LR test is no longervalid.5.2. Empiri
al powerNow we repeat the same experiments, 
onsidering the following bivariate AR(1)model written in error 
orre
tion form

(

∆X1t

∆X2t

)

=

(

π1 eπ1

π2 eπ2 +̟

) (

X1t−1

X2t−1

)

−

(

π1

π2

)

(t− 1) +

(

ǫ1t

ǫ2t

) (5.6)where we 
hoose ̟ 6= 0 su
h that the matrix Π =

(

π1 eπ1

π2 eπ2 +̟

) is of full rank(rk(Π) = 2) and det (Id − (Id + Π)z) 6= 0 for all | z |≤ 1. We shall test the hypothesis
H0 : r0 = 1 for ea
h of the noises 
onsidered in Tables 1 and 2. The reje
tion frequen
iesof H0 are displayed in Tables 4-7 for an asymptoti
 
riti
al value of level 5%.Note that for Tables 4 and 5 we simulated a model (5.6) for whi
h we have eπ2+π1 =
−0.85. From the results of Table 4 it seems that the LR test is slightly less powerfulin small samples when the innovations are all-pass than when they are iid. The same
an be noted in Table 6 for an error pro
ess whi
h follows an ARCH model when thesimulated model (5.6) is su
h that eπ2 + π1 = −1.8 ≈ −2. In general, from Tables 5and 7, the power in
reases for samples of size T = 400 when the values of ̟ are nottoo small. Surprisingly the power de
reases for small values of ̟ in Table 7.



14 6. Con
lusionIn this work we established the 
onsisten
y of the estimators of the long-run pa-rameters β0c and the adjustment parameters α0c in the presen
e of un
orrelated butnonindependent errors. We also established the robustness of the LR test in thisframework, in the sense that the LR test statisti
 has the same asymptoti
 distributionas in the iid gaussian errors 
ase. However from the simulations results it seems that the�nite sample performan
e of the LR test strongly depends on the kind of error pro
ess.The �nite sample performan
e also strongly depends on the position in the parameterspa
e. More pre
isely the simulations results show an important size distortion whenthe dependen
e in
reases or when the deterministi
 trend is 
lose to zero. Similar
on
lusions were found by Rahbek et al (2002) for ARCH type errors. Note alsothat it appears from our experiments that the LR test is no longer valid when theerrors are 
orrelated. From these �ndings we 
an draw the 
on
lusion that, despite theasymptoti
 validity of the LR test, one should use it warily when the error pro
ess issuspe
ted to be non-independent. 7. AppendixLemma 7.1. Let H and K be symmetri
 and positive de�nite matri
es of dimension
d× d. De�ne the following fun
tion

f(x) =| x′Hx | / | x′Kx |where x is a full rank matrix of dimension d × r. De�ne also the ordered solutions
δd ≥ · · · ≥ δ1 > 0 of the generalized eigenvalue problem

| δI −K− 1

2HK− 1

2 |= 0. (7.1)Then f(x) is minimized among all d× r matri
es by any matrix of the form
x̂ = K− 1

2 (ei1 , . . . , eir
), (7.2)where ei1 , . . . , eir

are non-
ollinear eigenve
tors 
orresponding to a 
hoi
e of r eigen-values δik
of (7.1) whi
h are su
h that δik

≤ δr. The minimal value is given by ∏r
i=1 δi.Proof of Lemma 7.1. Let a d× d-dimensional matrix l = (lij). Using the relation

log(| Id + l |) = tr(l) + o(‖ l ‖2) where ‖ l ‖= maxi

d
∑

i=1

| lij |,we expand the expression
log | (x+ h)′H(x+ h) |

= log | x′Hx | + log | I + (x′Hx)−1(x′Hh+ h′Hx+ h′Hh) |

= log | x′Hx | +2tr{(x′Hx)−1(x′Hh)} + o(‖ h ‖2), (7.3)where h is a matrix of dimension d× r. Sin
e we have
log f(x) = log | x′Hx | − log | x′Kx |



THE LR TEST UNDER UNCORRELATED ERRORS 15and using the expression (7.3), we write the derivative of the fun
tion log f(x) at thepoint x in the dire
tion h
lim
s→0

log f(x+ sh) − log f(x)

s
= lim

s→0

2tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)sh}

s

= 2tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)h}.The fun
tion log f(x) has a stationary point x̂ if the derivative at x̂ in the dire
tion his zero for all h, hen
e the �rst order 
ondition is
tr{((x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K)h} = 0. (7.4)De�ning κ = (x̂′Hx̂)−1x̂′H − (x̂′Kx̂)−1x̂′K the matrix of general 
omponent κij this
ondition be
omes

r
∑

i=1

d
∑

j=1

κijhji = 0 for all h.Then the 
ondition (7.4) is equivalent to κ = 0, that is
Hx̂(x̂′Hx̂)−1 = Kx̂(x̂′Kx̂)−1 or cb = b(b′b)−1(b′cb) where x̂ = K− 1

2 b.This means that cb is in the spa
e spanned by b, and hen
e that the spa
e sp(b) isinvariant under linear mapping c. To see this note that the matrix (b′b)−1(b′cb) is ofdimension r × r, then the 
olumns of b(b′b)−1(b′cb) are linear 
ombinations of thoseof b, and hen
e cb is in sp(b). Using the property that any invariant subspa
e isspanned by a subset of eigenve
tors, we have sp(b) = sp(ei1 , . . . , eir
) for some 
hoi
eof non-
ollinear eigenve
tors ei1 , . . . , eir

of the matrix c. Sin
e we have x̂ = K− 1

2 b weobtain sp(x̂) = sp(K− 1

2 (ei1 , . . . , eir
)). In addition noting that | x̂′Kx̂ |=| b′b | and

| x̂′Hx̂ |=| b′cb |=| b′b |
∏r

k=1 δik
, we obtain f(x̂) =

∏r
k=1 δik

whi
h is 
learly minimalif we 
hoose i1, . . . , ir among the set of the eigenvalues δik
su
h that δik

≤ δr. This
omplete the proof of Lemma 7.1. �In our framework we have to minimize the expression
| β′∗(S11 − S10S

−1
00 S01)β

∗ | / | β′∗S11β
∗ | . (7.5)First we will proove that S11 is de�nite positive almost surely. Note that if S11 is notde�nite positive, then there exists ι0 ∈ Rd+1 su
h that

ι′0S11ι0 =
1

T

T
∑

t=1

ι′0R1tR
′
1tι0 = 0whi
h entails ι′0R1t = 0 for t = 1, 2, . . . , T . From (2.2) we write

ι′0R1t = ι̃′0Kǫt−1 + rt−1, (7.6)where rt−1 is not 
orrelated with ǫt−1 and ι̃0 is given by the d �rst 
omponents of ι0.Note that if the matrix K is not of full rank, then then there exists ι0 6= 0 su
h thatone 
an predi
t ι′0R1t from it past values. It is easy to see that this is not 
onsistent



16with the fa
t that Σǫ is positive de�nite and then K is of full rank. From (7.6) wehave V ar(ι′0R1t) = V ar(ι̃′0ǫt−1) + V ar(rt−1) ≥ ι̃′0Σǫι̃0 > 0. Therefore ι′0R1t = 0 is notalmost surely equal to zero, and then S11 is almost surely positive de�nite. Note thatusing parallel arguments one 
an proove that S00 is almost surely de�nite positive.Now we will proove that the matrix S11 −S10S
−1
00 S01 is de�nite positive. Consider thefollowing matrix

Θ =

(

S00 S01

S10 S11

)

.Similarly the assertion that Θ is not de�nite positive is equivalent to say that thereexists ι = (ι1, ι2) 6= 0 su
h that ι′1R0t + ι′2R1t = 0 where ι1 ∈ Rd and ι2 ∈ Rd+1. Sin
ewe assumed that Σǫ is positive de�nite, this not 
onsistent with (2.9), and hen
e Θ ispositive de�nite. Then writing
Θ =

(

Id 0
S10S

−1
00 Id+1

) (

S00 0
0 S11 − S10S

−1
00 S01

) (

Id S−1
00 S01

0 Id+1

)

= ̥i̥′,and noting that ̥ is of full rank, it is easy to see that i is de�nite positive. Thensin
e all the prin
ipal minors of i are positive implies that all the prin
ipal minors of
S11 − S10S

−1
00 S01 are positive, the result follow.Thus from Lemma 7.1 the expression (7.5) is minimized by 
onsidering the eigen-ve
tors 
orresponding to the r smallest solutions δ̂r ≥ · · · ≥ δ̂1 > 0 of the eigenvalueproblem

| (1 − δ)Id − S
− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0,or equivalently the r largest solutions λ̂1 ≥ · · · ≥ λ̂r of the eigenvalue problem
| λI − S

− 1

2

11 S10S
−1
00 S01S

− 1

2

11 |= 0, (7.7)taking λ̂i = 1− δ̂i. The minimal value is therefore given by ∏r
i=1(1− λ̂i) and we obtain

β̂∗ = S
− 1

2

11 (v1, . . . , vr)where v1, . . . , vr are the eigenve
tors 
orresponding to the r largest solutions of (7.7).Remark 7.1. In Lemma 7.1 note that if we have δr+q = · · · = δr for q ∈ {1, . . . , d−r},the spa
e spanned by the various matri
es of the form given in (7.2) is not unique. Tosee this suppose that δr+1 = δr then sin
e the 
hoi
e of the 
orresponding eigenve
tors
er+1 and er in this 
ase is not unique one 
an repla
e a given er by any ve
tor ofthe eigenspa
e of δr. However in our 
ase we show in the proof of Proposition 3.1below that λ̂r0

tends to a positive number and λ̂r0+1 tends to zero at the rate T−1 as
T → ∞. Then there exists T0 for whi
h λ̂r0

6= λ̂r0+1 for all T > T0. Thereby, underthe null hypothesis, the uniqueness of the spa
e spanned by β̂ is ensured for a largeenough T sin
e it 
orresponds to the spa
e spanned by the eigenspa
es of the r0 largesteigenvalues of (7.7) with λ̂r0
6= λ̂r0+1.In our framework it is also important to see that we are estimating the spa
e spannedby the 
olumns of β∗

0 . Therefore noting that when λ̂i1 = · · · = λ̂iq
with i1 6= · · · 6=

iq and i1, . . . , iq are smaller than r0, the 
orresponding eigenve
tors vi1 , . . . , viq
aretaken arbitrarily sin
e the 
hoi
e of these eigenve
tors is not unique. Similarly we
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hoose an arbitrarily order for the eigenve
tors v1, . . . , vr0
by taking β̂∗ = (v1, . . . , vr0

).In fa
t from the kind of normalization we use in se
tion 2 these 
hoi
es does notmatter. Consider β̂∗
1 = (β̂′

1, τ̂1)
′ and β̂∗

2 = (β̂′
2, τ̂2)

′ su
h that β̂∗
1 6= β̂∗

2 . Using a similar
omputations of (2.4), it is easy to see that β̂1c = β̂2c and β̂∗
1c = β̂∗

2c.Finally note that if we have r0 = 0 we take sp(β̂∗) = {0} and therefore we do notneed to apply Lemma 7.1 in this 
ase.In order to prove the results of our paper we have to state some intermediateasymptoti
 results. First we will state the following Lemma in whi
h we use themixing properties of the pro
ess (ǫt).Lemma 7.2. Under A2 and A4 we have
sup
i,j

+∞
∑

h=−∞

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |<∞,where m1,m2,m

′
1,m

′
2 ∈ {1, . . . , d}.Proof of Lemma 7.2. Note that without loss of generality, we 
an take h ≥ 0 and

0 ≤ i ≤ j. Then we write
+∞
∑

h=0

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |= a1 + a2.where

a1 =
i−1
∑

h=0

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) |and

a2 =
+∞
∑

h=i

| Cov(ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h) | .Using the Davydov inequality (Davydov (1968)) and the Hölder inequality we have

a2 ≤ K0 ‖ ǫt ‖
4
4+2ν

∞
∑

h=0

{αǫ(h)}
ν/(2+ν) <∞,where K0 is an universal 
onstant. To deal with the terms for h < i we writeCov (

ǫm1tǫm2t−i, ǫm′

1
t−hǫm′

2
t−j−h

)

= Cov (

ǫm1tǫm′

1
t−h, ǫm2t−iǫm′

2
t−j−h

)

+E
{

ǫm1tǫm′

1
t−h

}

E
{

ǫm2t−iǫm′

2
t−j−h

}

−E {ǫm1tǫm2t−i}E
{

ǫm′

1
t−hǫm′

2
t−j−h

} (7.8)so that we have a1 ≤ a3 + a4 + a5 where
a3 =

i−1
∑

h=0

Cov (

ǫm1tǫm′

1
t−h, ǫm2t−iǫm′

2
t−j−h

)

,
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a4 =

i−1
∑

h=0

E
{

ǫm1tǫm′

1
t−h

}

E
{

ǫm2t−iǫm′

2
t−j−h

}and
a5 =

i−1
∑

h=0

{ǫm1tǫm2t−i}E
{

ǫm′

1
t−hǫm′

2
t−j−h

}

.Now it remains to 
he
k that the terms a3, a4 and a5 are bounded. First note that
a3 ≤ K0 ‖ ǫt ‖

4
4+2ν

i−1
∑

h=0

{αǫ(i− h)}ν/(2+ν) <∞.In addition we have using the Cau
hy-S
hwartz inequality and the Davydov inequality
a4 ≤ ‖ ǫt ‖

2
2

i−1
∑

h=0

E
{

ǫm1tǫm′

1
t−h

}

≤ K0 ‖ ǫt ‖
2
2‖ ǫt ‖

2
2+ν

∞
∑

h=0

{αǫ(h)}
ν/(2+ν),and

a5 ≤ ‖ ǫt ‖
2
2 iE {ǫm1tǫm2t−i}

≤ K0 ‖ ǫt ‖
2
2‖ ǫt ‖

2
2+ν sup

i≥0
i{αǫ(i)}

ν/(2+ν).Sin
e supi≥0 i{αǫ(i)}ν/(2+ν) <∞, these two above expressions are bounded, and thenthe result follow. �Now de�ne the linear pro
ess
Vt =

∞
∑

i=0

ψiǫt−iwhere ψ(z) =
∑∞

i=0 ψiz
i is 
onvergent for | z |≤ 1 + δ for some δ > 0. In the sequelwe take ∑j

i=1 ǫt = 0 when j < 1. The two following Lemmas provide us some usefulresults in our framework.Lemma 7.3. Under A2 and A3 we have
T− 1

2

[Tu]
∑

t=1

Vt ⇒ ψ(1)W (u), (7.9)
T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)V
′
t ⇒

∫ 1

0

W (u)(dW )′ψ(1)′ + Σǫ(
∞
∑

i=1

ψi)
′, (7.10)

T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)V
′

t−1 ⇒

∫ 1

0

W (u)(dW )′ψ(1)′ + Σǫψ(1)′, (7.11)
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T− 3

2

T
∑

t=1

tVt = Op(1), (7.12)
T− 3

2

T
∑

t=1

tVt−1 = Op(1), (7.13)where W (u) is a brownian motion of varian
e Σǫ.Note that the result (7.9) is given in Phillips and Solo (1992) under the assumptionthat the pro
ess is a martingale di�eren
e, and similar results of (7.10), (7.10) and(7.12) 
an be found in Johansen (1995) in the iid 
ase.Proof of Lemma 7.3. To prove (7.9) we use the well known de
omposition
ψ(z) = ψ(1) + (1 − z)ψ∗(z)where ψ∗(z) = −

∑∞
i=0(

∑∞
j=i+1 ψj)z

i and V ∗
t = ψ∗(L)ǫt, so that we obtain

Vt = ψ(1)ǫt + ∆V ∗
t . (7.14)Then we write

t
∑

i=1

Vi = ψ(1)
t

∑

i=1

ǫt + V ∗
t − V ∗

0 .From the assumptions of our Lemma we have
‖V ∗

t ‖2+ν+η = ‖ψ∗(L)ǫt‖2+ν+η <∞,where L is the usual lag operator. Then using the Chebyshev inequality, we have
P{ max

1≤t≤T
‖ V ∗

t ‖≥ ǫT
1

2 } ≤
T

∑

t=1

P{‖ V ∗
t ‖≥ ǫT

1

2 }

≤ ǫ−sT
2−s
2 E(‖ V ∗

1 ‖s) → 0, (7.15)for some 2 < s < 2 + ν + η.Noting that from the assumptions we made in our Lemma the pro
ess (ǫt) alsoveri�es the mixing and moment 
onditions of A3, it follows from Herrndorf (1984,Corollary 1, p. 142) that
T− 1

2

[Tu]
∑

t=1

ǫt ⇒W (u),and then we obtain (7.9).For the proof of (7.10) we write from (7.14)
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)V
′
t = T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)ǫ
′
tψ(1)′ + T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t .



20Using the result in Phillips (1988) we obtain
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)ǫ
′
tψ(1)′ ⇒

∫ 1

0

W (u)(dW )′ψ(1)′.In addition we have
T−1

T
∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗

t = T−1(

T
∑

t=1

ǫt)V
′∗
T − T−1

T
∑

t=1

ǫtV
′∗
t

= T−1

2 (

T
∑

t=1

ǫt)T
− 1

2V ′∗
T − T−1

T
∑

t=1

ǫtV
′∗
t . (7.16)Using again the CLT given in Herrndorf (1984) and using (7.15), the �rst term in theright hand side of (7.16) 
onverge to zero in probability by the Slutsky Lemma. Forthe se
ond term using the fa
t that ψ∗

0 = −
∑∞

i=1 ψi we obtain
T−1

T
∑

t=1

ǫtV
′∗
t

P
→ −E(ǫtV

′∗
t ) = Σǫ(

∞
∑

i=1

ψi)
′.Then the result (7.10) follow. For the proof of (7.11) we write

T−1
T

∑

t=1

(
t−1
∑

i=1

ǫi)V
′
t−1 = T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)ǫ
′
t−1ψ(1)′ + T−1

T
∑

t=1

(
t−1
∑

i=1

ǫi)∆V
′∗

t−1

= T−1
T

∑

t=2

ǫt−1ǫ
′
t−1ψ(1)′ + T−1

T
∑

t=1

(

t−2
∑

i=1

ǫi)ǫ
′
t−1ψ(1)′

+T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t−1.Using a similar de
omposition of (7.16) we have

T−1
T

∑

t=1

(

t−1
∑

i=1

ǫi)∆V
′∗
t−1

P
→ −E(ǫtV

′∗
t−1) = 0.Noting that T−1

∑T
t=1 ǫt−1ǫ

′
t−1

P
→ Σǫ, it is easy to see that we obtain (7.11) usingsimilar arguments of the proof of (7.10).For the proof of (7.12) note that ‖ t

T Vt ‖≤‖ Vt ‖ and then the statement (7.12)follows from (7.9). Finally for the proof of (7.13), noting that from (7.9) it 
an beshown that T− 1

2

∑T
t=1 Vt−1 = Op(1), the result (7.13) follow in a similar way of (7.12).

�Lemma 7.4. Under A2 and A4 we have
T− 1

2

T
∑

t=1

vec(ǫtV
′
t−1) ⇒ N (0,Ξ),
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Ξ =

∞
∑

h=−∞

E {Vt−1 ⊗ ǫt} {Vt−h−1 ⊗ ǫt−h}
′ .If we assume that the error pro
ess is iid, we obtain Ξ = ΣV ⊗ Σǫ where ΣV =

E(VtV
′
t ).Proof of Lemma 7.4. Let us de�ne ut = vec(ǫtV

′
t−1) =

∑∞
i=0 vec(ǫtǫ

′
t−i−1ψ

′
i). Wealso de�ne uq,t =

∑q
i=0 vec(ǫtǫ

′
t−i−1ψ

′
i), where q ∼ T γ for some γ ∈]0, 1[. With thesenotations we write

ut = uq,t + eq,t where eq,t =
∞
∑

i=q+1

vec(ǫtǫ
′
t−i−1ψ

′
i).From Lemma 7.2 and using the Chebyshev inequality and the fa
t that the 
oe�
ientsof the matri
es ψi de
ay exponentially it 
an be shown that T− 1

2

∑T
t=1 eq,t = op(1).Then we 
an dedu
e that T− 1

2

∑T
t=1 ut and T− 1

2

∑T
t=1 uq,t has the same asymptoti
behaviour.From the expression of uq,t we obviously have ‖uq,t‖4+2ν < ∞. In addition we have

αuq
(h− q) ≤ αǫ(h), so that ∑∞

h=0{αuq
(h)}ν/(2+ν) <∞. Noting that

uq,t =

q
∑

i=0

vec(ǫtǫ
′
t−i−1ψ

′
i) =

q
∑

i=0

(ψi ⊗ Id)(ǫt−i−1 ⊗ ǫt),we write using the Lebesgue theorem and the stationarity of uq,t

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1


ov(uq,t, uq,s) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)
ov(uq,t, uq,t−h)

= lim
T→∞

1

T

q
∑

i,j=1

∑

|h|<T

(T− | h |)(ψi ⊗ Id)
ov{(ǫt−i−1 ⊗ ǫt), (ǫt−i−h−1 ⊗ ǫt−h)′}

(ψ′
i ⊗ Id) =

∞
∑

i,j=1

∞
∑

h=−∞

(ψi ⊗ Id)
ov{(ǫt−i−1 ⊗ ǫt), (ǫt−i−h−1 ⊗ ǫt−h)′}

(ψ′
i ⊗ Id).The existen
e of this last sum is ensured by Lemma 7.2 and using the fa
t thatthe 
oe�
ients of the matri
es ψi de
ay exponentially. Then from the CLT givenin Herrndorf (1984), T− 1

2

∑T
t=1 uq,t is normally distributed with mean zero. We obtainthe expression of Ξ writing

ut = vec(ǫtV
′
t−1) = (Vt−1 ⊗ Id)ǫt = Vt−1 ⊗ ǫt,and

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1


ov(ut, us) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)
ov(ut, ut−h)

=

∞
∑

h=−∞


ov (ut, ut−h) =

∞
∑

h=−∞

E {Vt−1 ⊗ ǫt} {Vt−h−1 ⊗ ǫt−h}
′
.



22This 
omplete the proof of our Lemma. �The following Lemmas are equivalent to Lemmas 10.2 and 10.3 in Johansen (1995).Re
all that β̄0⊥ = β0⊥(β′
0⊥β0⊥)−1.Lemma 7.5. Under A1, A2 and A3, the pro
ess Z1t satis�es

T− 1

2C′
T (Z1[Tu] − Z̄1) ⇒ G(u) (7.17)where

G(u) =

(

β̄′
0⊥C(W (u) − W̄ )

−u+ 1
2

)

, Z̄1 = T−1
T

∑

t=1

Z1t, W̄ =

∫ 1

0

W (u)du,and
CT =

(

β̄0⊥ 0

ρ′o1β̄0⊥ T− 1

2

)

.Proof of Lemma 7.5. From (2.2) we have
T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z1[Tu] = T− 1

2 β̄′
0⊥C

[T (u− 1

T
)]

∑

i=1

ǫi + T− 1

2 β̄′
0⊥Y[Tu]−1

+T− 1

2 β̄′
0⊥(ρo1 + ρo0 +A). (7.18)It 
an be easily shown that the se
ond term on the right hand side tends to zeroin probability using the Chebyshev inequality. In addition the third term does notdepends on time and vanishes by the fa
tor T− 1

2 . From A3 and using the 
entral limittheorem given by Herrndorf (1984) it follows
T− 1

2 β̄′
0⊥C

[Tu]
∑

i=1

ǫi ⇒ β̄′
0⊥CW (u).Finally 
onsidering the 
ontinuous mapping x −→

∫ 1

0 x(u)du, we obtain from the
ontinuous mapping theorem
T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1t = T−1

T
∑

t=1

T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z1t ⇒ β̄′

0⊥CW̄ . (7.19)The asymptoti
 behaviour of the last 
omponent 
an be obtained noting that
lim

T→∞

−[Tu] + 1

T
= lim

T→∞

−[Tu] + Tu

T
+

1

T
− u = −u,and

lim
T→∞

−T−2
T

∑

t=1

(−t+ 1) = lim
T→∞

T (T + 1)

2T 2
−

T

T 2
=

1

2
.
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� The results of Lemmas 7.6, 7.7 and the proof of Proposition 4.1 are not modi�ed bythe 
hoi
e of a normalization. Then we will 
onsider for these results any β∗

0 .Lemma 7.6. Under A1, A2 and A3, the residuals R1t satisfy
T−1C′

TS11CT ⇒

∫ 1

0

GG′du (7.20)
C′

T (S10 − S11β
∗
0α

′
0) ⇒

∫ 1

0

G(dW )′ (7.21)
C′

TS11β
∗
0 = Op(1) (7.22)

C′
TS10 = Op(1). (7.23)Proof of Lemma 7.6. First note that from (2.2) we have

Z0t = ∆Xt = Cǫt + ρo1 + ∆Yt, (7.24)and sin
e β′
0ρo0 = τ0 we write

β′∗
0 Z1t = β′

0Xt−1 − τ0(t− 1) = β′
0ρo0 + β′

0Yt−1. (7.25)Sin
e the pro
ess Yt is a stationary linear pro
ess, then it is easy to see that the 
enteredpro
esses β′∗
0 (Z1t − Z̄1) and (Z0t − Z̄0) are I(0) and that these pro
esses 
an also bewritten as linear pro
esses. Then we 
an use the results in Lemma 7.3 when needed.De�ne the 
entered stationary pro
ess (Z̃2t −

¯̃Z2) where Z̃2t = (Z ′
0t−1, . . . , Z

′
0t−p+1)

′,and let us introdu
e the following notations
N11 = T−1

T
∑

t=1

(Z1t − Z̄1)(Z1t − Z̄1)
′,

N22 = T−1
T

∑

t=1

(Z̃2t −
¯̃Z2)(Z̃2t −

¯̃Z2)
′,

N12 = T−1
T

∑

t=1

(Z1t − Z̄1)(Z̃2t −
¯̃Z2)

′,

N10 = T−1
T

∑

t=1

(Z1t − Z̄1)(Z0t − Z̄0)
′,and

N20 = T−1
T

∑

t=1

(Z̃2t −
¯̃Z2)(Z0t − Z̄0)

′.



24 To prove (7.20) note that sin
e we have Ψ0(Z2t − Z̄2) = Ψ̃0(Z̃2t −
¯̃Z2) where Ψ̃ =

(Γ1, . . . ,Γp−1), we write from (2.7)
Z0t − Z̄0 = α0β

′∗
0 (Z1t − Z̄1) + Ψ̃0(Z̃2t −

¯̃Z2) + ǫt.Sin
e we de�ned the R1t
′s as the residuals of the regression of Z1t on Z2t we have

T−1C′
TS11CT = T−1C′

TN11CT − T−1C′
TN12N

−1
22 N21CT . (7.26)Using (7.18) the d �rst rows of C′

TN12 are of the form
T−1

T
∑

t=1

(β̄′
0⊥, β̄

′
0⊥ρo1)(Z1t − Z̄1)(Z̃2t −

¯̃Z2)
′ =

T−1β̄′
0⊥C

T
∑

t=1

(
t−1
∑

i=1

ǫi)(Z̃2t −
¯̃Z2)

′ + T−1β̄′
0⊥

T
∑

t=1

Yt−1(Z̃2t −
¯̃Z2)

′

+T−1
T

∑

t=1

β̄′
0⊥(ρo1 + ρo0 +A)(Z̃2t −

¯̃Z2)
′

−T−1
T

∑

t=1

(β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1(Z̃2t −

¯̃Z2)
′. (7.27)Note that from the expression of (Z̃2t −

¯̃Z2) it is easy to see that this pro
ess is of theform
Z̃2t −

¯̃Z2 =

∞
∑

i=0

ψ̇i(ǫ
′
t−i−1, . . . , ǫ

′
t−i−p+1)

′.Then using (7.11) the �rst term on the right hand side of (7.27) is normalized to
onverge. The pro
esses in the se
ond and third terms in (7.27) are stationary ergodi
,and then using the ergodi
 theorem it is easy to see that these terms are normalizedto 
onverge. Finally note that sin
e Z̄1 does not depend on t the last term 
anbe written as {T−1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1}{T−1

2

∑T
t=1(Z̃2t −

¯̃Z2)
′}. From (7.19) the term

T− 1

2 (β̄′
0⊥, β̄

′
0⊥ρo1)Z̄1 
onverge weakly, and using (7.9) the term {T−1

2

∑T
t=1(Z̃2t−

¯̃Z2)
′}also 
onverge. Moreover the last row of C′

TN12 is of the form
T−3

2

T
∑

t=1

{−t+ 1 −
T

∑

t=1

−t+ 1

T
}(Z̃2t −

¯̃Z2)
′ =

1

2
T− 1

2

T
∑

t=1

(Z̃2t −
¯̃Z2)

′

+
1

2
T−3

2

T
∑

t=1

(Z̃2t −
¯̃Z2)

′ − T− 3

2

T
∑

t=1

t(Z̃2t −
¯̃Z2)

′. (7.28)From (7.9) the �rst and the se
ond term in the right hand side of (7.28) 
onverge,whereas the third term 
onverge from (7.13). Thus we 
an 
on
lude that the matrix
C′

TN12 is normalized to 
onverge. In addition using the ergodi
 theorem for thestri
tly stationary pro
ess (Z̃2t−1−
¯̃Z2) the term N22 
onverges to its population value.Therefore the se
ond term in the right hand side of (7.26) tends to zero by the fa
tor



THE LR TEST UNDER UNCORRELATED ERRORS 25
T−1. On the other hand 
onsidering the 
ontinuous mapping x −→

∫ 1

0 x(u)x(u)
′du, itfollow from the 
ontinuous mapping theorem and Lemma 7.5 that

T−1C′
TN11CT ⇒

∫ 1

0

GG′du,whi
h 
ompletes the proof of (7.20).Similarly for the proof of (7.22) we write
C′

TS11β
∗
0 = C′

TN11β
∗
0 − C′

TN12N
−1
22 N21β

∗
0 . (7.29)First note that the rows of the matrix C′

TN11β
∗
0 
an be written in the same way ofthose of the matrix C′

TN12 repla
ing only Z̃2t −
¯̃Z2 by β′∗

0 (Z1t − Z̄1). Sin
e the pro
ess
β′∗

0 (Z1t− Z̄1) is also stationary and 
an be written as a linear pro
ess, then 
onsideringthe arguments we used for the matrix C′
TN12 one 
an show that the matrix C′

TN11β
∗
0 isnormalized to 
onverge. Finally noting that the pro
esses (Z̃2t −

¯̃Z2) and β′∗
0 (Z1t− Z̄1)are stationary ergodi
 the term N21β

∗
0 
onverges using the Cau
hy-S
hwarz inequalityand the ergodi
 theorem. Then sin
e the terms in the right hand side of (7.29) are
onvergent we obtain the result (7.22).For the proof of (7.23) we write

C′
TS10 = C′

TN10 − C′
TN12N

−1
22 N20. (7.30)Similarly we 
an show that the matrix C′

TN10 
onverge using the same arguments
onsidered for the matrix C′
TN12 and repla
ing Z̃2t −

¯̃Z2 by Z0t − Z̄0. However notethat sin
e from (7.24) the term Z0t − Z̄0 is of the form
Z0t − Z̄0 =

∞
∑

i=0

ψ̈iǫt−i,we shall use in this 
ase relations (7.10) and (7.12) to 
on
lude. In addition sin
e thepro
ess (Z0t − Z̄0) is stationary a pro
ess, then the matrix N20 
onverge. Thereforethe matri
es in the right hand side of (7.30) are all normalized to 
onverge and theresult (7.23) follows.To prove (7.21) note that from (2.9) we have
C′

T (S10 − S11β
∗
0α

′
0) = C′

TNǫ = C′
TN1ǫ − C′

TN12N
−1
22 N2ǫ (7.31)where

Nǫ = T−1
T

∑

t=1

R1tǫ
′
t, N1ǫ = T−1

T
∑

t=1

(Z1t − Z̄1)ǫ
′
t,and N2ǫ = T−1

T
∑

t=1

(Z̃2t −
¯̃Z2)ǫ

′
t.From the ergodi
 theorem and sin
e Z̃2t and ǫt are un
orrelated, the term N2ǫ tendsto zero in probability. Then the se
ond term in the right hand side of (7.31) tend tozero. Finally using Lemma (7.5) and the 
ontinuous mapping theorem we write

C′
TN1ǫ ⇒

∫ 1

0

G(dW )′. (7.32)



26This 
omplete the proof of our Lemma. �Now let us de�ne the following matri
es
Σij = Λij − Λi2Λ

−1
22 Λ2jfor i, j = 0, 2, β and where the matri
es Λij are de�ned by,

Λββ = V ar(β′∗
0 Z1t), Λ00 = V ar(Z0t), Λ22 = V ar(Z̃2t),

Λβ0 = Cov(β′∗
0 Z1t, Z0t), Λβ2 = Cov(β′∗

0 Z1t, Z̃2t) and Λ20 = Cov(Z̃2t, Z0t).Note that when β∗
0 is normalized by the matrix c, we have Σββ = Σc, where Σc isde�ned in Se
tion 3. The following Lemma provides us a result on the asymptoti
behaviour of the matri
es S11, S00 and S10 in terms of the above de�ned matri
es.Lemma 7.7. Under A1, A2 and A3 we have

β′∗
0 S11β

∗
0

P
→ Σββ (7.33)

β′∗
0 S10

P
→ Σβ0 (7.34)

S00
P
→ Σ00 (7.35)where the matri
es Σ00, Σβ0 and Σββ verify

Σ00 = α0Σβ0 + Σǫ, Σ0β = α0Σββ, (7.36)and
Σǫ = Σ00 − α0Σββα

′
0. (7.37)Moreover we have

Σ−1
00 − Σ−1

00 α0(α
′
0Σ

−1
00 α0)

−1α′
0Σ

−1
00 = α0⊥(α′

0⊥Σǫα0⊥)−1α′
0⊥. (7.38)Proof of Lemma 7.7. Similarly to (7.26) we write

β′∗
0 S11β

∗
0 = β′∗

0 N11β
∗
0 − β′∗

0 N12N
−1
22 N21β

∗
0 .On the other hand from (7.24) and (7.25) the pro
esses (β′∗

0 Z1t), (Z0t) and (Z̃2t) arestationary ergodi
 sin
e (Yt) is stationary ergodi
. Thus we have from the ergodi
theorem
β′∗

0 N11β
∗
0

P
→ Λββ, β′∗

0 N12
P
→ Λβ2, and N22

P
→ Λ22,whi
h gives us the result (7.33). The proof of (7.34) and (7.35) are similar.For the proof of the relations in (7.36), multiplying the expression (2.7) by (Z0t −Z0)

′and (Z1t − Z̄1)
′β∗

0 on the right, we have
Λ00 = α0Λβ0 + Ψ̃Λ20 + Σǫ and Λ0β = α0Λββ + Ψ̃Λ2β (7.39)
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e we assumed that the error pro
ess (ǫt) is un
orrelated. Using again the expression(2.7) we write
Ψ̃ = Λ02Λ

−1
22 − α0Λβ2Λ

−1
22 . (7.40)Inserting (7.40) in the expressions in (7.39) we obtain the desired results. The expres-sion (7.37) is a straightforward 
onsequen
e of (7.36). The relation in (7.38) 
an beobtained using the following proje
tion identity

Id = Σ−1
00 α0(α

′
0Σ

−1
00 α0)

−1α′
0 + α0⊥(α′

0⊥Σ00α0⊥)−1α′
0⊥Σ00,and noting that from (7.36) α0⊥Σ00 = α0⊥Σǫ. �For the proof of Propositions 3.1 and 4.1 note that the solutions λ̂1 ≥ · · · ≥ λ̂d+1of the equation (2.11) are the same of those of the following eigenvalue problem

| λS11 − S10S
−1
00 S01 |= 0. (7.41)The eigenve
tors ei of (7.41) whi
h verify

S10S
−1
00 S01ei = λ̂iS11ei,are su
h that ei = S

− 1

2

11 vi. Using this notation we write β̂∗ = (e1, . . . , er0
). Note alsothat sin
e the matrix S10S

−1
00 S01 is of dimension d+ 1 but has rank d, then λ̂d+1 = 0.Proof of Proposition 3.1. We �rst show that the roots λ̂r0+1, . . . , λ̂d of (7.41)de
rease at the rate T−1. Let the matrix AT = (β∗

0 , T
−1

2 CT ). Multiplying (7.41) by
A′

T and AT , and noting that the matrix AT is an invertible matrix, the equation
| A′

T (λS11 − S10S
−1
00 S01)AT |=

β′∗
0 S(λ)β∗

0 T− 1

2 β′∗
0 S(λ)CT

T− 1

2C′
TS(λ)β∗

0 T
−1C′

TS(λ)CT
= 0, (7.42)has the same eigenvalues as (7.41). From Lemmas 7.6 and 7.7 and sin
e the solutionsof (7.41) are 
ontinuous fun
tions of the 
oe�
ient of the matri
es S11, S10, S00, and

S01, it follows that
| A′

T (λS11 − S10S
−1
00 S01)AT | ⇒

∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0 GG
′du

∣

∣

∣

∣

= | λΣββ − Σβ0Σ
−1
00 Σ0β || λ

∫ 1

0

GG′du | .Therefore there is r0 roots of the equation (7.42) whi
h 
onverge to the r0 positiveroots given by the equation | λΣββ − Σβ0Σ
−1
00 Σ0β | = 0, and d− r0 + 1 roots of (7.42)whi
h 
onverge to the d − r0 + 1 zero roots given by the solutions of the equation

| λ
∫ 1

0 GG
′du |= 0. De�ning S(λ) = λS11 − S10S

−1
00 S01 and using the relation

A11 A12

A21 A22
=| A11 || A22 −A21A

−1
11 A12 | (7.43)



28in (7.42) for λ su
h that | β′∗
0 S(λ)β∗

0 |6= 0, we write
β′∗

0 S(λ)β∗
0 T− 1

2β′∗
0 S(λ)CT

T− 1

2C′
TS(λ)β∗

0 T
−1C′

TS(λ)CT
=| β′∗

0 S(λ)β∗
0 || λ{T−1C′

TS11CT }

−T−1{C′
TS10S

−1
00 S01CT + β′∗

0 S(λ)CT (β′∗
0 S(λ)β∗

0 )−1C′
TS(λ)β∗

0} | .It is seen that the roots whi
h 
orrespond to the eigenvalue problem | β′∗
0 S(λ)β∗

0 |
= 0 do not 
onverge to zero and have the same limit of the r greatest roots of (7.42).Then for a large T , the roots λ̂r0+1, . . . , λ̂d+1 
annot be in the set of the r0 roots of
| β′∗

0 S(λ)β∗
0 |= 0 . It follows that λ̂r0+1, . . . , λ̂d+1 are solutions of the following equation

| λ{T−1C′
TS11CT } − T−1{C′

TS10S
−1
00 S01CT (7.44)

+β′∗
0 S(λ)CT (β′∗

0 S(λ)β∗
0 )−1C′

TS(λ)β∗
0} |= 0.Considering the roots λ̂r0+1, . . . , λ̂d whi
h 
onverge to zero, and using the results ofLemmas 7.6 and 7.7 the terms into bra
kets in (7.44) are normalized to 
onverge, thenit is seen that the roots λ̂r0+1, . . . , λ̂d of (7.41) de
rease at the rate T−1.Now we will establish the asymptoti
 behaviour of the likelihood ratio test statisti
.Using again the relation (7.43) we write

| (β∗
0 , CT )′S(λ)(β∗

0 , CT ) |=
β′∗

0 S(λ)β∗
0 β

′∗
0 S(λ)CT

C′
TS(λ)β∗

0 C
′
TS(λ)CT

=| β′∗
0 S(λ)β∗

0 || C′
TS(λ)CT

−C′
TS(λ)β∗

0 (β′∗
0 S(λ)β∗

0 )−1β′∗
0 S(λ)CT |= 0. (7.45)For the rest of the proof we will fo
us on the se
ond term of the right hand side of(7.45) and only 
onsider the d − r0 + 1 smallest roots λ̂r0+1, . . . , λ̂d+1. Noting thatfrom the �rst part of the proof the roots λ̂r0+1, . . . , λ̂d de
rease at the rate T−1, wetherefore de�ne η = Tλ where η is real. From Lemma 7.7 and using (7.22) we have

β′∗
0 S(λ)β∗

0 = ηT−1β′∗
0 S11β

∗
0 − β′∗

0 S10S
−1
00 S01β

∗
0 = −Σβ0Σ

−1
00 Σ0β + op(1), (7.46)

C′
TS(λ)β∗

0 = ηT−1C′
TS11β

∗
0 − C′

TS10S
−1
00 S01β

∗
0

= −C′
TS10Σ

−1
00 Σ0β + op(1). (7.47)Then inserting (7.46) and (7.47) into the se
ond fa
tor in (7.45) we obtain

C′
TS(λ)CT − C′

TS(λ)β∗
0 (β′∗

0 S(λ)β∗
0 )−1β′∗

0 S(λ)CT

= ηT−1C′
TS11CT − C′

TS10Σ
−1
00 S01CT

+C′
TS10Σ

−1
00 Σ0β(Σβ0Σ

−1
00 Σ0β)−1Σβ0Σ

−1
00 S01CT + op(1)

= ηT−1C′
TS11CT − C′

TS10DS01CT + op(1), (7.48)where from (7.36) and (7.38) the matrix D is given by
D = Σ−1

00 − Σ−1
00 Σ0β(Σβ0Σ

−1
00 Σ0β)−1Σβ0Σ

−1
00

= Σ−1
00 − Σ−1

00 α0Σββ(Σββα
′
0Σ

−1
00 α0Σββ)−1Σββα

′
0Σ

−1
00

= Σ−1
00 − Σ−1

00 α0(α
′
0Σ

−1
00 α0)

−1α′
0Σ

−1
00

= α0⊥(α′
0⊥Σǫα0⊥)−1α′

0⊥ = α0⊥(V ar(α′
0⊥W ))−1α′

0⊥. (7.49)
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C′

TS10α0⊥ = C′
T (S10 − S11β

∗
0α

′
0)α0⊥ ⇒

∫ 1

0

G(dW )′α0⊥and
T−1C′

TS11CT ⇒

∫ 1

0

GG′du.Noting that S(λ) = S(η/T ) = ηT−1S11 − S10S
−1
00 S01 and using the transformations(7.48) and (7.49), the roots of the equation

| C′
TS(η/T )CT − C′

TS(η/T )β∗
0(β′∗

0 S(η/T )β∗
0)−1β′∗

0 S(η/T )CT |= 0
onverge to those of the following equation
| η

∫ 1

0

GG′du−

∫ 1

0

G(dW )′α0⊥(V ar(α′
0⊥W ))−1α′

0⊥{

∫ 1

0

G(dW )′}′ |= 0. (7.50)Let us de�ne the following invertible matrix
J =

(

(β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 0
0 1

)

.Noting that
(α′

0⊥W )′(V ar(α′
0⊥W ))−1α′

0⊥W =

((β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W )′

(V ar((β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W ))−1

(β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥β0⊥(α′

0⊥Γ0β0⊥)−1α′
0⊥W,and multiplying by J and J ′ the equation (7.50), the roots of (7.50) are the same ofthe following relation

| η

∫ 1

0

FF ′du−

∫ 1

0

F (dB)′{

∫ 1

0

F (dB)′}′ |= 0, (7.51)where B = (β̄′
0⊥CΣǫC

′β̄0⊥)−
1

2 β̄′
0⊥CW is su
h that V ar(B) = Id−r0

, and F = (F1, F2)where F1 = B and F2 = u− 1
2 . The equation (7.51) is equivalent to

| ηId−r0+1 −

∫ 1

0

F (dB)′{

∫ 1

0

F (dB)′}′[

∫ 1

0

FF ′du]−1 |= 0, (7.52)so that denoting by ηi the eigenvalues of (7.52) we write
d

∑

r0+1

ηi = tr{{

∫ 1

0

F (dB)′}′[

∫ 1

0

FF ′du]−1

∫ 1

0

F (dB)′}. (7.53)Noting that as indi
ated above the roots of (7.45) are 
ontinuous fun
tions of thematri
es S11, S10, S00, and S01, we have
T

d
∑

i=r0+1

λ̂i ⇒
d

∑

r0+1

ηi. (7.54)



30Now writing the expression of the LR test statisti
 and sin
e the the roots λ̂r0+1, . . . , λ̂dof (7.41) tends to zero at the rate T−1, we �nd
−2 logQr0

= −T
d

∑

i=r0+1

log(1 − λ̂i) = T [

d
∑

i=r0+1

λ̂i + op(T
−1)]

= T

d
∑

i=r0+1

λ̂i + op(1).Then using (7.54) and (7.53) the result follow. �In order to prove Proposition 4.1 we have to state some additional asymptoti
 results.First note that in (7.17) multiplying by C′
T is equivalent (asymptoti
ally) to multiplyingby the transpose of

C̃T =

(

β̄0⊥ 0

0 T− 1

2

)and suppose that the parameters in the deterministi
 part of (2.3) are equal to zero.To see this note that in this 
ase the expression (2.2) be
omes
Xt = C

t
∑

i=1

ǫi + Yt +Awhere Yt is a stationary pro
ess, so that we have
T− 1

2 (β̄′
0⊥, 0)Z1[Tu] = T− 1

2 β̄′
0⊥C

[Tu]
∑

i=1

ǫi + T− 1

2 β̄′
0⊥Y[Tu] + T− 1

2 β̄′
0⊥A. (7.55)Therefore starting with (7.55) it is easy to see that one 
an retrieve the results ofLemma 7.5 and 7.6 repla
ing CT by the new normalization matrix C̃T . Then in thesequel we 
an assume without loss of generality that the parameters ν0 and τ0 are equalto zero. Now 
onsider the following normalization of β̂∗

β̃∗ = (β̃′, τ̃ )′ = ((β̂(β̄′
0cβ̂)−1)′, ((β̂′β̄0c)

−1τ̂ ))′,where β̄0c = β0c(β
′
0cβ0c)

−1 and de�ne α̃ = α̂β̂′β̄0c. Re
all that τ̂ and τ̃ are ve
tors ofdimension r0. For the rest of the paper we will use this normalization for theoreti
alderivations only sin
e the matrix of unknown parameters β0c appears in the expressionof β̃∗. Note also that we take β̄0c as a normalization matrix. Then in this 
ase β∗
0c isthe normalized matrix. With this notation and sin
e we assumed τ0c = 0, we have

β̃∗ = β∗
0c + C̃TUT β̃

∗ (7.56)where
UT =

(

β′
0⊥ 0

0 T
1

2

)

.Note that (7.56) is obtained by proje
ting β̃∗ in the dire
tions of β∗
0c, β∗

0⊥ = (β′
0⊥, 0)′and γ = (0, 1)′, where γ is a ve
tor of dimension d + 1. Then it is seen from the d
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hoi
e of normalization β̃ − β0c is in
luded in thespa
e spanned by β0⊥. In the following Lemma we will state some asymptoti
 resultswe need using this normalization.Lemma 7.8. Under A1, A2 and A3, we have
α̃

P
→ α0c, Σ̂ǫ

P
→ Σǫ, β̃ − β0c = op(T

− 1

2 ) and τ̃ − τ0c = op(T
−1).Moreover the estimators β̃ and τ̃ are su
h that

(

Tβ′
0⊥(β̃ − β0c)

T
3

2 τ̃

)

⇒ [

∫ 1

0

GG′du]−1

∫ 1

0

G(dVα)′ (7.57)where
Vα = (α′

0cΣ
−1
ǫ α0c)

−1α′
0cΣ

−1
ǫ Wis independent of G.Proof of Lemma 7.8. In a �rst time we will prove that β̃ − β0c = op(T

− 1

2 ) and
τ̃ − τ0c = op(T

−1). Let us de�ne the matrix
BT =

(

β0c T− 1

2 β̄0⊥ 0
0 0 T−1

)

.Multiplying (7.41) by B′
T and BT , we obtain

| B′
T (λS11 − S10S

−1
00 S01)BT |= 0. (7.58)Similarly to the proof of Proposition 3.1 and sin
e we assumed that the deterministi
terms are equal to zero, we have

| B′
T (S11 − S10S

−1
00 S01)BT |⇒

∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0
GG′du

∣

∣

∣

∣

.The eigenve
tors gi 
orresponding to the r0 positive eigenvalues of the equation
∣

∣

∣

∣

λΣββ − Σβ0Σ
−1
00 Σ0β 0

0 λ
∫ 1

0 GG
′du

∣

∣

∣

∣

= 0,verify the equation
(

Σβ0Σ
−1
00 Σ0β 0
0 0

)

gi =

(

λΣββ 0

0 λ
∫ 1

0
GG′du

)

gi.In addition the eigenvalues λ̂1 ≥ · · · ≥ λ̂r of (7.41) 
onverge to those of the equation
| λΣββ − Σβ0Σ

−1
00 Σ0β |= 0, then it 
an be seen that the spa
e spanned by the r0eigenve
tors 
orresponding to the eigenvalues λ̂1 ≥ · · · ≥ λ̂r 
onverges to the spa
espanned by the r0 �rst unit ve
tors (the d−r0 +1 last 
oordinates of these eigenve
tors
onverging to zero).



32 Thus sin
e the eigenve
tors of (7.58) are obtained by multiplying by B−1
T theeigenve
tors of (7.41) on the left, we write

B−1
T β̃∗ =





Ir
T

1

2β′
0⊥β̃

T τ̃



 =





Ir
op(1)
op(1)



 ,where B−1
T is given by the following equation

B−1
T =





β̄′
0c 0

T
1

2β′
0⊥ 0

0 T



 =

(

β̄′∗
0c

T
1

2UT

)

.Thus we 
an 
on
lude that τ̃ = op(T
−1). In addition sin
e β̃ − β0c is in
luded in thespa
e of β0⊥, we have (β̃ − β0c) = op(T

− 1

2 ).In this part of the proof we will show the 
onsisten
y of α̃ and Σ̂ǫ. From Lemma(7.7) we have
α0c = Σ0βΣ−1

ββ and Σǫ = Σ00 − α0cΣββα
′
0c.Sin
e UT β̃

∗ = op(T
− 1

2 ), and using the relations (7.20) and (7.22) we have
β̃′∗S11β̃

∗ = (β∗
0c + C̃TUT β̃

∗)′S11(β
∗
0c + C̃TUT β̃

∗) = β′∗
0cS11β

∗
0c + op(1). (7.59)Then from Lemma (7.7) we obtain

β̃′∗S11β̃
∗ P
→ Σββ.Similarly we have

β̃′∗S10 = β′∗
0cS10 + op(T

− 1

2 )
P
→ Σβ0. (7.60)Finally writing the expressions of α̃ and Σ̂ we �nd

α̃ = S01β̃
∗(β̃′∗S11β̃

∗)−1 P
→ α0c,

Σ̂ǫ = S00 − S01β̃
∗(β̃′∗S11β̃

∗)−1β̃′∗S10
P
→ Σǫ.In order to prove the last statement of our Lemma, let us write the derivatives ofthe 
on
entrated likelihood fun
tion (2.8) with respe
t to β∗ in the dire
tion h

Dβ∗ logL(α, β∗,Σǫ) = lim
s→0

logL(α, β∗ + sh,Σǫ) − logL(α, β∗,Σǫ)

s

= T tr{α′Σ−1
ǫ (S01 − αβ′∗S11)h}.Noting that the matri
es α̃ and β̃∗ veri�es the likelihood equation, this derivative isequal to zero at the point (α̃, β̃∗, Σ̂ǫ) in all dire
tions. Then we have

α̃′Σ̂−1
ǫ (S01 − α̃β̃′∗S11) = 0. (7.61)
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all that we have de�ned Nǫ = T−1
∑T

t=1R1tǫ
′
t. Inserting S01 = α0cβ

′∗
0cS11 +N ′

ǫ in(7.61) we get
α̃′Σ̂−1

ǫ (S01 − α̃β̃′∗S11) = α̃′Σ̂−1
ǫ (N ′

ǫ + α0cβ
′∗
0cS11 − α̃β̃′∗S11)

= α̃′Σ̂−1
ǫ (N ′

ǫ − α̃(β̃∗ − β∗
0c)

′S11 − (α̃− α0c)β
′∗
0cS11) = 0.Now multiplying by C̃T on the right and inserting β̃′∗ − β∗

0c = CTUT β̃
∗ we have

α̃′Σ−1
ǫ (N ′

ǫC̃T − α̃T β̃′∗U ′
T {T

−1C̃′
TS11C̃T } − (α̃ − α0c)β

′∗
0cS11C̃T ) = 0.From the 
onsisten
y of α̃ and using (7.22) the last term tends to zero, so that weobtain

TUT β̃
∗ = (T−1C̃′

TS11C̃T )−1C̃′
TNǫΣ

−1
ǫ α0c(α

′
0cΣ

−1
ǫ α0c)

−1 + op(1).Finally using (7.20) and noting that from (7.31) and (7.32) we haveC′
TNǫ ⇒

∫ 1

0
G(dW )′,we 
an dedu
e that

TUT β̃
∗ ⇒ [

∫ 1

0

GG′du]−1

∫ 1

0

G(dVα)′.This 
omplete the proof of Lemma (7.8). �Proof of Proposition 4.1. In a �rst time we will prove statement (4.1). From (7.57)we have
Tβ′

0⊥(β̃ − β0c) ⇒ [

∫ 1

0

G1.2G
′
1.2du]

−1

∫ 1

0

G1.2(dVα)′.From the d �rst rows of (7.56) we write
β̃ − β0c = β̄0⊥β

′
0⊥(β̃ − β0c).Then using the expansion

(β̂c − β0c) = (Id − β0cc
′)(β̃ − β0c) +Op(‖ (β̃ − β0c) ‖

2) (7.62)and noting that sin
e β̃ − β0c is in
luded in the spa
e of β0⊥ we have ‖ (β̃ − β0c) ‖2=

Op(T
−2) the result follow. Similarly writing τ̃ = (β̂′β̄0c)

−1(β̂′c)τ̂c, we 
an �nd that
τ̂c = τ0c + Op(T

− 3

2 ). Now let W1 and W2 two independent Brownian motions. Theform (4.2) 
an be found noting that givenW1, ∫ 1

0 W1(dW2)
′ is gaussian with mean zeroand varian
e matrix

∫ 1

0

W1W
′
1 ⊗ V ar(W2). �Re
all that α̂c(β

∗
0c) = S01β

∗
0c(β

′∗
0cS11β

∗
0c)

−1 and α̂c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1. To proveProposition 4.2 we need to state the following Lemma.Lemma 7.9. Under A1, A2 and A3, we have
α̂c = α̂c(β

∗
0c) + op(T

− 1

2 ).



34Proof of Lemma 7.9. First note that we have
α̃ = α̂β̂′

0cβ̄0c = S01β̂
∗
0c(β̂

′∗
0cS11β̂

∗
0c)

−1β̂′
0cβ̄0c

= S01β̂
∗
0c(β̄

′
0cβ̂0c)

−1(β̄′
0cβ̂0c)(β̂

′∗
0cS11β̂

∗
0c)

−1(β̄′
0cβ̂0c)

′

= S01β̃
∗
0c(β̃

′∗
0cS11β̃

∗
0c)

−1.From (7.59) and (7.60) we obtain
α̃ = α̂c(β

∗
0c) + op(T

− 1

2 ). (7.63)Re
all that α̂cβ̂
′
c = α̃β̃′. Noting that β′

0cc = β̂′
cc = Ir, we write

α̂c = α̃β̃′c

= α̃(β̃ − β′
0c)c+ α̃β′

0cc

= α̃(β̃ − β′
0c)c+ α̃.In view of the 
onsisten
y of α̃ and sin
e β̃ = β0c +Op(T

−1), we have
α̂c = α̃+Op(T

−1),and then the result follow from (7.63). �Proof of Proposition 4.2. Multiplying (2.9) by R′
1tβ

∗
0c on the right we �nd

α0c = T−1
T

∑

t=1

(R0t − ǫt)R
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1

= T−1
T

∑

t=1

(R0t − ǫt)R
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1.Then from Lemma 7.9 and using (2.10) and (7.33) we have
T

1

2 vec(α̂c − α0c) = T
1

2 vec(α̂c − α̂c(β
∗
0c)) + T

1

2 vec(α̂c(β
∗
0c) − α0c)

= T− 1

2

T
∑

t=1

vec(ǫtR
′
1tβ

∗
0c(β

′∗
0cS11β

∗
0c)

−1) + op(1)

= T− 1

2

T
∑

t=1

{(β′∗
0cS11β

∗
0c)

−1β′∗
0cR1t ⊗ Id}ǫt + op(1)

= T− 1

2

T
∑

t=1

Σ−1
c β′∗

0cR̃1t ⊗ ǫt + op(1)

= (Σ−1
c ⊗ Id)T

− 1

2

T
∑

t=1

β′∗
0cR̃1t ⊗ ǫt + op(1)

= (Σ−1
c ⊗ Id)T

− 1

2

T
∑

t=1

vt + op(1)
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vt = vec(ǫtR̃

′
1tβ

∗
0c).Re
all that we have de�ned

R̃1t = Z1t − M̃12M̃
−1
22 Z2t.Then using (7.24) and (7.25) it is easy to see that β′∗

0cR̃1t 
an be written as follows
β′∗

0cR̃1t = m+

∞
∑

i=0

ψ̃iǫt−i−1, (7.64)wherem is a ve
tor of 
onstants and the terms of the series {ψ̃i}i∈N de
ay exponentiallyfast. Then despite the fa
t that there is a 
onstant in the expression (7.64), we 
anshow following the same lines of the proof of Lemma 7.4 that T− 1

2

∑T
t=1 vt is normallydistributed. The form of the matrix Σα is obtained from the following 
omputations

lim
T→∞

1

T

T
∑

t=1

T
∑

s=1


ov(vt, vs) = lim
T→∞

1

T

∑

|h|<T

(T− | h |)
ov(vt, vt−h)

=

∞
∑

h=−∞


ov (vt, vt−h) =

∞
∑

h=−∞

E
{

β′∗
0cR̃1t ⊗ ǫt

}{

β′∗
0cR̃1t−h ⊗ ǫt−h

}′

.Finally we obtain
Σα =

∞
∑

h=−∞

E
{

Σ−1
c β′∗

0cR̃1tR̃
′
1t−hβ

∗
0cΣ

−1
c ⊗ ǫtǫ

′
t−h

}

,using the well known identity (A⊗B)(C ⊗D) = AC ⊗BD. �Referen
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38 Tables and FiguresTable 1: Empiri
al size (in %) of the LR test for VECM (5.4) in the strong and weak 
aseswith T = 100. 
ase 1 
ase 2 
ase 3MD (5.1) 8.2 6.6 1.6MD (5.2) 6.5 6.3 5.3WWN (5.3) 3.3 4.4 0.6SWN 5.2 5.2 2.6Parameters: π2 = 0.9 e = −1 θ = −1.5. Case 1: π1 = −0.1 and eπ2 + π1 = −1. Case 2:
π1 = 0.8 and eπ2 + π1 = −0.1. Case 3: π1 = −0.8 and eπ2 + π1 = −1.7.Table 2: As Table 1, but for T = 400.
ase 1 
ase 2 
ase 3MD (5.1) 5.8 4.2 5.8MD (5.2) 5.2 5.5 6.4WWN (5.3) 4.0 5.0 2.9SWN 5.0 4.6 5.0Table 3: The relative reje
tion frequen
ies (in %) of the LR test for VECM (5.4) withheteros
edasti
 errors (5.5).
f 0 0.005 0.01 0.015 0.02
T = 100 5.2 3.1 2.1 1.1 0.8
T = 400 5.0 2.3 2.0 0.8 0.2
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al power (in %) of the LR test for the AR(1) model (5.6) in the strong andweak 
ase with T = 100 and eπ2 + π1 = −0.85.
̟ 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35MD (5.1) 7.4 20.3 35.9 55.5 74.0 86.5 93.8 98.1MD (5.2) 6.3 18.8 36.9 57.6 78.3 90.8 96.6 99.0WWN (5.3) 3.8 13.9 28.6 52.1 75.6 90.7 97.8 99.5SWN 4.8 14.8 30.7 55.0 78.2 93.2 97.9 100.0Case: π1 = −0.7 π2 = 0.15 e = −1 θ = −1.5.Table 5: As Table 4, but for T = 400.

̟ 0 -0.05 -0.1 -0.15 -0.2MD (5.1) 6.3 72.2 99.7 100.0 100.0MD (5.2) 6.2 74.4 100.0 100.0 100.0WWN (5.3) 4.7 72.6 99.8 100.0 100.0SWN 5.9 74.3 99.9 100.0 100.0
Table 6: As Table 4, but for eπ2 + π1 = −1.8 ≈ −2.

̟ 0 -0.03 -0.04 -0.05 -0.06 -0.07 -0.09 -0.11MD (5.1) 0.3 16.0 32.2 52.4 67.8 80.3 91.6 99.8MD (5.2) 5.5 7.1 20.6 43.8 65.8 81.6 94.3 98.9WWN (5.3) 0.1 18.3 33.6 52.6 69.0 80.3 94.1 98.1SWN 1.3 13.1 30.4 51.2 67.8 82.2 95.4 98.8Case: π1 = −0.9 π2 = 0.9 e = −1 θ = −1.5.Table 7: As Table 6, but for T = 400.
̟ 0 -0.03 -0.04 -0.05 -0.06 -0.07 -0.09 -0.11MD (5.1) 4.9 0.5 20.2 72.1 96.3 99.9 100.0 100.0MD (5.2) 6.1 0.0 2.8 62.4 97.3 99.9 100.0 100.0WWN (5.3) 2.2 3.7 27.6 72.5 96.9 99.9 100.0 100.0SWN 4.3 0.3 22.9 74.4 98.0 99.9 100.0 100.0
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Figure 7.1: The relative reje
tion frequen
ies (in %) of the LR test for di�erent values of k in theweak white noise (5.1) for T = 100 (full line) and T = 400 (dotted line). Case 1: π1 = −0.1 π2 = 0.9

e = −1 θ = −1.5. Number of repli
ations n = 1000.
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Figure 7.2: The same as in Figure 7.1 with a weak white noise whi
h follow an ARCH model (5.2)with a11 = a22 and a21 = a12 = 0.
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Figure 7.3: The same as in Figure 7.1 with a weak white noise whi
h follow an all-pass model (5.3)with φ1 = φ2.
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Figure 7.4: E�e
t of the trend parameter θ in the strong 
ase: Relative reje
tion frequen
ies (in%) of the LR test for di�erent values of θ in model (5.4) with iid errors for T = 100 (full line) and
T = 400 (dotted line). Case: π1 = −0.1 π2 = 0.9 e = −1. Number of repli
ations n = 1000.
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Figure 7.5: E�e
t of trend parameter θ, the weak white noise (5.1) 
ase: The same as in Figure 7.4but for an error pro
ess whi
h follow (5.1) with k = 1.
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Figure 7.6: E�e
t of trend parameter θ, the ARCH 
ase: The same as in Figure 7.4 but for an errorpro
ess whi
h follow (5.2) with a12 = a21 = 0.1, a11 = 0.2 and a22 = 0.3.
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Figure 7.7: E�e
t of trend parameter θ, the all-pass 
ase: The same as in Figure 7.4 but for anerror pro
ess whi
h follow (5.3) with φ1 = φ2 = 0.7 for T = 100 (full line) and T = 800 dotted line.
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Figure 7.8: The relative reje
tion frequen
ies (in %) of the LR test for di�erent values of φ1 = φ2in weak white noise (5.3) for T = 100. Case1: eπ2 + π1 = −1 (full line). Case 2: eπ2 + π1 = −0.1(dotted line). Number of repli
ations n = 1000.
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Figure 7.9: The relative reje
tion frequen
ies (in %) of the LR test with 
orrelated errors for
T = 100 (full line) and T = 400 (dotted line). Case: π1 = 0.9 π2 = −1 e = 1 θ = −0.5. Numberof repli
ations n = 1000.

Figure 7.10: The daily ex
hange rates of U.S. Dollars to one British Pound and of U.S. Dollarsto one Euro. Data sour
e: The Resear
h Division of the Federal Reserve Bank of St. Louiswww.resear
h.stlouisfed.org.
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Figure 7.11: Auto
orrelations of the residuals of the VECM with r0 = 1 and p = 2 for the the dailyex
hange rates of U.S. Dollars to one British Pound and of U.S. Dollars to one Euro. The left graphi
represent the auto
orrelations r̂11(h) of the residuals ǫ̂1t and the right the auto
orrelations r̂22(h) ofthe residuals ǫ̂2t. The horizontal lines about zero represent the approximate 5% signi�
an
e limits forthe sample auto
orrelations (that is ±1.96/
√

T with T = 1578).
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Figure 7.12: The same as for the Figure 7.11 but for the 
ross
orrelations of the ǫ̂1t's and the ǫ̂2t'swith obvious notations.
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Figure 7.13: The same as for the Figure 7.11 but for squared residuals of the analyzed series.
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Figure 7.14: The same as for the Figure 7.12 but for squared residuals of the analyzed series.


