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Abstract. Nonlinear approaches such as Direct Numerical Simulations yield a

characteristic structuring in homogeneous turbulence as a result of modified dynamics

under the effect of rotation and stable stratification. The structures are elongated

for dominant rotation or flat when stratification dominates. Nonlinearity is essential

for constructing these anisotropic Eulerian features, which we quantify by single and

two-point second order statistics. Linear approaches such as Rapid Distorsion Theory

(RDT) and Kinematic Simulations (KS) do not reproduce these effects at all. However

when looking at Lagrangian statistics, both linear and nonlinear models seem to yield

very similar anisotropic trends. In order to investigate this paradox, we consider

statistically homogeneous turbulence with vertical stable stratification characterized

by the Brunt-Väisälä frequency N and vertical system rotation with frequency Ω in the

Boussinesq system of equations. For different values of the ratio 2Ω/N , we compare

Eulerian and Lagrangian statistics. The detailed dynamics of energy is studied by

splitting the velocity in toroidal and poloidal modes, which we put in relation with the

wave/vortex linear decomposition. From DNS, the results for dominant stratification

show a large disequilibrium of anisotropy between the toroidal and poloidal parts. For

dominant rotation, angular spectra show an equidistribution of energy between poloidal

and toroidal parts, with non isotropic angular distribution of the energy density down

to the smallest scales. Regarding Lagrangian statistics, DNS results are compared to

two linear models based on RDT and KS respectively. The linear models reproduce

extremely well the oscillations and confinement of vertical one-point dispersion when

stratification is present. Horizontal diffusion laws compare well in a qualitative way.

However, quantitative differences can be detected.
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Figure 1. Enstrophy isosurfaces from freely decaying DNS with a resolution of 2563,

at 20% of the maximum enstrophy in the box, colored by the vertical velocity. The

Taylor microscale based Reynolds number is around 50. Adimensional parameters: (a)

α = 0.1, Frλ = 0.1, (b) α = 1, Frλ = 0.1 and (c) α = 10, Roλ = 0.05, where α = f/N ,

Fr = u/(Nλ) and Ro = u/(fL).

1. Introduction

Coherent structures are widely observed in instantaneous velocity fields in anisotropic

statistically homogeneous turbulence (see e.g. [1]). The average shapes vary with respect

to the statistically isotropic case depending on the nature of external distortions applied

onto the flow. The structures can be visualized by plotting instantaneous Eulerian

fields using an identification criterion chosen among many, for instance by plotting

constant enstrophy surfaces as illustrated in figure 1. One can identify flattened objects

in dominantly stratified turbulence (“pancakes”, figure 1(a)) and vertically elongated

structures in dominantly rotating turbulence (“cigars”, figure 1(c)). Although the

different scale elongations and aspect ratios for different cases can easily be identified

at a glance, they can hardly be quantified merely as a function of the parameters

used, such as the rotation rate or the stratification density gradient. We attempt to

gain further insight into the evolution and scalings of these structures by establishing

links between instantaneous structures and anisotropic statistics of the velocity field,

especially considering Lagrangian and Eulerian second-order statistics. A key in this

analysis is the role of nonlinear terms in Lagrangian versus Eulerian statistics, as

previous studies have shown that structure formation is a nonlinear process (see e.g.

[2] for the purely rotating case, or e.g. [3, 4] for the purely stratified one).

We consider here statistically homogeneous turbulence with vertical stable

stratification characterized by the Brunt-Väisälä frequency N and vertical system

rotation with frequency Ω in the Boussinesq approximation [5]. The system of equations

in physical space is

∂u

∂t
+ u · ∇u− ν∇2u = −∇p− fn× u+ bn, (1)

∂b

∂t
+ u · ∇b− χ∇2b = −N2n · u, (2)

∇ · u = 0 (3)
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Figure 2. (a) Oscillating mechanism with stable stratification: a fluid particle in

a negative density gradient ∂ρ/∂z under the influence of gravity g oscillates with

frequency N . (b) Oscillating mechanism with system rotation: the Coriolis force Fc

acts on a fluid particle with a horizontal velocity u in a vertically rotating frame of

reference with frequency Ω.

for the fluctuating velocity u and the buoyancy b, using a notation similar to that

used by Cambon [6], introducing the Coriolis parameter f = 2Ω. In addition to its

relation with experimental studies for rotating stably stratified turbulence, our work

is closely related to numerical and theoretical studies based upon equations (1)–(3),

with an emphasis on statistics and dynamics (see the recent reviews [7] and [6]).

Apart from the compensated pressure gradient, the right-hand side terms containing

the anisotropic parameters in (1) and (2) are linear. Dropping the nonlinear convective

terms, they alone yield the linearized version of the Boussinesq approximation equations,

which admit oscillating solutions due to physical mechanisms schematically shown in

figure 2. Figure 2(a) describes this mechanism due to stratification, which generates

buoyancy oscillations: fluctuations of density or vertical velocity on a fluid element in

hydrostatic equilibrium will force a fluid element to regain its level by undergoing vertical

oscillations. Turbulence with system rotation will be subjected to the Coriolis force Fc,

which forces horizontally moving fluid elements on circular trajectories, as shown in

figure 2(b). Without pressure fluctuations, which ensure divergence-free properties, the

oscillations in figures 2(a) and 2(b) stay strictly vertical and horizontal respectively.

Complete linear solutions with the divergence-free properties of the flow allow

more complex vertical/horizontal coupling, as studied in details by e.g. [8] for the

purely stratified case only. By combining the divergence-free velocity and buoyancy

field into one vector v̂ = (û(1), û(2), û(3)) represented in a local reference frame in

Fourier space, the so called Craya-Herring frame shown in figure 3(a), the initial five-

component problem (three velocity components, buoyancy, and pressure) reduces to

a three-component solution (two velocity components plus buoyancy), as described in

more detail in Appendix A. The unsteady parts of the solutions are internal propagating

plane waves, also called inertio-gravity waves [6]. A given initial velocity field u(x, t = 0)
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and buoyancy field b(x, t = 0) combined into the three-component vector v̂(k, t = 0))

therefore determines the general non viscous linear solution

v(x, t) =

∫

∑

ǫ=0,±1

N ǫe−iǫσt
(

N−ǫ · v̂(k, t = 0)
)

eik·xd3k, (4)

within the Boussinesq approximation, by using the eigenmodes N ǫ, ǫ = 0,±1 of the

linear operator from equation (A.9). N 0 represents the non oscillating contribution

to the velocity field in the linear limit, and N±1 are the oscillating solutions, i.e. the

inertio-gravity waves. Their dispersion relation

σ = (N2 sin2 θ + f 2 cos2 θ)1/2 (5)

as a function of the angle θ between the wave vector k and the vertical illustrates the

importance of the ratio of rotation to stratification

α =
f

N
. (6)

The dynamics of the flow depends strongly on the non-dimensional parameter α, in

addition to the non-dimensional parameters linked to the external forces: the Froude

number Fr = q/NL and the Rossby number Ro = q/(fL), where q and L are velocity

and length scales of the turbulence.

The case where σ is constant, i.e. α = 1, exhibits a very specific behaviour. It is

not treated separately here, but nevertheless shown for comparison, as in figure 1(b), in

which no specific structuring can be noted.

The linear solution (4) of the Boussinesq approximation gives us the possibility

to analytically predict the velocity as a superposition of traveling plane waves and

steady modes. As a result, long term statistical anisotropy for single-time second-order

correlations can only appear by nonlinear mechanisms, unless it is already present in

the initial conditions.

The definition of N ǫ, ǫ = 0,±1, depends on f/N , and involves both velocity

and buoyancy. On the one hand, they can be expressed in a fixed frame of reference.

The contribution to the velocity field from N 0 is purely horizontal, while the wavy

contribution from N±1 can be horizontal, due to rotation only, as well as vertical,

due to both rotation and stratification. On the other hand, the eigenmodes are more

easily expressed in the Craya-Herring frame of reference (figure 3(a)). In this frame

local to k (see Appendix), only two components appear for the velocity part, such that

û(k) = û(1)(k)e1(k) + û(2)(k)e2(k), and a third component associated with buoyancy.

This decomposition is generic for any divergence-free velocity field, and related to a

classical toroidal-poloidal one in physical space.

From its definition, one computes the spectral vorticity as

ω̂(k) = ik
(

û(1)(k)e2(k)− û(2)(k)e1(k)
)

(7)

and derives û(1)(k) and û(2)(k) as a function of the vertical vorticity and vertical velocity

(denoted with a ‖ subscript, and the orthogonal wave number is k⊥ = |k × n|)

û(1) = i
ω̂‖

k⊥
and û(2) =

k

k⊥
û‖. (8)
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Figure 3. (a) The unit vectors in the local Craya-Herring frame of reference. (b) The

decomposition of a Fourier velocity vector in its poloidal and toroidal part compared

to the decomposition into its wave and vortex part.

According to (4), turbulence with stable stratification and system rotation can be

considered as a two-mode motion, one ‘vortex’ mode at ǫ = 0 and one ‘internal wave’

mode at ǫ = ±1. The vortex and internal wave mode are linearly independent, only

linked through triadic exchange terms. Linear dynamics only affect the wave mode,

and consist of periodic exchanges of energy between the wave part of the velocity

(identical to the poloidal component only for pure stratification) and the buoyancy field,

if stratification is present. In the case of pure rotation, only kinetic energy is concerned,

and inertial waves exchange energy between poloidal and toroidal components of the

velocity field.

We discuss two guidelines for a natural decomposition of the velocity field, which

are not the same in a fundamental way. On the one hand, from the solution of the

linear equations one can consider the velocity field as a composition of inertio-gravity

waves and vortex modes. On the other hand, the velocity field can be divided into

purely mathematical toroidal and poloidal parts. (See figure 3(b) for the differences

between the two decompositions.) In the purely stratified case, the toroidal part is

the non propagating vortex mode. For pure rotation, the toroidal mode is part of the

propagating wave mode and the vortex mode does not exist. For cases in between, one

part of the toroidal contribution is propagating, while the other part is non propagating.

In the following, all Eulerian fields are split using the toroidal/poloidal

decomposition and discussed accordingly, as rotation and stratification have significantly

different effects on these physically different velocity components. The article will move

on to numerical methods in section 2, and then show results for Eulerian statistics as

a function of time in section 3, for Lagrangian statistics in section 4, and for Eulerian

structures and spectra in section 5. Finally, conclusions will be given in section 6.
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2. Numerical Methods

We generate Lagrangian statistics using three different methods: a fully nonlinear direct

numerical simulation (DNS); an analytical linear model using equation (4) for calculating

two-time second-order Eulerian statistics (RDT/SCH); and a kinematic simulation (KS)

based on a model using random Fourier modes for the generation of turbulent velocity

fields, where the linear time evolution of the Fourier modes from equation (4) is exactly

incorporated. In KS and DNS, trajectories are numerically computed and then used

for calculating Lagrangian statistics. In the RDT/SCH, two-time second-order Eulerian

statistics are put equal to their Lagrangian counterparts.

Eulerian statistics such as directional integral length scales or direction–dependent

spectra are only evaluated from DNS, as KS is only designed to follow fluid elements

and cannot modify by itself the input spectral distribution, which is chosen to be

isotropic. The reversible anisotropy produced by the linear method and KS do not

generate structures, as mentioned in section 1. We have not initiated KS with explicit

initial anisotropy so as not to introduce an a priori additional anisotropy parameter,

which would have been chosen arbitrarily.

2.1. Direct numerical simulation

Equations (1)–(3) are solved directly using a pseudo-spectral collocation method

expressed in Fourier space following a classical scheme as e.g. in [9, 10]. The

computational domain uses periodic boundary conditions, and 2563 points in physical

space. Furthermore, the velocity field is completely de-aliased using a 2/3-truncation

method in Fourier space. The initial energy spectrum is the narrow band distribution

E(k) ∝ k4e−2(k/ki)
2

, peaking at ki, around one tenth of the maximum wavenumber of the

de-aliased field. The initial velocity vector directions are distributed randomly in space

and therefore do not correlate with each other after initialization. From this initially

random isotropic field we perform an isotropic precalculation and so provide a realistic

velocity field as the starting point of the anisotropic runs. In fact, the velocity field

becomes more “realistic” as we create higher order velocity correlations and built up

isotropic energy dynamics during the precalculation. At the beginning of the anisotropic

runs we allow for discontinuities in the statistical data derivatives due to the introduction

of an anisotropic body force into the system.

Eulerian temporal statistics are calculated during the calculation, as saving of the

velocity field at all time steps is too memory consuming. Only the last velocity field is

saved, to calculate spectra and isosurfaces in a post-processing step.

Trajectories in DNS are obtained by solving the fluid particle motion equation; the

velocity at the location of the particle is computed from the known Eulerian velocity field

using a standard spatial interpolation scheme of 6-th order with Lagrange polynomials.

Time marching is done with an intermediate time step to ensure the stability condition

for the particle equation. The raw data of the trajectories are stored and processed at

a later stage to calculate Lagrangian statistics.
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Run Resolution Duration ν f N Reλ Initial PE

A1 2563 30TN/2π 1/500 0 8π 39 Epot = Epol

B1 5123 6.5TN/2π 1/1000 π 8π 51 Epot = Epol

C1 2563 30TN/2π 1/500 8π 8π 38 Epot = Epol

D1 2563 32.5Tf/2π 1/500 10π π 41 Epot = Epol

E1 2563 24Tf/2π 1/500 8π 0 42 Epot = 0

B2 2563 8TN/2π 1/1500 π 10π 76 Epot = 0

C2 2563 8TN/2π 1/1500 10π 10π 80 Epot = 0

D2 2563 8Tf/2π 1/1500 10π π 83 Epot = 0

Table 1. Sets of parameters of the DNS runs presented.

2.2. Kinematic simulation

The kinematic simulation (KS) models a turbulent velocity field as a superposition of

random Fourier modes so that the field is automatically incompressible. No dynamical

equation is involved in the basic version of KS, although oscillations physically related

to internal waves can be explicitly introduced for each mode using the linear solution

from equation (4) [11]. Due to the statistical axisymmetry of the here treated velocity

field the choice of random wave vectors is restricted to one random Fourier mode to

represent all azimuthal angles for one realization. A carefully chosen discretization is

used for representing modes at different polar angles (directional asymmetry) and for

different wave vector lengths k. Due to the lack of complete representation, different

realizations (≈ 50) ensure good average statistics.

By utilizing an initial velocity field û(i)(k, 0) in the Craya-Herring frame of reference,

the velocity components at time t = 0 for a point x in real space can be written down

as a discrete Fourier sum

ui(x, 0) = ℜ
Nk
∑

n=1

Mθ
∑

m=1

(

û(1)(kmn, 0)e
(1)
i (kmn) + û(2)(kmn, 0)e

(2)
i (kmn)

)

eikmn·x(9)

with the definitions of e
(i)
i and û

(i)
i given in Appendix A. This formulation implies the

existence of exactly one k for each resolved wave vector length kn and each polar angle

θm, but with a random azimuthal angle φ representing all azimuthal modes. The total

number of resolved modes is therefore NkMθ.

By assuming that the linear evolution is comparatively faster than de-correlation

due to the nonlinear evolution, one can deduce a quasi-linear time evolution of the

velocity field

ui(x, t) = ℜ
Nk
∑

n=1

Mθ
∑

m=1

eikmn·x
(

û(1)(kmn, t)e
(1)
i (kmn) + û(2)(kmn, t)e

(2)
i (kmn)

)

(10)



Structures in rotating stratified turbulence 8

Run Mθ Nk Duration of run f N kmax/ki Initial PE

F 50 400 200TN/2π 0 16π 1000 Epot = 0

G 50 400 200TN/2π 2π 16π 1000 Epot = 0

H 50 400 200TN/2π 16π 16π 1000 Epot = 0

K 50 400 200Tf/2π 16π 2π 1000 Epot = 0

L 50 400 200Tf/2π 16π 0 1000 Epot = 0

Table 2. Sets of parameters of the KS runs presented.

where the time evolution of û(i)(kmn, t) is given by the first two components of a discrete

version of equation (4) as

v̂(kmn, t) =
∑

ǫ=0,±1

N ǫ
me

−iǫσmt
(

N−ǫ
m · v̂(kmn, 0)

)

, (11)

noting σm the dispersion frequency associated with wavevector kmn.

KS can then be used as a Lagrangian model of turbulent diffusion by solving the

fluid particle motion equation

ẋ(t) = u(x(t), t), (12)

where the velocity u is found at any time T and any point x in real space by using

Fourier sums of the random wave vectors as in equation (10).

The time integration of equation (12) is done by discretization of the trajectories

of the fluid elements by constant time steps and extrapolating the new position of a

Lagrangian fluid element by an Adams-Bashforth-Moulton predictor-corrector algorithm

of the fourth order. The spectral energy distribution, which is fixed throughout time by

the algorithm, is k3 for kmin < k < ki and k−2 for ki < k < kmax. The values for the

gradients of the spectra are chosen in approximation to values from the DNS. The values

for kmin, ki and kmax are 0.1, 1 and 1000 respectively. Table 2 gathers the parameters

of the KS data.

2.3. Linear model: RDT/SCH

The solution (4) yields the exact linear solution, provided the initial velocity field is

known. It is here called rapid distortion theory (RDT) as its derivation is closely related

to the short-time approximation of the Boussinesq equations (1). As in classical RDT,

not only the velocity field may be computed at each time directly from (4), but one

can obtain as well analytical expressions for the single-point statistics of the turbulent

field, upon integration of two-point correlations of û over the complete spectral space.

This yields the kinetic energy spectra, but also the potential energy, and eventually, if

needed, two-point two-time spectra of the horizontal or vertical velocity components, as

well as those of the poloidal and toroidal components. Unfortunately, this method only



Structures in rotating stratified turbulence 9

applies to Eulerian correlation spectra, but can hardly be used as such for obtaining

Lagrangian ones, without further hypotheses. Recent works have demonstrated the

validity of one additional assumption to Taylor’s temporal method of integration for

single particle dispersion (as in equation (19)). It is a simplified Corrsin hypothesis

(SCH), which allows to replace the Lagrangian velocity correlations by second order

correlations statistics obtained from RDT, which are evaluated at two times. This

gives an analytical expression for calculating one-particle Lagrangian displacement

correlations using two-time velocity correlations ([12, 13]). Details of the method are

explained in [13], which also describes the general results for the stratified/rotating case

with arbitrary initial partition of potential and kinetic energies. As an example, let us

write down only the vertical displacement correlation ∆33 =< (∆x3)
2 > at time t for a

case with equipartitioned energy (Epot(0) = Epol(0) = Etor(0)) with dispersion relation

σ:

∆33(t) = 2Ekin(0)

∫ 1

0

(

1− cos2 θ
) 1− cos σt

σ2
d(cos θ), (13)

where only the initial kinetic energy Ekin(0) appears, in addition to the dispersion

relation σ. In the integral (13), the directivity of the flow is felt through the presence of

the trigonometric functions in the dispersion relation, which alone determines different

evolutions of single particle dispersion with this model.

3. Temporal evolution of Eulerian statistics in DNS

Three DNS runs (B2, C2, D2) are presented: one dominantly stratified case (α = 0.1,

red); one dominantly rotating case (α = 10, blue); and a case with constant σ α = 1

(green), as in this case the dispersion relation reduces to σ = 1. The parameters for the

different runs are shown in Table 1.

All DNS are freely decaying as anisotropy in freely decaying DNS can evolve more

naturally than in forced DNS. Some test runs (not presented) where done for forced

DNS with various methods of forcing, in the large or small scales domain, or only

in the horizontal or vertical direction. The type of forcing influences so much the

anisotropy, which is a priori not known, that a directionally “natural” forcing can hardly

be done. Furthermore, to show the exchange of energy between the poloidal mode and

the potential energy, the runs B2, C2, and D2 are initialized with zero potential energy.

Figure 4 shows the energy decay of the runs. The decomposition of the energy in

Etor, Epol and Epot in figures 4(b), (c) and (d) add up to the total energy in figure

4(a). The decay rate at the end of the run is around t−0.5 for the very rapidly rotating

case D2 and the strongly stratified case B2, so significantly slower than in isotropic

turbulence, which roughly decays with t−1.4. The decay rate for the case with constant

σ C2 approaches unity. In the cases B2 and D2 the dispersion law depending on θ alters

the energy exchanges in an anisotropic way and thereby slows down the decay of energy,

an important feature in anisotropic turbulence. Note that for the total energy in figure

4(a) no oscillations are found in all three cases, as the exchange of energy between
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Figure 4. Energy evolution of DNS runs B2, C2, D2: (a) total energy; (b) toroidal

part; (c) poloidal part; (d) potential energy.

the potential mode and the poloidal mode is added up. The purely kinetic energy

composed of only toroidal and poloidal part oscillates, as part of the total energy is

stored as potential energy. The potential energy in figure 4(d) for C2 is significantly

lower than for B2 and C2, as stratification is comparatively weak. The poloidal and

the potential parts exchange energy with linear mechanisms, which can clearly be seen

by the complementary nature of the oscillations with a frequency N for B2 and C2

in figures 4(c) and (d). The oscillations are damped by linear effects (angular phase

mixing) and also by nonlinear transfer mechanisms, which explain the oscillations for

C2 in the toroidal energy in figure 4(b).

To sum up, the mechanism of the energy equilibrium with initially zero potential

energy for the three cases can be explained in the following way: for significant

stratification, there exists an immediate linear rapid exchange of energy between the

poloidal and potential parts, which tends to distribute the available energy evenly on

both parts by exhibiting oscillations of frequency N . This exchange is damped by linear

(phase mixing) and nonlinear (phase mixing, triadic exchange term) mechanisms, which

also transport energy to the toroidal mode.
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Figure 5. DNS time evolution of the directional correlation length scales: (a) velocity:

dashed lines: Lx
xx; solid lines: Lz

xx (b) vorticity: dashed lines: Ly
ωxωx

; solid lines: Lz
ωzωz

For weak stratification and significant rotation, the mechanism is the same, but

the amount of available potential energy is smaller and the period of the oscillations is

longer due to comparatively smaller values of N . Nevertheless, for this case there is a

linear exchange of energy between the toroidal and poloidal mode, keeping them at the

same level at all times.

For the case α = 1, the energy does a double linear exchange, first from poloidal to

potential energy, then from toroidal to poloidal energy. Therefore, oscillations can be

seen in all three modes, though they are smallest for the toroidal part and largest for

the potential part.

Anisotropy in the energy due to stratification is obvious, if one compares the

poloidal with the toroidal part. However, this anisotropy is generated rather by linear

mechanisms due to the initialization of zero potential energy and so contributes only

marginally to anisotropic structure formation. When looking at energy evolution of cases

with initial equidistribution of energy between the three modes (not shown), anisotropy

due to nonlinear effects is relatively weak, with a slightly higher kinetic energy in the

horizontal direction.

To quantify the scales of structures, it is better to look at anisotropic statistical

measures, such as the integral length-scales

Ln
ii(t) =

1

< uiui >

∫ ∞

0

< ui(x)ui(x+ rn) > drn (14)

for different velocity components ui and different separation directions n (vertical and

horizontal). In figure 5(a) we show the correlation length scales for the horizontal

velocity ux in the horizontal and the vertical direction. With dominant stratification, the

elongation in the horizontal (increase in Lx
xx, dashed red curve) as well as the reduction
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in the vertical (decrease in Lz
xx, solid red curve) length scales clearly illustrates the

pancake like structures observed for B2 in figure 1(a). Even more dramatically the

scale elongation of Lz
xx (solid blue curve) for D2 illustrates the formation of vertically

elongated structures in figure 1(c) for turbulence with dominant rotation, while the

horizontal structures (dashed blue curve) do not evolve in size.

Although anisotropy and scale elongation can qualitatively be compared to the

visualized structures in figure 1, the ratio of scales does not up to now reach asymptotic

values.

To find quantitative aspect ratios of vorticity isosurfaces, vorticity length scales are

investigated. They are defined similarly to equation (14), but by correlating vorticity

instead of velocity. Velocity correlation length scales indicate a large scale, in particular,

when looking at an energy spectrum, the scale which is cascading with k−1. Similarly,

dimensionally, the vorticity correlation length scales are characteristic of scales where

the energy spectrum is decaying with k−3. In isotropic turbulence, this scale will be

found in the viscous range. In anisotropic turbulence, as shown in section 5, this needs

not be the viscous scales, but is nevertheless difficult to locate.

However, the direct link between these length scales and vorticity isosurfaces is

useful to gain insight into anisotropic coherent structures. In figure 5(b) we show Lz
ωzωz

(solid lines) as well as Ly
ωxωx

(dashed lines). The most surprising feature of these curves

is that they are complementary, if one swaps the values of the parameters N and f .

This is not at all true for velocity correlation lengths, as seen in figure 5(a). As the

nonlinear mechanisms creating these anisotropies are very different, this might only

be a coincidence. Moreover an asymptotic value seems to be reached for Lz
ωzωz

for

dominant stratification as well as Ly
ωxωx

for dominant rotation. This is in agreement

with an asymptotic vertical Froude number, or an asymptotically fixed width of layers

for stratification or fixed diameter of vortices for rotation. The horizontal diameter of

the pancakes as well as the vertical length of the cigars seems to grow linearly.

Rapid Distortion (linear) Theory (RDT) applied to initial isotropic data with

equipartition of poloidal and potential energy (the latter condition just to simplify

without essential lack of generality) strictly conserves isotropy of any single-time double

correlation. For example, the isotropic relationships are not altered for the integral

length scales mentioned above. They are equal in horizontal and vertical directions, in

contrast to results from full nonlinear statistical spectral closures which are in excellent

agreement with high resolution DNS [14, 4]. The differences between single-time linear

and nonlinear behaviour indicate a strong influence of nonlinearity in the formation

of structures. Accordingly, it is shown in DNS that the structures take considerably

more time to form, when increasing the parameters of stratification N , the Brunt-

Väisälä frequency and Ω, the system rotation frequency, and therefore increasing the

dominance of linear terms.
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∆x(t, t
′)

∆y(t, t
′)

∆z(t, t
′)

x(X, t)

x(X, t′)

s

Figure 6. Schematic plot of single particle dispersion in three-dimensional space for

one fluid element.

4. Lagrangian structures

Already linear models break isotropy, if one looks at Lagrangian or two-time Eulerian

statistics. In this section we use results from RDT evaluated at two times (linear),

Lagrangian statistics from KS (random Fourier modes) and DNS (nonlinear), details

of which are given in section 2. We analyze the most basic Lagrangian quantity, the

single particle dispersion ∆x, schematically shown in figure 6 for one fluid element. The

Lagrangian position of a fluid element labeled by the initial position X

x(t) = x(X, t) (15)

has a Lagrangian velocity related to the Eulerian velocity field u(x, t) by

V (t) = u(x(X, t), t). (16)

Therefore the position of the particle advected by the Lagrangian velocity field can be

written down as

ẋ(t) = u(x(X, t), t) (17)

which subjects the Lagrangian position of the particle x(t) to feedback by itself and

consequently to a nonlinear evolution. By integration along the trajectory of a fluid

element, one gets mean displacements along each i-th direction

∆xi(t, t
′) = xi(t)− xi(t

′) =

∫ t

t′
ẋi(s)ds. (18)

which, as covariances, give single particle dispersions [15]

∆ii(t, t
′) =< ∆xi(t, t

′) >2=

∫ t

t′
ds′
∫ t

t′
< ẋi(s)ẋi(s

′) > ds. (19)

in all three space directions, i = 1, 2, 3. For the analytical linear method, the Lagrangian

velocity correlations in equation (19) are replaced by their Eulerian counterparts derived

from Rapid Distortion Theory (RDT) [13], following the simplified Corrsin hypothesis

(SCH) (see section 2).

For studying anisotropy, it is interesting to compare the single particle dispersion

in the horizontal and the vertical directions separately. The vertical single particle

dispersion ∆33(0, t) =< (x3(t0) − x3(t))
2 > is shown in figure 7 calculated with the
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Figure 7. (a) Linear prediction (computed from ∝
∫

1

0
(1 − cos2 θ) 1−cosσt

σ2 d(cos θ)) as

defined in section 2, (b) random Fourier modes model (runs F to L), and (c) nonlinear

simulation (runs A1 to E1) of one-particle vertical dispersion for different α = f/N .

The two top curves (blue and gray) are scaled with f instead of N as it is the dominant

parameter. Vertical range for all three plots is the same.

RDT/SCH, the KS for runs F to L and the DNS for runs A1 to E1. The similarity of the

three figures is surprising, when one considers the differences in the methods with which

the results have been obtained. Three kinds of regimes may be identified: a ballistic

regime (∆33 ∝ t2) at small times, valid for all the values of α and all models, then at

longer times a weak Brownian regime for rotation dominant cases, such that ∆33 ∝ t,

and finally an oscillating plateau for cases with non-zero stratification, even if rotation

is dominant, at a time of around t = N/2π. The plateau illustrates a confinement of

vertical displacement for fluid particles, which scales with any non-zero value of N .

Nevertheless, there are differences between the linear, the random and the nonlinear

evolutions. The single-time Reynolds stresses are isotropic in RDT as well as in KS,

and therefore the maximum vertical dispersion scales with N and q2. In DNS, a mean

value leads to a similar plateau, though scaling with N and 3u2
3 instead of q2, which

is different due to the anisotropy of the Reynolds stress tensor in the Eulerian velocity

field generated by DNS.

The oscillations in the linear method are very regular as well as being damped at a

lower rate. The damping with this method is strictly linear due to phase mixing. Any

nonlinear triadic interaction is excluded, which explains the regularity and slow decay

of the oscillations. Furthermore, there is no phase mixing for the case α = 1, which

means that the oscillations for this case for the RDT/SCH are undamped. Accordingly,

the ascent of the one-particle dispersion seen for the case α = 1 in DNS is a nonlinear

effect. As the dynamics is strictly linear in KS, we attribute the similar evolution of the

one particle dispersion to the nonlinearity in the fluid particle motion equation. This

“nonlinear” tendency of a reduced confinement is confirmed by simulations of both KS

and DNS with higher Froude numbers.
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Figure 8. (a) Linear prediction (computed as ∝
∫

1

0
(1 + cos2 θ) 1−cosσt

σ2 d(cos θ), (b)

random Fourier modes model, and (c) nonlinear simulation of one-particle horizontal

dispersion for different α = f/N . Vertical range for all three plots is the same.

The transition from the ballistic to the Brownian regime is observed at a time

of around t = f/2π, as the cases α = 8 and α = ∞ show. At later times, in

DNS (figure 7(c)), the case α = ∞ increases its rate of vertical dispersion, probably

a numerical artefact.

The horizontal dispersion is shown in figure 8. Again, the similarity is outstanding,

though this time figures 8(a) and (b), from the linear method and the random model,

seem to yield more similar results. As for the vertical dispersion, in all three cases the

horizontal one-particle dispersion ∆11(0, t) =< (x1(t0) − x1(t))
2 > shows a t2 law at

small times. With rotation one finds a stage with Brownian (∆11 ∝ t) behaviour at

about 0.1 integral time scales, which, depending on the amount of stratification, returns

to a t2 time evolution. Contrarily to single particle dispersion in isotropic turbulence,

a Brownian behaviour expected at very large times is not observed in any of the cases.

The differences between the three figures is mainly the scaling, done here with the initial

integral length scale and initial mean velocity. Furthermore, the Brownian transient

dispersion of the DNS data is not as long as in the other two cases. This might be a

low Reynolds number effect.

For pure rotation, the Brownian regime seems not to go back to a ballistic regime

for the linear data. Furthermore, the vertical diffusivity is exactly twice the horizontal

one [13], a ratio which is approximately recovered for the nonlinear data.

5. Eulerian structures and statistics

The most detailed second order statistics are given by two-point velocity correlations,

or the related spectral tensor. For any anisotropic homogeneous turbulent flow, this

spectral tensor can be reduced to an optimal set of three components, one of which is the
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Figure 9. (a) Integrating surface for angular dependent spectra. (b) Direction of

integration of an angular spectrum along k.

kinetic energy density tensor e(k), the other two providing a very fine grained description

of the anisotropic structure of the flow (details in [2]). In our case, axisymmetry

means that e depends on the polar angle θ only, and its departure from a spherical

equidistribution characterizes directional anisotropy. Hence, the angular distribution

of e is a key information which characterizes cigar- or pancake-shaped structures in

physical space [14, 2, 4]. Equivalent information is contained in the distribution of

the poloidal and toroidal kinetic energy density spectra, presented hereafter, since

e(k, θ) = etor(k, θ) + epol(k, θ).

We analyze here the anisotropy of the velocity field by using energy spectra as

a function of wave number k and the azimuthal angle θ measured with the vertical

(polar) Fourier direction [4]. The energy is integrated over cuts of spherical shells along

the polar angle direction. In a discrete flow field, for n shells of width ∆k and radius

kn divided into m equal polar sectors of angle ∆m and angle θm we can write down an

expression for the directional kinetic energy spectrum

E(kn, θm) =
m

2

[

∫ θm+∆θ/2

θm−∆θ/2

cos θdθ

]−1
∑

|k|∈In,θk∈Jm

û∗(k) · û(k). (20)

It corresponds to an integration of the blue surface in figure 9(a) over a shell width ∆k,

which is the piecewise equivalent to the 4πk2 weighting used to obtain spectra from

spectral densities. The spectra represent classically integrated spherical spectra, but

instead of interpreting them along a ray from the center of the sphere, they represent

spectra along a side of cones with different opening angles, schematically sketched in

figure 9(b). This representation of the flow field allows us to analyze anisotropy in the

flow at all length scales and is shown for the toroidal mode in figures 10(a), (b) and (c)

and for the poloidal mode in figures 10 (d), (e) and (f) for DNS runs B2, C2 and D2.

By using a Craya-Herring type decomposition of energy in a toroidal and poloidal

mode (details in Appendix A or e.g. in [13]) it is observed that most of the anisotropy
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Figure 10. Poloidal (top) and toroidal (bottom) angular spectra for DNS runs B2

(left), C2, (middle) and D2 (right). Black curves show an isotropic spherical spectrum

for comparison. Vertical range for all six plots is the same.

in dominantly stratified cases is found in the toroidal mode, since θ increases from top

to bottom for the directional energy spectrum curves. The poloidal mode distributes

the turbulent kinetic energy in a much more isotropic way. Furthermore, the largest

anisotropy can be found at intermediate wave numbers, where one would expect an

inertial range for higher Reynolds numbers. The energy in the polar direction clearly

dominates, illustrating a quasi two-component flow in the horizontal direction. Linear

dynamics, e.g. from Rapid Distortion Theory (RDT) do not manage to create such

anisotropic effects. The toroidal and the poloidal mode are linearly independent, linked

through a nonlinear triadic exchange term. Linear dynamics only affect the poloidal

mode periodically exchanging energy between the poloidal part of the velocity and the

buoyancy field. RDT applied to initial isotropic data with equipartition of poloidal and

potential energy strictly conserves isotropy of any single-time second-order correlation.

Dominantly rotating cases show similar anisotropy in toroidal and poloidal parts

of the energy with a maximum at the smallest scales, θ decreasing from top to bottom.

The isotropy at large scales is much more conserved than in dominantly stratified cases.

However, at small scales the energy density is much higher in the polar direction,
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indicating a high degree of correlation for the velocity in the real-space vertical direction.

This indicates a trend toward a two-dimensional three-component flow field correlated

in the vertical direction. Linear inertial waves exchange kinetic energy between the

poloidal and the toroidal part of the velocity field and therefore cannot explain the

anisotropy at large k. The role of nonlinear interactions with little involvement of the

poloidal mode and the related angular energy drain (rather than a classical cascade) is

confirmed, suggesting a simplified scheme supported by both DNS results and statistical

models [13].

Furthermore, weak rotation with dominant stratification as well as weak

stratification with dominant rotation is not detectable. As the terms containing the

anisotropy parameters are linear in the Boussinesq system of equations, the mixed

cases with domination of stratification or rotation are very similar to the pure cases.

Effectively, the influence of rotation in figures 10(a) and (d), as well as the influence of

stratification in figures 10(c) and (f) can not be detected. The case α = 1 shows results

similar to the isotropic case (black curves in all figures), meaning that in this case the

inertio-gravity waves lead to a compensation of the two mechanisms of anisotropy.

6. Conclusions and open issues

There is a paradox: in a stratified fluid, the layering or pancake dynamics, observed

from velocity snapshots or single-time Eulerian statistics, is a nonlinear phenomenon,

as are the columnar structures in rotating turbulence. How can this be partly predicted

by trajectories created with linear dynamics with KS, or two-time statistics calculated

in the RDT approximation?

In linearly generated flow fields, this kind of anisotropy is missing in the Eulerian

velocity fields, but their Lagrangian statistics do exhibit anisotropic features. We put

forward two means by which the anisotropy of the velocity field, if absent, can be

mimicked in the Lagrangian statistics.

First, two-time second-order velocity statistics indeed show isotropy breaking,

which is amplified by a time integration, as performed in previous works about dispersion

[15, 12]. The latter work also incorporates a procedure for turning Eulerian two-point

two-time correlation spectra into Lagrangian ones [13, 12], hence exemplifying a possible

link between the two.

Second, the fluid particle trajectory itself may be a source of nonlinearity

which can introduce irreversible anisotropic features into Lagrangian statistics. The

intrinsic nonlinearity in the Lagrangian equation for the particle position, ẋ(X, t) =

u(x(X, t), t), might be additionnally fed by the nonlinearity of the advection term in the

Navier-Stokes equation. Using the results of Taylor [15], this argument can be extended

to the two-time statistics of RDT/SCH. Strictly speaking, the trajectory argument does

not hold per se for the purely analytical linear model, although RDT appears to be

informative enough for Lagrangian one-particle anisotropy, and this comes in support

to the simplified Corrsin hypothesis.
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Let us discuss the first point in more detail. Two-time Eulerian and Lagrangian

double velocity correlations incorporate more information than single-time (only

Eulerian) double correlations. Isotropy breaking by the presence of unsteady wave

and steady vortex modes, arising from a purely linear operator (e.g. our equation

(4)), is reflected significantly by two-time velocity correlations. This anisotropy is then

magnified by the Taylor time-integration when calculating Lagrangian diffusivities in

the “RDT+SCH” model.

If single-time double correlations are considered, no significant anisotropy can

result from the RDT linear solution; isotropy is broken in single-time third-order

correlations, so that anisotropy for Eulerian statistics is triggered by nonlinear transfer

terms mediated by triple correlations. Accordingly, nonlinear dynamics are essential for

a correct anisotropic description of single-time Eulerian statistics, and for the related

formation of organized structures as exhibited by DNS snapshots.

In our observations of the linear regime, dispersive waves appear more efficient

than “soft” organised structures to render the Lagrangian diffusivity anisotropic. From

this viewpoint, the trapping and confinement of trajectories by dispersive waves can

be similar to the effect of a robust vortex. If we focus on vertical rms displacement,

this efficiency depends only on the dispersion law: confinement in the vertical direction

with plateau (figure 7) is found in the stratified case, but not in the purely rotating

case. Hence Lagrangian anisotropy is found to be maximum in the stratified case, since

vertical motion is completely dominated by waves inducing a plateau, in contrast with

the steady “vortex” part of the horizontal motion which is responsible for free dispersion

in horizontal directions. In the pure rotating case, the entire motion is dominated by

inertial waves, which reduce the growth of Lagrangian displacement in agreement with

a Brownian-type law, but do not stop it since no plateau appears. In the latter case,

anisotropy only consists of a ratio 2 of vertical to horizontal diffusivities.

If one now considers organised structures, for which nonlinear dynamics are needed,

they are not robust enough to significantly affect Lagrangian diffusivity (for instance one

would expect a plateau for horizontal rms displacement, if the “cigars” were really strong

vertical vortices in rotating flows). This competition between linear effects of anisotropic

dispersive waves and nonlinear effects of structure formation could be different when

studying other Lagrangian statistics such as two-particle dispersion. This question shall

be adressed in a future work by computations of two-particle dispersion by KS and

DNS, as well as by the development of a two-particle two-time RDT velocity correlation

model.

In addition to the above mentioned “paradox”, another important result of our

study is the strong angular dependence of anisotropic spectra obtained from high

resolution DNS, down to the smallest scales. The specific anisotropization mechanism

corresponds to a nonlinear energy drain, confirmed by DNS to be angle-to-angle, rather

than shell-to-shell as for isotropic cascade. This dynamics agrees with results from

existing anisotropic statistical models [14, 6, 4]. In addition to this confirmation, our

new results are that angular dependence is essentially restricted to the toroidal mode in
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stably stratified turbulence, and that the quasi-isotropic shape of poloidal energy scales

like k−2. The physical interpretation of both results is an open question, to be adressed

with the help of statistical models. Finally, our work has raised the issue of how to

produce deterministic initial data for the computations, that can be physically relevant

as sources of motion, especially for wave propagation [16].
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Appendix A. Craya-Herring frame

Divergence-free flows can be characterized as a two-component flow by defining a local

(as a function of k) orthonormal reference frame (Craya-Herring frame, see figure 3(a))

with the first direction horizontal, the third direction along k and the last direction

orthogonal to the first two

e1 =
k × n

|k × n| , e2 =
k

k
× e1 , e3 =

k

k
. (A.1)

This decomposition is essentially the division of the toroidal (mode 1) and poloidal

(mode 2) part, so the velocity vector with two components can then be presented as

û(k) = û(1)(k)e1(k) + û(2)(k)e2(k) (A.2)

with its toroidal û(1)(k) and poloidal û(2)(k) modes. Following e.g. [6] we introduce a

third component û(3) as an imaginary component representing the square root of the

potential energy

û(3)(k) = i
1

N
b̂(k) (A.3)

and so construct a hermitian vector field

v̂(k) = û(1)(k)e1(k) + û(2)(k)e2(k) + û(3)(k)e3(k) (A.4)

represented in the Craya-Herring frame of reference. This leads to an expression for the

total energy density of the fluid

e(k) =
1

2
û(i)∗û(i) =

1

2

(

û∗
i ûi +

1

N2
b̂∗b̂

)

. (A.5)

In components of the new reference frame the linearized equations (1) and (2) take

the following form

∂tû
(1) − f cos θû(2) = 0 (A.6)

∂tû
(2) + f cos θû(1) + iN sin θû(3) = 0 (A.7)

−iN∂tû
(3) +N2 sin θû(2) = 0 (A.8)
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This system of differential equations can be rewritten as a matrix equation

∂t







û(1)

û(2)

iû(3)






+







0 −σr 0

σr 0 −σs

0 σs 0













û(1)

û(2)

iû(3)






= 0. (A.9)

by introducing σs = N sin θ and σr = f cos θ. The eigenvalues of the matrix are 0 and

±iσ, where σ =
√

σ2
s + σ2

r and the normalized eigenvectors are

N 0 =
1

σ







σs

0

σr






,N+1 =

(√
2

2σ

)







−σr

iσ

σs






,N−1 =

(√
2

2σ

)







−σr

−iσ

σs






.(A.10)

This basis of eigenmodes can now be used to express v̂ as

v̂ =
∑

ǫ=0,±1

ξǫN ǫ, (A.11)

where, by standard linear algebra, ξǫ = v̂ · N ǫ∗, which can easily be obtained by

orthogonality of N ǫ. From the diagonalized system of equations, one can deduce the

time dependent term, so getting a general solution for v̂ which has the following form:

v̂(k, t) =
∑

ǫ=0,±1

N ǫe−iǫσt
(

N−ǫ · v̂(k, 0)
)

(A.12)
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