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Abstract

The spontaneous self-organization of two-dimensional magnetized plasma is investigated within

the framework of magnetohydrodynamics with a particular emphasis on the symmetry-breaking

induced by the shape of the confining boundaries. This symmetry-breaking is quantified by the an-

gular momentum, which is shown to be generated rapidly and spontaneously from initial conditions

free from angular momentum as soon as the geometry lacks axi-symmetry. This effect is illustrated

by considering circular, square and elliptical boundaries. It is shown that the generation of angular

momentum in non-axisymmetric geometries can be enhanced by increasing the magnetic pressure.

The effect becomes stronger at higher Reynolds numbers. The generation of magnetic angular

momentum (or angular field), previously observed at low Reynolds numbers, becomes weaker at

larger Reynolds numbers.

PACS numbers: 52.30.Cv, 47.65.-d, 52.65.Kj
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I. INTRODUCTION

Understanding the coupling of a magnetic field with the motion of plasmas or conducting

fluids is a challenging issue both from a fundamental and an applied perspective. In partic-

ular the self-organization of the velocity and magnetic fields at large scales is an intriguing

phenomenon. One example is the dynamo-problem, studying the formation of a large scale

magnetic field induced and amplified by fluid motion (see for example reference1 for recent

experimental progress). Another example is large-scale spontaneous toroidal and poloidal

rotation observed in fusion plasmas, an effect that is beneficial for confinement as it may

suppress turbulence and radially extended structures. This effect may be related to the

transition to an improved confinement state2. The absence of this transition might jeopar-

dize the success of the ITER3 project. The understanding of large-scale self-organization is

therefore a key issue in different branches of physics and deserves detailed investigation.

An academic example of self-organization is the spontaneous generation of angular mo-

mentum in two-dimensional hydrodynamic turbulence. This phenomenon was discovered by

Clercx et al. 4 by considering flow in a square domain. We note that this effect was also

present, but not recognized as such, in calculations by Pointin and Lundgren5. In circular

domains it was observed to be absent6,7. In8 it was shown that the strength of the spin-up

can be controlled by increasing the eccentricity of an elliptic domain. For recent reviews

on the dynamics of two-dimensional turbulence bounded by walls we refer to9,10 and for an

explanation of spin-up in terms of statistical mechanics to11,12.

In a recent work13, it was shown that this effect is enhanced in magnetohydrodynamics.

The shape of the boundary which contains a plasma may thus be very important in de-

termining the dynamics of close to two-dimensional plasma flow. In three dimensions, the

importance of the shape of the plasma container is far from trivial. Indeed, while in infinite

cylinders plasma can be retained in a static, quiescent state by the Lorentz force, toroidal

geometries are shown to induce non-zero velocities due to visco-resistive effects14–16. These

studies concentrated on steady states in axi-symmetric geometry which could be qualified as

two-and-a-half dimensional. It is reasonable to expect that the same statement will be true

in fully three-dimensional non-stationary MHD. That case will be studied in future work.

Here we will consider the unsteady case, but in two space dimensions.

In the present work we will extend the investigation presented in13. Wall bounded two-
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dimensional MHD turbulence will be studied, in which the solid boundaries are taken into

account by the penalization method17. This method is relatively young and has been applied

to MHD turbulence only recently18, so that the present paper, in addition to its physical

relevance, also constitutes a check of the capability of the method to model the influence

of walls on high Reynolds number MHD turbulence. We consider simulations in which the

Reynolds number is increased by approximately two orders of magnitude with respect to the

previous works13,18. We consider three differently shaped confining domains. In addition to

the square and circular geometry considered in the previous study we consider an ellipse.

The choice of this geometry is inspired by the work of Keetels et al. 8 and this geometry

has the particularity with respect to the other two to be non-circular, without the presence

of sharp corners. The initial conditions are completely free from angular momentum, where

in13 a small but non-zero initial angular momentum existed. It is shown that the tendency

to generate angular momentum becomes stronger at higher Reynolds number in the non-

axisymmetric geometries, while it is absent in the circular container. Furthermore, the

tendency to generate angular fields vanishes in the limit of large Reynolds numbers. An

explanation is given for the vanishing of this magnetic angular momentum.

The remainder of the paper is organized as follows. In Section II the mathematical model,

the governing equations and their numerical discretization are described. Numerical results

are presented in Section III and finally conclusions and perspectives for future work are

given in Section IV.

II. MATHEMATICAL MODEL OF BOUNDED MHD TURBULENCE

A. Governing equations and boundary conditions

Direct numerical simulation of high Reynolds number MHD turbulence constitutes a chal-

lenge for computational physics due to the presence of a multitude of nonlinearly interacting

spatial and temporal scales. Presently the most efficient method to solve homogeneous tur-

bulence (both hydrodynamic and MHD) is by pseudo-spectral methods, using fast Fourier

transforms19,20. The additional complexity induced by the presence of solid walls requires

advanced numerical methods. Pure spectral simulations have been proposed and applied to

study wall bounded MHD21, but their prohibitive complexity for increasing Reynolds num-
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bers limits their application to flows with a relatively limited range of interacting degrees of

freedom.

An efficient method to compute flows in the presence of solid obstacles and walls is the

volume penalization approach which was introduced by Angot et al.17 for the Navier-Stokes

equations and applied to hydrodynamic turbulence in7,22. This method was extended to

MHD turbulence in a recent work18. Using this method, efficient pseudo-spectral solvers

can be used to compute flows which contain solid walls and obstacles, which may even move

in time23.

The governing equations are

∂u

∂t
+ u · ∇u = −∇p + j ×B + ν∇2u− 1

ǫ
χ(u− u0) (1)

∂B

∂t
= ∇× (u×B) + η∇2B − 1

ǫ
χ(B −B0) (2)

∇ · u = 0 (3)

∇ ·B = 0 (4)

with u the velocity, B the magnetic field, p the pressure and j = ∇×B the current density.

Here ν and η are respectively the kinematic viscosity and the magnetic diffusivity. The

last term in the evolution equations for u and B is the penalization term which allows to

impose the solid boundary conditions. Thus both the fluid-domain and the confining walls

are embedded in a 2π-periodic square domain. We consider circular, square and elliptic

domains. For further details we refer to18.

The quantities u0 and B0 correspond to the values imposed in the solid part of the nu-

merical domain. Here we choose u0 = 0 andB0 = B‖. Here B‖ is the tangential component

of B at the wall which is not being fixed at a constant value but being re-computed at each

time-step. Thus the normal component of the magnetic field vanishes at the wall, while the

tangential component can freely evolve. This configuration corresponds to an electrically

conducting fluid or plasma in a container with perfectly conducting walls, coated on the

inside with a thin insulating layer24. In addition to the normal component of the magnetic

field, the current density can not penetrate into the walls, a property which is automatically

satisfied for two-dimensional flow since the current density only has a component perpen-

dicular to the plane of the flow. The mask function χ is equal to 0 inside the fluid domain

(where the penalization terms thereby disappear) and equal to 1 inside the part of the do-

main which is considered to be a solid. The physical idea is to model the solid part as a
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porous medium whose permeability ǫ tends to zero17,22. For ǫ → 0, where the obstacle is

present, the velocity u tends to u0 and the magnetic field B tends to B0. The nature of

the boundary condition for the velocity is thus no-slip at the wall.

B. Numerical method

In the case of two-dimensional flow (here in the x − y plane) it is convenient to take

the curl of eq. (1, 2) to obtain after simplification equations for the vorticity and the

current density, which become scalar valued (in the z-direction) and are perpendicular to

the velocity and the magnetic field, respectively. The vorticity is defined by ωez = ∇× u

and jez = ∇×B denotes the current density. Furthermore we define the vector potential

a = aez as B = ∇ × a and the stream function ψ as u = ∇⊥ψ = (−∂ψ/∂y, ∂ψ/∂x). We

discretize the evolution equations of vorticity and current density,

∂ω

∂t
+ u · ∇ω = B · ∇j + ν∇2ω

−1

ǫ
(∇× [χ(u− u0)]) · ez (5)

∂j

∂t
+∇2([u×B] · ez) = η∇2j

−1

ǫ
(∇× [χ(B −B0)]) · ez (6)

using a classical Fourier pseudo–spectral method. Terms containing products and the penal-

ization terms, are evaluated by the pseudospectral technique using collocation in physical

space. To avoid aliasing errors, i.e. the production of small scales due to the nonlinear

terms which are not resolved on the grid, we de-aliase at each time step, by truncating

the Fourier coefficients of ω and j using the 2/3 rule. For time integration we use a semi-

implicit scheme of second order, an Euler-Backwards scheme for the linear viscous term and

an Adams-Bashforth scheme for the nonlinear terms, see e.g.22.

C. Initial conditions

The main goal of the present work is the investigation of the formation of large scale struc-

tures containing significant angular momentum. We therefore want our initial conditions to

respect two criteria. In the first place we want them to be free from angular momentum,
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in the second place we want them to be free from coherent structures. One way to gen-

erate a zero-angular momentum initial condition is, as described in25, to take an ensemble

of a large number of Gaussian vortices equally spaced. Half of the vortices have positive

circulation and the other vortices have negative circulation. The disadvantage is that the

initial condition hereby contains coherent structures. A straightforward way to generate an

initial condition without coherent structures, is to start with Gaussian random noise. The

absence of phase correlations ensures that no structures are present. We therefore initialize

both vorticity and current density fields with Gaussian random noise as in18. The Fourier

transforms ω̂ and ĵ, where ω̂(k) = 1
4π2

∫
ω(x)e−ık·xdx, are initialized with random phases

and their amplitudes yield isotropic energy spectra of the form:

Eu(k), EB(k) ∝
k

(g + (k/k0))4
,

where g = 0.98 and k0 = 3
4

√
2π. This energy spectrum is peaked at the largest scales and

follows a power law proportional to k−3 at large wavenumbers. The energy spectra are thus

the same for the magnetic field and the velocity field. The phases of the Fourier-modes are

however chosen randomly and independently, so that the initial fields are different. The

corresponding fields u and B are calculated from ω and j using the Biot-Savart law. The

fields contain vanishing cross-helicity
∫
Ω
uiBidA, with Ω the flow domain. The so-generated

fields are however, in general, not free from angular momentum. We note that this was the

case in reference [13], in which the initial conditions contained a small amount of angular

momentum. We want to avoid this in the present study in order to be able to answer to

the question whether it is possible to generate angular momentum when initially none is

present.

Before describing how we achieve the generation of initial conditions free from angular

momentum, let us recall the definition of angular momentum Lu and angular field LB,

respectively,

Lu =

∫

Ω

ez · (r × u) dA = −2

∫

Ω

ψdA,

LB =

∫

Ω

ez · (r ×B) dA = 2

∫

Ω

adA, (7)

where r is the position vector with respect to the center of the domain. Note that the

equalities on the right hand side assume that a and ψ vanish at the boundary of the fluid

domain. The angular field integral in terms of the vector potential a has some significance
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for ’reduced’ MHD26. To obtain initial fields with Lu = LB = 0, we proceed as follows.

We generate one set of fields u1,B1 with corresponding angular momenta L1
u
and L1

B
and a

second set u2,B2 with corresponding angular momenta L2
u and L2

B
. By linear combination

of these conditions,

u = u1 −
L1
u

L2
u

u2 B = B1 −
L1
B

L2
B

B2, (8)

we get initial velocity and magnetic fields free from kinetic and angular momentum.

III. NUMERICAL RESULTS

We investigate in total 63 computations in a square, circular and elliptic domain, the

latter with an excentricity equal to 0.6. The mechanical Reynolds number and magnetic

Reynolds number are defined, respectively, as

Ru =
UD
ν

(9)

RB =
UD
η
. (10)

The Reynolds numbers are based on the initial root mean square velocity U , the domain

size D and the kinematic viscosity ν and resistivity η. The magnetic Prandtl number ν/η

is unity in all simulations so that both Reynolds numbers are equal and denoted by R. In

the following we will therefore not distinguish between the two Reynolds numbers. Two

series of computations denoted by A and B were performed at a resolution of 5122 grid-

points and at Reynolds numbers of the order 103 and 104 respectively, performing 10 runs

for each geometry for each Reynolds number. The third series, denoted by C was performed

at resolution N2 = 10242, at Reynolds number of order 105. The time is normalized by

D/
√
2Eu(t = 0), D being the typical lengthscale of the fluid domain, i.e. the sidelength of

the square, the diameter of the circle and the longest cross-section of the ellipse. Parameters

of the simulations are listed in table I.

A. Visualizations

Visualizations of the vorticity ω, the stream-function ψ the current density j and the

vector-potential a are displayed in Figure 1. The displayed results are typical results for
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FIG. 1: (Color online) Visualizations of (from top to bottom) the vorticity ω, the stream–function

ψ, the current density j and the vector potential a for the square, circular and elliptic geometries.

The three columns correspond to (from left to right) to the time instants t⋆ = 3, 3, 2.7 of series B

for which Lu (Fig. 2) is maximal. The time is normalized by the initial turn-over time. Note that

the numerical method used in the present work does not impose a zero value of a and ψ at the

wall of the fluid domain. Thus a constant value was substracted from a and ψ at every point in

the fluid domain to impose this.

series B. We will first focus on the behavior in the square geometry. It is observed that both

the velocity-field and the magnetic field exhibit a tendency to generate large-scale structures.

The current-density shows that the magnetic field-lines of the two main flow-structures are in

the opposite direction. This is even clearer in the plot of the vector potential. The magnetic
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TABLE I: Parameters of the simulations of series A, B and C. SU∗: number of spin-up. The initial

kinetic and magnetic energies are Eu(0) = 0.3 and Eb(0) = 0.7 respectively for all simulations.

The penalization parameter ǫ is chosen 5 · 10−4 for all runs.

ν = η dt D SU∗ t∗max

square (A) 7.9 · 10−4 10−4 2 1/10 100

circle (A) 7.9 · 10−4 10−4 2.24 0/10 100

ellipse (A) 7.9 · 10−4 10−4 2 1/10 100

square (B) 1.2 · 10−4 7.5 · 10−5 2 7/10 100

circle (B) 1.2 · 10−4 7.5 · 10−5 2.24 0/10 100

ellipse (B) 1.2 · 10−4 7.0 · 10−5 2 6/10 100

square (C) 1.5 · 10−5 10−5 2 1/1 10

circle (C) 1.7 · 10−5 10−5 2.24 0/1 10

ellipse (C) 1.7 · 10−5 10−5 2 1/1 10

angular momentum LB is therefore small, since the contributions of both structures cancel

each other out. Note that the right hand side of equation (7) relates the magnetic angular

momentum directly to the vector potential.

In contrast, the velocity field displays significant symmetry-breaking, which is directly

reflected in the stream-function. Both vortices are turning in the same sense, with a strong

shearing region in between them. Non-zero angular momentum results. Similar observations

can be made for the elliptic geometry. In the circular geometry it is more difficult to visually

evaluate the generation of angular momentum.

B. The influence of the Reynolds number and geometry

To quantify the extent to which a large-scale swirling structure dominates the flow, we plot

in Figure 2 the angular momentum in the three geometries for series A and B corresponding

to Reynolds numbers of order 103 and 104, respectively. Since not all runs present spin-up

(a flow is defined to spin-up when the amount of angular momentum is greater than 10%

of the angular momentum Lu of a solid-body having the same initial kinetic energy), we
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FIG. 2: (Color online) Influence of the Reynolds number on the spin-up: time-dependence of the

absolute value of the normalized kinetic angular momentum Lu averaged over 10 simulations of

series A (R ≈ 103) and series B (R ≈ 104) for the square, circular and elliptic geometry, from

top to bottom. Here and in the following the angular momentum is always normalized by Lu(0)

(and LB(0) for the magnetic equivalent) corresponding to the angular momentum of a solid-body

having the same initial kinetic energy.
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FIG. 3: (Color online) Comparison of series B, R ≈ 104 (top) and series C, R ≈ 105 (bottom).

Time-evolution of the angular momentum Lu (left) and angular field LB (right) in the square,

circular and elliptic geometry. Only one realization is chosen from each series.

show ensemble averages of the absolute value of the normalized angular momentum over ten

realizations. We observe that the magnitude of the spin-up increases more than a factor 2

when increasing the Reynolds number by an order of magnitude. It is observed that the

angular momentum in the circular domain is weaker but not negligible.

In Figure 3 we show the angular momentum in the three geometries for series B and C

corresponding to Reynolds numbers of order 104 and 105, respectively. For each Reynolds

number one particular realization is chosen for which Lu is maximum. For both series it is

observed that strong spin-up takes place in the square and in the ellipse. The generation

of the angular momentum is spontaneous, and rapid and one observes that the amplitude

is of order 0.25 in the square and in the ellipse. This implies that the fluid reaches an

angular momentum which corresponds to approximately 25% of the angular momentum

which would possess a fluid in solid-body rotation containing the same energy at t = 0.
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There is practically no spin-up in the circular container.

In Figure 3, right, the magnetic angular momentum is evaluated in all geometries. Sur-

prisingly, in the square in which the generation of kinetic angular momentum was the

strongest, LB remains close to zero. In the other two geometries, an amount of LB is

created, however, this magnetic spin-up takes place on a time-scale which is larger than

for its kinetic counterpart. Furthermore it can be observed that once LB is created it re-

mains almost constant over time. For series C LB remains close to zero at all times in all

geometries.

C. Influence of the magnetic pressure

In13 we derived the equation for Lu in the case of MHD turbulence. It reads

dLu

dt
= ν

∮

∂Ω

ω(r · n)ds+
∮

∂Ω

p⋆r · ds (11)

with ν the kinematic viscosity, ω the vorticity, n the unit-vector perpendicular to the wall,

p⋆ = p+B2/2 is the sum of the hydrodynamic and magnetic pressure. It was discovered by

Clercx et al.4 that spontaneous generation of angular momentum in hydrodynamic turbu-

lence is observed in square domains, whereas it is absent in a circular domain. Subsequently,

it was explained to be an effect due to the pressure8, the last term in equation (11). Indeed,

this term vanishes in a circular domain. In MHD, the presence of the magnetic pressure

allows to vary the importance of the pressure term, while keeping the other parameters

constant, by changing the value of the magnetic fluctuations. This is illustrated in Figure 4

for series B (Reynolds ≈ 104). The ratio EB/Eu is varied, with EB the mean-square of the

magnetic fluctuations and Eu the mean-square of the velocity fluctuations. It is observed

that the tendency to spin-up is significantly increased in the square geometry while this ef-

fect is weaker in the elliptical geometry and absent in the circle. It is thus shown that both

geometry and magnetic pressure can play a role in the generation of angular momentum.

D. On the origin of the angular fields.

In13, the tendency to generate angular fields was also investigated by computing the value

of LB . It was found that angular fields were observed, even in the circular geometry. In
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Figure 3 right, we show that at higher Reynolds numbers the generation of this ’magnetic

angular momentum’ becomes weaker and seems to vanish. Writing the equation for LB, we

find
dLB

dt
= η

∮

∂Ω

j(r · n)ds − 2ηI , (12)

where I denotes the net current through the domain, defined by I =
∫
Ω
jdA. The pressure

plays thus no direct role and only the net current or resistive magnetic stress can generate

angular fields. The mean current through the domain is computed by integrating the current

density over the fluid domain. This quantity should in principle be small, and decay to zero

at long times. No production of mean current is physically expected. Closer scrutiny of the

results revealed the existence of a spurious fluctuating mean current inside the fluid domain.

The fluctuations of this current are partly numerical. Indeed, the penalization method is

known to induce small errors in the vicinity of the wall. These errors can be controlled and

depend on the parameter ǫ. The thickness of the layer in which the penalization error is

significant is of order ∆ =
√
ǫν. In this numerical boundary layer, non-physical currents can

be observed. We will denote the total amount of numerical current by IN . If we suppose

that this current is uniformly distributed in the boundary layer, we can write for a circular

domain,

IN ≈ 2πr∆jN (13)

which gives an average numerical current density jN ≈ IN/(2πr
√
ǫν). Now, equation (12)

becomes

dLB

dt
≈ rη2πjN − 2ηIN (14)

≈
(
r
η√
ǫν

− 2η

)
IN , (15)

and for the special case of unity magnetic Prandtl number, ν = η, this simplifies to

dLB

dt
≈

(
r

√
ν

ǫ
− 2ν

)
IN . (16)

The fact that we have a penalization parameter of the order of the viscosity leads to a

non-negligible production of magnetic angular momentum through the dissipation term,

proportional to IN . As one can see in Figure 5, the time evolution of the mean current and

the time derivative of the magnetic angular momentum, computed with a classical finite
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difference scheme of first order, overlap quite well. Equation (16) shows that the effect

should become smaller when the ratio ν/ǫ is decreased. Since we used the same value for

ǫ in all runs and we decreased the viscosity to increase the Reynolds number, the influence

of the current should become smaller at higher Reynolds number. Indeed in series C the

generation of angular fields was dramatically reduced with respect to series B as observed

in Figure 3, which confirms our assumption that the origin is due to a numerical boundary

layer. A remaining open issue is why this effect was small or absent in the square geometry.

We suspect that the effect is stronger for geometries in which the mask is not aligned with

the numerical grid. Indeed, a so-called staircase-effect is expected to decrease the quality of

the approximation near the walls.

IV. CONCLUSIONS AND PERSPECTIVES

In total 63 pseudo-spectral simulations of two-dimensional MHD turbulence in a bounded

domain were performed. It was shown that spin-up takes place in non-axisymmetric geome-

tries (squares, ellipses). This phenomenon, observed in13 at low Reynolds number, persists

at higher Reynolds numbers and becomes more pronounced. The generation of the magnetic

equivalent of the angular momentum becomes much weaker at higher Reynolds numbers.

The first effect, the kinetic spin-up can be enhanced by increasing the magnetic fluctuations.

It is therefore clearly related to the pressure term p∗. The generation of angular fields in

our simulation was shown to have a numerical origin. The effect was argued to be related to

the current density leaking into the domain and can therefore be physically relevant if the

walls are not assumed to be insulated. Indeed, the influence of other boundary conditions

constitute an interesting objective. The main objective remains however the investigation

of the effect in fully three-dimensional unsteady MHD simulations.

Acknowledgments

David Montgomery is acknowledged for his contructive comments. We thankfully ac-

knowledge financial support from the ANR, project M2TFP and KS also thanks the Institut

Carnot STAR for partial financial support.

14



References

1 R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin, P. Odier, J.-F. Pinton, R. Volk, S. Fauve,
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FIG. 4: (Color online) Time evolution of angular momentum Lu(t) for series B (R ≈ 104). The

influence of the magnetic pressure on the spin-up in the square, circle and ellipse is illustrated by

changing the ratio EB/Eu, while keeping Eu fixed. The magnetic pressure is changed by varying

EB , while keeping constant Eu.
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FIG. 5: (Color online) Comparison of the time derivative of LB(t) and the mean current < I >.

The run corresponds to one realization in the circle with EB/Eu = 13.3 and R ∼ 104.
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