
HAL Id: hal-00516946
https://hal.science/hal-00516946

Submitted on 13 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptation approach for component-based software
architecture

Makhlouf Derdour, Philippe Roose, Marc Dalmau, Nacira Ghoualmi-Zine,
Adel Alti

To cite this version:
Makhlouf Derdour, Philippe Roose, Marc Dalmau, Nacira Ghoualmi-Zine, Adel Alti. An adaptation
approach for component-based software architecture. COMPSAC, Jul 2010, North Korea. pp.179-187,
�10.1109/COMPSAC.2010.24�. �hal-00516946�

https://hal.science/hal-00516946
https://hal.archives-ouvertes.fr

An adaptation approach for component-based software architecture

Makhlouf Derdour1, Philippe Roose2
Marc Dalmau2, Nacéra Ghoualmi Zine1, Adel Alti3

1 University of Annaba
Computing Department

 Annaba – Algeria
{m.derdour, ghoualmi}@yahoo.fr

2 LIUPPA – IUT of Bayonne
Computing Department

Bayonne – France
{roose, dalmau}@

iutbayonne.univ-pau.fr

3Université of Setif
Computing Department

 Setif – Algeria
altiadel2002@yahoo.fr

Abstract- In this paper we propose a meta-model for
architectures with heterogeneous multimedia components.
Currently, a generic solution does not exist to automatically
deploy a distributed architecture based on multimedia
components. The description of the incompatibilities between
components is a need in such approaches. Indeed, software
architectures validate the functional aspects, which are not
sufficient to guarantee a realistic assembly. For instance, the
problem of heterogeneity related to the exchanged data flows.
In order to highlight these incompatibilities and to find
solutions, a model-based approach called MMSA (Meta-model
Multimedia Software Architecture) is proposed. It enables the
description of the software architectures expressing a software
system as a collection of components which handle various
types and formats of data, and interacts between them via
connectors including the adaptation connectors.

Keywords- component; adaptation; concerns; multimedia;
software architecture.

I. INTRODUCTION
The components-based development is an approach

widely used to construct complex systems. Basically,
requirements are affected to components of a certain type
classes, packages, services, etc. While many requirements
can be effectively assigned to individual components, there
are many requirements that cannot be located to one
component and that having repercussions on numerous
components (configuration). The requirements express
functional and non-functional concerns. The conservation of
such concerns during the design and the implementation
gives a system difficult to understand and maintain. It is
commonly accepted that it is better to separate the functional
and non-functional concerns. This facilitates the search of
the business components to satisfy the functional concerns
and allows the factorization of the use of the components
ensuring the non functional concerns. In the MMSA
approach (Meta-model for Multimedia Software
Architecture), the two types of preoccupations are ensured
respectively by the components and the connectors. Thus,
the connectors ensure the communication and the connection
of components that realize the functional part (business

component). Their execution within adequate configurations
also requires taking into account of the non-functional
aspects.

The component-based design has two fundamental
activities: the conception for the reuse and the conception by
the reuse. The main objective of design for reuse is to create
a complete library of reusable components while the main
objective of the design by reuse is to create new products by
reusing existing components. In this paper we focus on the
second activity in order to construct multimedia applications
(applications handling several types of media, such as: text,
image, sound and video). Compared to conventional
applications, these applications have many drawbacks
related to the media variety (type, format and characteristic),
and to their adaptations. These difficulties are increased by
the pervasive character increasingly ubiquitous in such
applications.

Figure 1. Levels of abstraction in software architecture

The heterogeneity of components regarding embedded
sensors, CPU power, communication mechanisms (GPRS,
WIFI, Bluetooth, ZigBee, etc.), speed of transmission as
well as the media variety (sound, video, text and image)
requires taking into account adaptation to an abstract level
in order to avoid the ad hoc solutions which are not reusable
and/or generalized (see figure1).

Analysis

Implementation

Conception

Integration

A
bstraction

Requirement

Manifesto

Architecture

Need

Component

Module

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.24

179

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.24

179

Therefore, we propose a meta-model of software
architecture for multimedia applications incorporating flows
properties of multimedia data. The adaptation of the data
flows is deported to the connectors, here called adaptation
connectors. These connectors include necessary adaptation
services as well as qualitative extensions of these services in
order to offer a measure reflecting the evolution of data flow
after the adaptations.

After the introduction, the motivations of this work are
presented in the second section. Furthermore, some related
work is presented in the third section; the next section
presents our meta-model of multimedia component-based
software architecture. The last section details the properties
and the characteristics of the meta-model components.
Finally some conclusions and perspectives are given.

II. MOTIVATIONS
Our main motivation is to propose a meta-model for

maintaining data consistency in configurations constituted
of heterogeneous components (multimedia flow,
communication protocol, etc.) using new types of graphic
interfaces and connectors with a richer semantic.

The use of these graphics interfaces allows the automatic
detection of points of heterogeneity between components,
while the use of adaptation connectors allows the resolution
of these heterogeneities. The systems are constructed by
assembling (functional) components and (non-functional)
connectors, where each element is correctly placed in the
architecture configuration. In most of the ADL
(Architecture Description Language) and the existing
languages we find that:

• The choice of the available connectors in the
environment is limited to the primitive connectors,
no compounds connectors.

• The management of the non-functional concerns of
the components is ensured after the definition of
architecture and configuration of the components.

• The management of assembly does not take into
account the behavioral heterogeneity (semantic) of
the components of software architecture.

• Few models are able to define new connectors with
different treatments that ensure the non-functional
concerns of the components (security,
communication, conversion, etc.).

• There is no direct and automatic correspondence
between architectures (models) and the applications
conceived following these architectures (instances).

In order to solve these insufficiencies, we propose
MMSA to describe multimedia-components-based software
architectures. Based on the definition of four types of
interfaces according to the data flow (Image, Sound, Text,
and Video) and a strategy of adaptation of the multimedia
flows (type, format, property) to three levels, we propose a
model to solve the problem of components data exchange
heterogeneity. It is developed in order to reach the following
objectives:

• Ensure a high level of abstraction for the connectors
in order to make them more generic and more
reusable, and therefore reconfigurable.

• Take into account the semantics of communication
links between components in order to detect points
of heterogeneity and insert the adaptation connectors
in those points.

• Favor the maintenance and the management of the
adaptation QoS and of the communication ensured
by the connectors by providing the following
possibilities: adding, suppression and substitution of
adaptation services.

III. RELATED WORKS
The software components are reusable software entities

promising a cost reduction in development, maintenance
and in software evolution. Currently, many propositions
claim the development mode based on the assembly of
software components. Despite the common vocabulary
(component, port, interface, service, configuration,
connector), these propositions are varied regarding their
origins, their objectives, and their concepts and also their
mechanisms.

ADLs are used to specify the software architecture.
Medvidovic [26] has presented the difference between an
ADL and a formal specification to distinguish the ADL
from the other modelling notations. The [16] and [11]
presented an overview of the ADL. The connector types
have been studied by [27]; they presented taxonomy of
connectors allowing the support of the non-functional
properties (communication, security, conversion,
facilitation, coordination, interaction).The models cover all
or part of the needs in terms of language, of semantic and of
tools. In [27], the authors raise insufficiencies in the
specification of non-functional properties of the systems; we
notice a lack in semantic foundation for the expression of
the constraints and refinement (component, connector and
configuration) and a lack of tools for the dynamic
reconfiguration and the evolution in real time.

The approaches like [3] [12] [24] [7] allow the
separation of the functional concerns. They were proposed
in order to capitalize the functional needs in modular
entities. Several ideas were proposed within this
perspective. We mainly distinguish two categories of
approach for software architectures: those inspired on
Component-based software engineering (CBSE) and those
that are service oriented for service-oriented architecture
(SOA). In the first case [37] [3] [12] the accent is put on the
static structure of the system: the software elements are
components assembled by connectors in configurations.
Whereas in the second case [33] [24] [7] [6] the accent is
put on the functional structure of the system: the software
elements are functionalities (services) linked by relations of
collaboration or combination. The model proposed in this
paper could be described as hybrid as it includes
components and proposed services by these components.

180180

Modern applications which have software
preponderance are more and more developed by ADL-based
development processes [9]. The ADLs allow analysis and
verification of properties early in the development cycle that
the future system will have to satisfy, in particular the
homogeneity and compatibility properties of components
handling various media. Indeed, the current applications
(multimedia, embedded systems, communication systems,
etc.) consider the media notion as an important
characteristic of their behavior [8] [10]. Most of existing
ADLs such as SPT-UML [20], MARTE [30], and AADL
[34] do not take into account the adaptation and the
properties related to multimedia flow during the software
construction phase. Some of them, treat the problem of
heterogeneity by modification of the configuration
parameters (addition, withdrawal or replacement of
components) [22] or by a meta-model which verifies the
adequacy of service regarding its context and research of the
adaptation strategy [23].

A simple component language [21] proposes a
comparison of the principal characteristics of the
components languages: component, interface, port, service
and connector. The main objective of this work is to take
into consideration the unforeseen connection of the
developed components in an independent way. As a
solution, it proposes the production of reusable and
configurable connectors through the association of a
particular service to the provided ports which will be used in
the absence of the requested service at port level. A
drawback of this work is the absence of the integration
mechanisms of the new communication services which
ensures the evolution of architecture towards new needs; it
also lacks techniques for checking the quality of
architectures and the provided services.

C3 (Component Connector Configuration) [1] is an
approach based on software architectures. It makes it
possible to describe a view of logical architecture in order to
automatically generate physical architecture for all the
application instances. The idea is based on the refinement
and the traceability of the architectural elements. The
software architecture is described in accordance with the
first three levels of modeling defined by the OMG [31] [32].
Consequently, to describe logical architecture, three types of
connectors are defined: the connection connector (CC) used
to connect components and/or configurations, the
composition/decomposition connector (CDC) which
represents a structural link between a configuration and its
constituent (component, connector), and
expansion/compression connector (ECC) which establishes
a service link between a configuration and its internal
elements. Each connector type has its own semantics and its
own form. The physical architecture is an image in memory
of application instance of the logical architecture. This
image is constructed by a graph whose nodes are instances.
The nodes of this graph are connected by arcs whose types
correspond to specific types of connectors. The connectors

proposed do not ensure the connection of the heterogeneous
components and do not take into account the semantics of
configurations and that of the links between components.

The ADL can be classified in three different categories
[1]: ADL without connectors, ADL with a preset set of
connectors, and ADL with explicit types of connectors. In
the last case, the ADL provides connectors as first order
elements of the language such as: Wright [4], [25], ACME
C2 [19], xADL [17], AADL [5], etc. All these languages
seek to improve the reusability of the components and the
connectors by separating the calculation and the
coordination. In our approach, we choose the explicit
category of connector. Thus, in MMSA meta-model, we
present a generic and explicit type of connector that the
system can specialize it according to the architecture and the
components needs. We will detail this concept in section
5.2.

IV. THE METAMODEL MMSA
The development of multimedia applications requires

two complementary models: a multimedia data flow model
allowing the representation of various types of media
exchanged between components and their relationships, and
an architecture model based on the concepts of ADLs
extended to multimedia and integrating adaptation
connectors. The main idea of this proposal is to take into
consideration the standard concepts of multimedia data as
well as the nonfunctional concerns (data adaptation,
communication protocol, security, etc.) of the components
by connectors at the software architecture level. The
objective is to propose a generic, clear and complete
description. In the following parts we present different
concepts represented by models. For each model we detail
the relations between its concepts.

A. Data flow model
In pervasive environments (mostly heterogeneous and

mobile), the devices can require for any contents type, going
from textual contents to the complex and rich multimedia
documents. Ensuring the delivery of the adapted data to
each peripheral requires adaptation techniques which take
into consideration the media and the flows structuring.
Therefore, their modeling is necessary. It facilitates the
adaptation work between media of the same type (image to
image for example) or between different media types (text
to sound for example).

The hierarchic structure of media is expressed in UML
using a class diagram. The media are classified in two
categories: continuous media, such as the video or the sound,
which are characterized by temporal dependences and the
discrete media such as the image or the text. Each type of
media has a set of encoding formats and some specific
properties like the resolution (in the case of image or video),
the frequency (in the case of the sound), etc. we distinguish
three types of structural links between media: temporal (to
describe the temporal dependences between units), logic (to
describe the logical organization of a flow in hierarchy form

181181

of media) and spatial (to describe the disposition of the
multimedia-flow elements).

Currently, the multimedia data flows must be executed
on many platforms (smartphones, PDA, Laptop or Desktop
PC, etc). This diversification of the uses and the supports
requires the adaptation of flows to their execution context,
which are sometimes unforeseeable at the time of
preparation and design of data.

« Enumeration »
ImageFormat

+BMP
+JPEG
+PNG
+GIF

« Enumeration »
TextFormat

+RTF
+DOC
+ODT
+TXT

« Enumeration »
VideoFormat

+AVI
+MPEG
+MP4
+3GP

« Enumeration »
SoundFormat

+WAVE
+MIDI
+MP3
+PCM

0..* 0..*

Media

Parameter= {input,
output}

Continue

Speed
Duration

Discrete

Weight

Image

Format: ImageFormat
Size
Resolution
Color number

Text

Format: TextFormat
Color
Alignement
Font

Video

Format: VideoFormat
Resolution
Color
Title

Sound

Format: SoundFormat
Frequency
Loudness

Flow

Parameter= {input,
output}

Structural link

Under
Right
Left
Center

Temporal link

Reference:
After time:

Spatial link

Axis X:
Axis Y:

Logic link

Destination:

Figure 2. Multimedia flow model for MMSA

B. Adaptation of data flow
Each media can undergo three types of adaptation. The

first one is known as the format conversion (Transcoding).
It allows conversion in the same type according to a
different encoding format (BMP to.JPEG for example). The
second one allows a handling of the media characteristics
(eg. modification of image resolution for example). This
type of adaptation (transforming) depends on the media
format, since each format authorizes the change of some
characteristics in the form of parameters. The third and
more complex transformation is called conversion of types
(Transmoding). It allows passing from a media type towards
another (text to sound for blind people for example). This
conversion of the type can also act on media structures by
removing the temporal dependences (for example the video
to the images). Each adaptation has an impact on the data
quality. Thus, the conversion of an image from a JPEG
format towards a GIF one implies a reduction in the number
of colors to 256, the reverse implies the suppression of
component “transparency”, which according to the use
context can be problematic, even crippling.

The adaptation is a process (cf. figure3) allowing a
modification the type of media (transmoding), the format of

encoding (transcoding) and/or the media content
(transforming) in order to adapt it to the component
recipient. The class diagram of figure3 shows the various
classes of association allowing the passage of a media type
to another, or of a media format to another format.

The following table (Table 1) presents taxonomy of
possible adaptations between media:

Figure 3. The transformation relationship between different media

The relation between association classes of transmoding
with the association class of transcoding explains that the
transcoding class can be called upon by the transmoding
class to participate in achieving the task of the latter.

TABLE I. ADAPTATIONS OF MEDIA

Category VIDEO SOUND
Transcoding Format conversion Format conversion

transforming

-frame rate reduction
-spatial resolution
reduction
-temporal resolution
reduction
-color depth reduction

 Change sampling

Transmoding

-video to image
-video to text
-video to audio

Audio to text

Category Text Image

Transcoding Format conversion Format conversion

transforming

-font size reduction
- change of police,
color, etc.

-data size reduction
-dimension reduction
-color depth reduction
-color to grayscale

Transmoding

Text to Audio
Text to Image

Image to Text

182182

Although the relation between transcoding class and the
transforming is a relationship of dependence, this
relationship explains that each format has a set of
parameters to manage the various qualities of media. The
transforming is a particular type of transcoding which keeps
the same format of media with changes of characteristics
(for example: conversion of a color JPEG picture to a black
and white one).

C. The adaptation in MMSA
During the process of architecture creation, in order to

solve the heterogeneity problem of architectural elements
(component, connector and configuration), the adaptation is
made in three successive stages: (I) adaptation of the types
(II) adaptation of the formats (III) adaptation of the
properties.

The data flow is a main constituent of the functional
components, it is often specified as a constraint to associate
with a functionality of communication involving several
components.

Figure 4. Heterogeneity between components

The constraints of data flows such as the type, the format
and the media parameters must be specified at the
architectural level. For that, we consider a new type of
component intended to ensure a non-functional concern that
of the adaptation, which one calls the adaptation connector
related to the component which provides and/or requires the
data multimedia. We propose a graphical notation of the
ports of multimedia interfaces allowing to visually identify
the heterogeneity points per media type and to highlight the
need for the search of adaptation connectors.

TABLE II. PORT OF MULTIMEDIA INTERFACE

The detection of heterogeneity is done automatically by
the checking of the constraints of forms and colors.

• Adaptation of type

The heterogeneity of components that manipulate the

media of different types is detected by the use of different
forms to represent the components ports (level 1, figure 4).
Therefore, two components which have different ports
(example: text port and sound port) can be connected only
by the use of one or several adaptation connectors of media
type. This problem will be solved by the integration of the
transmoding connectors at the architectural level.

Figure 5. Transmoding connector of text toward sound

• Adaptation of format

The heterogeneity of the components that manipulate the

same type of media but with two different encoding format
(level 2, figure 4) can be detected by the presence of color
differences between the formats of the same type.
Therefore, two components which have different colors for
the same port (example: red port for MPEG video and blue
port for 3GP video) can be connected only with the use of
one or several connectors of format adaptation. This
problem will be solved by the integration of the connectors
of transcoding at the architectural level.

Figure 6. Transcoding connector of MPEG to 3GP

• Adaptation of media properties

The heterogeneity of components that manipulate the

same media type with the same format (level 3, Figure 4)
but with different properties (example: resolution and color
for image, sampling and speed for video, etc.) cannot be
expressed visually in our architecture, due to the parameters
that depend on the media and on the adaptation service
(parameters of the service). Therefore, two components
which have the same color for the same port (example:
image port) can be connected with a simple communication
connector, and during the execution, the adaptation manager
and the QoS manager both manage together the adaptation if
necessary. At this level the problem of heterogeneity is
resolved at runtime, by the manipulation of the parameters
of the adaptation service; if this service is configurable;
regarding the parameters of flow.

Type input Output Format

Text

Image

Sound

Video

DOC DOCX ODT

JPEG BMP PNG

WAVE RM MP3

MP4 AVI MPEG

Component 2

Component 1
Connector of

adaptation
Text To Sound

Connector of
adaptation

Video To Video

Component 1

Component 2

183183

Component 1

Component 2

« MMSAGlu »

Communication

G Ad GQoS

Paramettre of image:
- Resolution
- Number Color

Paramettre of adaptation service :
- Compression ratio
-

Content adaptation

Figure 7. Adaptation Connector of image content

The adaptation service is configured, in order to allow
an adaptation in different situations; it is applied in several
contexts, for example, adaptation of the resolution of an
image.

D. A meta-model of multimedia software architecture
MMSA meta-model describes the software architecture

of the system as a collection of components interacting with
connectors. Components and connectors have the same
abstract level and are defined explicitly by the separation of
their interfaces and their internal configurations.

Service quality
Action

2

1..*

0..*

1..* 1..2
Input Output

To Use To Use

Adaptation-Service

Video-Port

Image-Port

Configuration

Role
Composant Connector

Connector-Interface

Sound-Port

Text-Port

Text-Role

Sound-Role

Image-Role

Video-Role

Port

QoS-Manager

Adaptation-Glue

Adaptation-Manager Communication-Manager

Composant

Component-Interface

Component

Service

Use

Input Output

Xor 1..* 1..*

Xor 1..* 1..*

1

1 1

1

1..*

1

0..*

1

1 1

1

1
1 0..1

1

1..* 1..*

Semantic adaptation

Technical adaptation

Parameter

Possesses

0..*

1

0..1

*

Media

Attachment

Figure 8. Class diagram of software architecture MMSA

The basic concepts of MMSA software architecture are
the same as in most software architectures: configuration,
component and connector. The software architecture model
of MMSA is a hybrid model based on the concepts of
component-based software engineering (CBSE) and service-
oriented architecture (SOA).

A component is defined by a set of services that interact
to fill a role of component and communicate with
environment through its required/provided interface.
Generally, the connectors define abstractions which
encapsulate the mechanisms of: communication,
coordination and conversion (type, number, frequency and
order of interactions) between the components. A connector
is represented by an interface and glue [18] [36]. This
description considers the connector as a mediator between
components, which limits its role in communication. The
specification of glue describes the functionality expected
from a connector. It represents the hidden part of a
connector. The glue can be a simple protocol of
communication linking the ports, or a complex protocol that
uses various operations especially that of: links, conversion
of data format, transfer, adaptation, etc. Generally, the
connector glue is the connection type of this connector.

In MMSA, a connector is a set of services
(communication, adaptation, QoS, etc.) ensuring connection
between the components. It can ensure the nonfunctional
concerns of components (such as security, data
transformation, communication, etc). This allows a possible
change of the adaptation services during the execution of the
application (dynamic and real time adaptation), and
preserves the abstract specification of the component.

A component is a computation unit having a state and a
unit of implementation (business part). It can be simple or
composite. The Components in MMSA are abstractions
which encapsulate services and handle media in several
formats through the interfaces. There are two types of
interfaces, an "Output" interface exporting the data of the
components, and the "Input" one importing the data to the
components. The interface describes the interactions of the
component, including the connection points (ports). We
distinguish one type of port by type of media identified (cf
the previous Tab.II). Each one provides/requires media of
the corresponding type. This distinction of the ports by data
type (sound, image, video and text) can simulate the
behavior of a component at runtime at the design phase, in
order to detect the heterogeneity points between components
and to treat them at this level. This gives a better
verification of the consistency and validity of the
configurations of software architectures.

A MMSA connector is defined by two interfaces "Input"
and "Output" and a glue unit represented by three managers:
communication, adaptation and QoS. They manage the data
transfer between components and allow adaptations to be
made. A required/provided interface of connector is
composed of a set of roles. Each role serves as a point
through which the connector is connected to the component.
This distinction regarding the components is expressed by
the fact that two components can be only linked by
connectors, while two connectors can be directly connected.

184184

• Example 1&2:

Component 2

Component 1

« MMSAGlu »

Communication

Figure 9. Communication connector

« MMSAGlu »

Communication

G Ad GQoS

Component 2

Component 1

« MMSAGlu »
Communicatio

G Ad GQoS

Figure 10. Tow connectors of image transcoding JPEG to BMP to PNG

In the first example, the adaptation manager and the QoS
manager are deactivated (gray); this describes a minimum
communication connector for connecting two components.
While the second example shows the possibility to connect
two heterogeneous components by two (or more) connectors
depending on the complexity of adaptation.

In the communication roles, we added types to clarify the
connections between various components regarding the data
flow. On the intern level, we have enriched the glue by an
adaptation manager which cooperates with a quality service
manager to ensure the task of adaptation. An adaptation
manager is a set of adaptation services that cooperate to
realize adaptation. Two types of adaptation can be realized in
software architectures, the semantics adaptation (conversion
of type) related to the constraints of the data handled by
components, the technical adaptation (conversion of format
and adjustment of media characteristics) related to the
capacity of components (memory, display, etc.). The QoS
manager controls the adaptation manager in its work in order
to change the parameters of adaptation services to provide
adequate quality to component needs at runtime. The QoS
manager participates in selecting parameters of technical
adaptation services of data flows (e.g. reduction of
resolution, reducing the number of images per second) and
even the adaptation services of type or format at runtime
(e.g. choice of compression ratio in the transformation from
BMP to JPEG).

A configuration is an interconnection of components and
connectors through interfaces. The constraints are necessary
to describe the dependencies between components and
connectors within a configuration.

The objective of the configuration is to abstract the
details of various components and connectors
(encapsulation of the components ensured by restricting
access through the interfaces). A configuration has a name
and can have an interface (represented by component
interfaces which require/provide the flows from/to the
external environment) and a set of services (encapsulated
into components). The configuration is defined by
components, attachments and connectors allowing the
interactions between components. The attachment is a
communication link between a port of a component and a
role of a connector (an output port must only be linked with
an “Input” type role and reciproquely).

A connector is a component, which explains the
possibility of connecting connectors between them. In our
configuration two components can be connected by one or
more connectors, i.e. a component needs at least one
connector to communicate with another one (cf fig 9). It can
use several connectors depending on the complexity of the
adaption task (cf fig 10).

« MMSAGlu »
Communication

G Ad GQoS

« MMSAGlu »
Communication

G Ad GQoS

« MMSAGlu »
Communication

G Ad GQoS

« MMSAGlu »
Communication

G Ad GQoS

Component 2 Component 1

Figure 11. A configuration with multiple connections working in parallel

and in sequence

Figure 11 describes an adaptation that involves several
connectors; it is an adaptation of a video (sound and image)
to a video (image and text).

V. ELEMENTS OF MMSA ARCHITECTURE
For graphical representation of components, we selected

the "Osagaia" model (Bouix et al, 2005). Indeed, the
Osagaia container integrates specific units in order to
manage the data flows and the associated buffers. This
container offers a certain number of supervision commands
allowing to connect/disconnect/move/relace it. Moreover, it
offers a set of information on its execution which allows
possible reconfigurations to be decided. In its current
version, this container has several implementations enabling
it to be used on more or less constrained peripherals (PC,
PDA, SunSpot SmartSensors – soon available on Sun
Microsystems’ forge). This set of characteristics makes it an
interesting candidate for our work. Nevertheless, the
Osagaia model does not propose typing of the inputs/outputs
ports to represent the various media, a point that it is
imperatively necessary to solve within the framework of our
work.

A. Component
It is well known that a component “can be accessible

only via well defined interfaces” [38]. The Interfaces
represent the link of components with the environment.
Component-based languages propose different concepts to
describe the interfaces of elements such as the services, the
ports, the interfaces, the protocols, etc. with sometimes
different means. For example, in Fractal [14] or Enterprise
JavaBeans [28], the port and the interface concept are
mixed; this is the reason why we only speak about the
interfaces. In UML components [15], the two concepts of
ports and interface exist, as in ArchJava [2] where interfaces
are called port of interfaces. Therefore we have chosen to
clearly explain the choices we have made in MMSA. In
MMSA, a component provides or requires services by the

185185

ports described in the interface provided/required. Thus,
MMSA proposes a typing of ports to differentiate them
according to the media type handled (Text, Sound, Video,
and Image).

Figure 12. Model of multimedia component

A component provides functionalities are named
services. Basically, a service is a subroutine defined in an
element, like a method in the object model. A component has
two categories of services: provided and required services.

“A component is a static abstraction with plug-in” [29].
The ports represent this plug-in which is the point of
component interaction. This means that everything passes
through these ports, like the services invocation for example.
The port is present in almost all the component models, but
with different semantics. In the models of components where
the ports exist, they are unidirectional or bidirectional. By
the unidirectional ports, as in ComponentJ [35] or Fractal
[14], a component provides or requires all services via its
ports. In ArchJava [2] or UML 2.0 [15], the ports are
bidirectional and a component requires and provides services
through each of its ports. In MMSA the ports are
unidirectional, because a port can provide/require data
via/from connectors. The latter can apply an adaptation to the
data and generally adaptation services are not bidirectional
(for example: the adaptation service of the text towards the
sound is not the same service as that of the sound adaptation
towards the text).

Component 2

« MMSAGlu »

Communication

G Ad GQoS

Component 1

Figure 13. Transformation connector text into audio

B. Connector
Compared with those of the languages of description of

architectures [3] [27], the connectors that we propose can be
simple or composite and can ensure services. These
connectors do not only ensure the communications links but
also the adaptation of the data exchanged (functional part of
connectors) between components.

The connector constitutes the entity of communication
and adaptation in our approach, i.e. it is able to transfer the
multimedia data between the various components while
ensuring the adaptation of the latter.

Figure 14. Model of multimedia connector

Allowing heterogeneous components to interact with
each other is a significant task. The adaptation is considered
as a nonfunctional concern of component, this task must be
ensured by another element. The connector provides the
nonfunctional concerns (communication, adaptation,
security, etc.) which the component needs. The role of an
adaptation connector is to receive the data, to adapt them
according to the QoS manager directives and to forward
them the following component or to connector.

The supervisors’ role is to preserve the constraints of the
flow received by the input interface and emitted by the
output interface. He is also in charge of supervision of the
connector to be able to ask for its reconfiguration with
replacement of the adaptation services in the case where the
QoS manager is not able to provide the required quality.

VI. CONCLUSION
In this paper a generic meta-model for the description of

software architectures is presented. This meta-model
integrates the multimedia concepts and QoS. This enabled
us to present in a separate way the flow parameters and
media which present a very important aspect of component
configurations and assemblies. The contribution of this
work is situated in a context of description per level of
abstraction, integrating in a separate way the functional and
nonfunctional concerns of the components. This ensures a
quality of the components assembly by inserting the
adaptation connectors, as well as management of adaptation
service quality. The main advantages of MMSA are the
consideration of the multimedia aspect and the separation
between the functional and nonfunctional concerns of the
components.

Our proposition can be used as a support to develop the
management applications of the numerical resources (DAM:
Digital asset management). This type of application handles
a large variety of media, and communicates with the users
through various platforms (Cellphones, PDA, PC, portables,
etc). MMSA can bring an effective solution to the
development of DAM, especially in the following: the
acquisition, the treatment, the distribution and the use of
multimedia contents. It offers the possibility of taking into
consideration the factors generating the incompatibilities
between components in the DAM architecture. It gives a
solution at the architectural level by injecting the adaptation
connectors and at the execution level by the management of
QoS and the reconfiguration of these connectors.

Roles of
output

Roles of
input

Glue

Contraintes
flow

Qos
manager

Communication
manager

Adaptation
manager

Input Interface

Multimedia
flow

Supervisor

Multimedia
flow

Interface de sortie

Output
ports

Input
ports

 Business component

Constraints of
flow

Input Interface

Multimedia
flow

Supervisor

Multimedia
flow

Container

Service Service

Service

Interface de sortie

186186

As a perspective we propose to develop a modeling tool
for our approach and to investigate other nonfunctional
concerns. The development of the service quality aspect
must be also taken into account.

VII. REFERENCES
[1] Amirat A and Oussalah M. First-Class Connectors to Support

Systematic Construction of Hierarchical Software Architecture. In
Journal of Object Technology, vol.8, no.7, 2009, p. 107-130.

[2] Aldrich J, Chambers C, Notkin D. ArchJava: Connecting software
architecture to implementation. In: ICSE. ACM; 2002. p. 187–97.

[3] Allen R, GARLAN D. A Formal Basis for Architectural Connection.
In ACM Transactions on Software Engineering and Methodology,
vol. 6, no 3, 1997, p. 213–249.

[4] Allen R.J., A Formal Approach to Software Architecture, Phd Thesis,
School of CompScien, Carnegie Mellon University, 1997.

[5] Allen R., Vestal S, Lewis B, Cornhill D. Using an architecture
description language for quantitative analysis of real-time systems. In
Proceedings of the Third International Workshop on Software and
Performance, ACM Press, Rome, Italy, 2002, p. 203–210.

[6] El Asri B, Kenzi A, Nassar M, Kriouile A. Towards an MVSOA
architecture for the implementation of multiview components. 3sd
francophone Conference in software architectures, (2009) pp 1-17.

[7] Attiogbé C, André P, and Messabihi M. Correction d’assemblages de
composants impliquant des interfaces paramétrées. 3sd francophone
Conference in software architectures. Hermès, 3e francophone
Conference in software architectures. 2009, Lavoisier.

[8] Avizienis A, Laprie J-C, Randell B, Landwehr C. « Basic Concepts
and Taxonomy of Dependable and Secure Computing ». IEEE
Transactions on Dependable and Secure Computing. 2004. pp. 11-33.

[9] Avgeriou P. Uwe Zdun. Modeling Architecture Patterns using
Architecture Primitives. OOPSLA’ 05, ACM (October 2005).

[10] Balsamo S, Bernado M, Simeoni M. Performance Evaluation at the
Architecture Level Formal Methods for Software Architectures.
LNCS 2804. Springer. Berlin, Germany. 2003, p. 207-258.

[11] Barais O. Build and control the evolution of components-based
software architecture - PhD thesis, LIFL, Lille University , 2005.

[12] Bergner K, Rausch A, Sihling M, Vilbig A, Broy M. A Formal Model
for Component ware. Foundations of Component-Based Systems,
Cambridge University Press, New York, 2000, p. 189–210,.

[13] Bouix E, Dalmau M, Roose P, Luthon F. A Multimedia Oriented
Component Model - AINA 2005 - Tamkang University, Taiwan.

[14] Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani J-B. An open
component model and its support in Java. LNCS, vol. 3054. Berlin:
Springer; 2004. p. 7–22.

[15] Cheesman J, Daniels J. UML components: a simple process for
specifying component-based software. USA: Addison-Wesley, 2000.

[16] Clements P. C (1996). A Survey of Architecture Description
Languages. IWSSD ’96: USA, IEEE CS, page 16.

[17] Dashofy, E., Hoek, A.v.d., Taylor, R.N., “A comprehensive approach
for the development of XML-based software architecture description
languages”, TOSEM, 2005,volume 14, issue 2, p. 199–245,

[18] Goulao. M, F.B. Abreu, Bridging the gap between ACME and UML
2.0 for CBS. In: Proceedings Workshop of Specification and
Verification of Component-Based Systems, Helsinki, Finland, 2003.

[19] Garlan D, Monroe R-T, and Wile D. Acme: Architectural Description
Component-Based Systems, Foundations of Component-Based
Systems. Cambridge University Press , 2000, p. 47-68.

[20] Graf S. , Ober I. « How useful is the UML realtime profile SPT
without semantics? » In SIVOES and RTAS 2004, Toronto Canada.

[21] Luc Fabresse, Christophe Dony, and Marianne Huchard. Foundations
of a Simple and Unified Component-Oriented Language. Journal of
Computer Languages, Systems & Structures, editor Elsevier, Volume
34/2-3, 2008, p. 130-149.

[22] Marcel C, Michel R, Christian M, Calin L, Costin M. Dynamic
adaptation of services. DECOR’04, Grenoble, France. 2004.

[23] Marcel C, Michel R, Christian M. Autonomic Adaptation based on
Service-Context Adequacy Determination. In ENTCS, vol. 189, jul
2007, p. 35-50, Elsevier.

[24] Maximilien. E and Singh. M. Self-adjusting trust and selection for
web services. June 2005, p. 385–386.

[25] Medvidovic N, Rosenblum D-S, and Taylor R-N. A Language and
Environment for Architecture-Based Software Development and
Evolution, ICSE’99, Los Angeles, May 1999.

[26] Medvidovic N, Taylor R. N. A Classification and Comparison
Framework for Software Architecture Description Languages - IEEE
Transactions on Software Engineering, 2000, vol. 26, no 1, p. 70–93.

[27] Mehta N R, Medvidovic N, Phadke S, Towards a taxonomy of
software connectors », ICSE ’00, ACM Press, 2000, p. 178–187

[28] Monson-Haefel R. Enterprise JavaBeans. Sebastopol, CA, USA:
O’Reilly & Associates Inc.; 1999.

[29] Nierstrasz O, Dami L. Component-oriented software technology. In:
Object-oriented software composition. Prentice-Hall, 1995. p.3–28.

[30] Object Management Group. « UMLTM Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE) » voted at
OMG. http://www.omg.org/cgi-bin/doc?realtime/2005-02-06.

[31] OMG: “Unified Modeling Superstructure” from
http://www.omg.org/docs/ptc/06-04-02.pdf, 2006.

[32] OMG: “Unified Modeling Language: Infrastructure” from
http://www.omg.org/docs/ formal/07-02-06.pdf, 2007.

[33] Papazoglou M-P. Service-Oriented Computing: Concepts,
Characteristics and Directions. WISE, IEEE CS, 2003, p. 3–12.

[34] Society of Automotive Engineers « Architecture Analysis & Design
Language (AADL) ». SAE Standards no AS5506, November 2008.

[35] Seco JC, Caires L. A basic model of typed components. Lecture
Notes in Computer Science 2000;1850:108–29.

[36] Sylvain Maillard, Adel Smeda, Mourad Oussalah: COSA: An
Architectural Description Meta-Model. ICSOFT, 2007, p. 445-448

[37] Szyperski C. Component Software: Beyond Object-Oriented
Programming. AddisonWesley Publishing Company, 1997.

[38] Szyperski C. Component software: beyond object-oriented
programming. MA: Addison-Wesley; 2002.

187187

