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Improving the Efficiency of Dynamic Fault Tree Analysis by Considering

Gates FDEP as Static

Guillaume Merle, Jean-Marc Roussel, and Jean-Jacques Lesage

LURPA, ENS de Cachan, Cachan, France

This paper focuses on one of the dynamic gates which are used in Dynamic Fault Trees (DFT), which is the
Functional Dependency (FDEP) gate. Gate FDEP has been considered as equivalent to a set of OR gates in the
literature, but this equivalence has seldom been exploited for the analysis of DFTs. In this paper, we show that
in most cases, starting from a DFT including FDEP gates, the use of this static equivalence provides significant

advantages for DFT Analysis.

1 INTRODUCTION

Fault Tree Analysis (FTA) is one of the oldest, most
diffused techniques in industrial applications, for the
dependability analysis of large safety-critical systems
(Henley and Kumamoto 1981; Leveson 1995; Sta-
matelatos and Vesely 2002). FTA is usually carried
out at two levels: a qualitative level in which the
list of all the possible combinations of events that
lead to the Top Event (7E) is determined (the min-
imal cut sets); and a quantitative level in which the
probability of the occurrence of the TE, and of the
other nodes of the tree, is calculated. One of the
main restrictive assumptions in F7TA is that basic
events must be assumed to be statistically indepen-
dent, and their interaction is described by means of
boolean OR/AND gates, so that only the combination
of events is relevant, and not their sequence. We re-
fer to this model as Static Fault Tree (SFT). Dugan
et al. (Dugan, Bavuso, and Boyd 1992; Dugan, Sul-
livan, and Coppit 2000) proposed a new model al-
lowing to include various kinds of temporal and sta-
tistical dependencies in the SFT model, which is the
Dynamic Fault Tree (DFT). The DFT is based on the
definition of new gates: Priority-AND (PAND), Func-
tional Dependency (FDEP), Warm Spare (WSP), and
Sequence Enforcing (SEQ). Gate FDEP was intro-
duced in (Dugan, Bavuso, and Boyd 1992) and al-
lows to model common cause failures by using the
concept of preemption: a trigger event allows to force
dependent basic events to fail (independently of their
own failure). Even though gate FDEP is most often
considered as a dynamic gate (Boudali, Crouzen, and
Stoelinga 2007; Stamatelatos and Vesely 2002), some
authors have already mentioned that it is equivalent to

a set of OR gates (Ejlali and Miremadi 2004). How-
ever, to the best of our knowledge, the influence of
this equivalence on DFT analysis has never been stud-
ied. In the present paper, thanks to a DFT example, we
show the influence of this equivalence on DFT Anal-
ysis. This study has been developed under the follow-
ing assumptions:

e we focus on modular approaches, for which the
static and dynamic parts of a DFT are analyzed
by means of specific dedicated approaches;

e the results presented hold for approaches based
on Continuous Time Markov Chains as well as
Stochastic Petri Nets;

o this study has been validated by the tool Galileo
(Dugan, Sullivan, and Coppit 2000).

The definition of gate FDEP is recalled in Section
2. The advantages of the equivalence between gate
FDEP and a set of OR gates for DFT Analysis are
studied in Sections 3 to 5.

2 DEFINITION OF GATE FDEP

According to (Boudali, Crouzen, and Stoelinga 2007,
Dugan, Bavuso, and Boyd 1992; Stamatelatos and
Vesely 2002), the FDEP gate — Functional Depen-
dency gate — is a dynamic gate comprised of a trig-
ger input event — either a basic event or the output
of another gate of the tree — and a set of dependent
basic events. Fig. 1 provides a pictorial depiction of
an FDEP gate with 2 dependent basic events A and
B, T representing the trigger event. When the trigger
event occurs, the dependent basic events are forced to
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Figure 1: An FDEP gate with 2 dependent basic
events A and B

occur. Numerous examples of the use of gate FDEP
can be found in the literature which show that, in par-
ticular, the semantics of this gate is well adapted to
model common cause failures. Indeed, the FDEP gate
in Fig. 1 can allow to model a system with a compo-
nent T whose failure is a common cause failure lead-
ing to the simultaneous failures of two basic events
A and B, keeping in mind that basic events A and B
can also fail by themselves. Gate FDEP thus offers
the engineers an easy way to translate such preemp-
tive behaviors in DFTs.

Some authors have suggested that gate FDEP could
be considered as a set of OR gates. For example, the
authors of (Stamatelatos and Vesely 2002), who pro-
posed gate FDEP as a dynamic gate, also provide an
alternative static representation which only includes
OR gates — one for each basic event. Besides, in
(Ejlali and Miremadi 2004), the time to failure of the
dependent components of the FDEP gate is defined
as equal to the minimum of the time left before the
occurrence of the trigger event and the time left be-
fore the occurrence of the dependent event. This cor-
responds to the temporal definition of operator OR,
based on the dates of occurrence of its input events,
as described in (Merle, Roussel, Lesage, and Bobbio
2009; Merle, Roussel, Lesage, and Bobbio 2010).

3 MODULAR ANALYSIS OF DYNAMIC FAULT
TREES

We are going to illustrate the usefulness of the equiva-
lence between gate FDEP and a set of OR gates for the
qualitative and quantitative analysis of DFTs thanks
to the example of a computer system from (Stamate-
latos and Vesely 2002) shown in Fig. 3. This DFT
models the potential failure of the system in Fig. 2.

Redundant bus

Memory Memory
Interface Interface
Unit 1 Unit 2 Operator console,

A2 Software
old

Figure 2: System corresponding to the DFT in Fig. 3

The system in Fig. 2 is composed of:

e a redundant bus subsystem including two iden-
tical buses, of which one is required for system
operation;

e aredundant processing subsystem including two
redundant processors A1l and A2 and a spare pro-
cessor A, which can replace either upon failure.
The subsystem can continue to operate until all
three processors have failed;

e a redundant memory subsystem including five
memory units — M1 to M5 — of which three are
required, these memory units being connected
to the redundant bus via two memory interface
units, memory unit 3 — /M 3 — being connected to
both interfaces for redundancy;

e an application subsystem including a human op-
erator, an application (software (SW)), and a
graphical user interface (hardware (HW)).

A complete description of the architecture, as well
as the explanation of each considered failure, can be
found in (Stamatelatos and Vesely 2002).

The DFT shown in Fig. 3 can be decomposed into 4
subtrees (Dugan, Sullivan, and Coppit 2000) accord-
ing to the gates that it contains. Subtrees 3 and 4 con-
tain static gates, only, so they can be considered as
static. However, subtree 1 contains Spare gates and
is hence dynamic. Finally, subtree 2 contains gates
FDEP, 3-out-of-5, and AND, so it can be considered
as static or dynamic, depending on the model consid-
ered for gate FDEP.

Many researchers have explored the use of divide-
and-conquer approaches for analyzing such DFTs
(Bobbio and Raiteri 2004; Chatterjee 1975; Dugan,
Sullivan, and Coppit 2000; Dutuit and Rauzy 1996;
Rosenthal 1980). For instance, in (Dugan, Sullivan,
and Coppit 2000), a subtree is marked as dynamic,
and solved by using Markov Chains, if it contains at
least one dynamic gate. If a subtree contains no dy-
namic gates, it is classified as static and solved using
BDD-based methods. The tool Galileo (Dugan, Sulli-
van, and Coppit 2000) is based on this method. The
authors of (Bobbio and Raiteri 2004) also exploit the
concept of modularity, a subtree that is statistically in-
dependent from the rest of the FT being denoted as a
module: static modules can be analyzed by means of
suitable combinatorial techniques whereas dynamic
modules require a state-space analysis which is ob-
tained by translating the dynamic module into a Gen-
eralized Stochastic Petri Net.

In both cases (Markov Chains vs. Stochastic Petri
Nets), it can be useful to be able to reduce the dynamic
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Figure 3: The 4 subtrees of the DFT in (Stamatelatos and Vesely 2002)

part of the DFT because the computational complex-
ity of its solving is considerably higher than the com-
putational complexity of the solving of the static part
of the DFT.

The impact of the use of the equivalence between
gate FDEP and a set of OR gates on the qualitative and
quantitative analysis of this DFT example is analyzed
in Sections 4 and 5, respectively.

4 ADVANTAGES FOR QUALITATIVE ANALY-
SIS

When an independent subtree of a DFT is static,
BDD-based methods allow to determine the minimal
cut sets of the DFT (Coudert and Madre 1993; Du-
tuit and Rauzy 1997). However, when such an inde-
pendent subtree of a DFT is dynamic, the concept of
minimal cut set must be extended to the concept of
minimal cut sequence (Tang and Dugan 2004), and
BDDs can no longer be used to perform the qualita-
tive analysis of such FTs. The authors of (Tang and
Dugan 2004) address this problem by using specific
BDDs, denoted as Zero-suppressed BDDs, to perform
the qualitative analysis of both the static and dynamic
independent subtrees of DFTs. Other authors, such as
(Bobbio and Raiteri 2004), convert the dynamic sub-
tree into a Generalized Stochastic Petri Net whose oc-
currence graph allows to determine the minimal cut
sequences of the DFT.

The fact to consider gate FDEP as dynamic or static
does not have much impact on the methods used to
perform the qualitative analysis of DFTs, but on the
solution obtained. Indeed, in some cases, a set of min-
imal cut sequences can be equivalent to a single min-
imal cut set: for instance, if A and B are two non-

repairable basic events, the set of two minimal cut se-
quences {[A, B],[B, A]}! is equivalent to the mini-
mal cut set A - B. As a consequence, if gate FDEP is
considered as dynamic, it will provide minimal cut se-
quences which will be equivalent to the less numerous
minimal cut sets that it will provide if it is considered
as static.

Let us illustrate this possible simplification on the
DFT in Fig. 3. If we consider gate FDEP as equivalent
to a set of OR gates, subtree 2 contains 1 3-out-of-5
gate, 1 AND gate and 3 FDEP gates, and can hence
be considered as static and equivalent to the SFT in
Fig. 4.

O O

Figure 4: SFT equivalent to the subtree 2 of the DFT
in Fig. 3

'The notation [A, B] denotes the sequence of failures in
which B fails after A has failed.



The subtree 2 in Fig. 3 has 74 minimal cut se-
quences whereas it has only 17 minimal cut sets
in Fig. 4. Both results are equivalent, since a sin-
gle cut set may represent a more or less big set
of cut sequences. For instance, the 6 order-3 min-
imal cut sequences [M1, M2, M3], [M1, M3, M2],
(M2, M1, M3], [M2,M3, M1}, [M3, M1, M2], and
[M3, M2, M1] are equivalent to the minimal cut set
M1-M2- M3.

Even though both results are equivalent, minimal
cut sets represent a more concise — and hence more
useful — result to the practitioner than the correspond-
ing set of minimal cut sequences. It can hence be in-
teresting for the qualitative analysis of DFTs to con-
sider gate FDEP as equivalent to a set of OR gates.

This equivalence also provides some advantages
for the quantitative analysis of DFTs, as explained in
Section 5.

5 ADVANTAGES FOR QUANTITATIVE ANAL-
YSIS

The quantitative analysis of DFTs underlies the nu-
merical computation of stochastic models, and conse-
quently the use of specific software tools. For a given
software, evaluation criteria are needed to compare
the computational complexity for the determination
of the failure probability of the TE for both models of
gate FDEP. These criteria are studied in the following
sections.

5.1 Experimental protocol

We chose to use the well-known DFT analysis tool
Galileo (Dugan, Sullivan, and Coppit 2000), which
exploits the concept of modularity (BDDs for static
subtrees and Markov Chains for dynamic subtrees).
Since Galileo, as most DFT analysis softwares, is
dedicated to personal computers, its performances are
hence limited by the processor performance and the
size of the RAM of the computer, since the algorithms
used have an exponential complexity and the con-
structed state spaces of the models used are stored in
the RAM, thus leading to a risk of saturation. We need
evaluation criteria to evaluate the performances of the
tool Galileo: the evaluation criteria that we chose for
this study hence are the computation time and the
memory usage. It can be noted that the computation
time and memory usage needed to perform the quan-
titative analysis of subtrees 1, 3, and 4 of the DFT
in Fig. 3 will not be impacted by the equivalence be-
tween gate FDEP and a set of OR gates since subtree
2 is statistically independent from the other subtrees.
As a consequence, the impact of this equivalence on
the quantitative analysis of the DFT in Fig. 3 will be
limited to the quantitative analysis of subtree 2, since
it is the only subtree containing FDEP gates.
Besides, the performances evaluated can be im-

pacted by some parameters of the study. As we want
to study the impact of the equivalence between gate
FDEP and a set of OR gates on the quantitative anal-
ysis of DFTs, the first influent parameter coming to
mind is the number of FDEP gates, whose impact will
be studied in Section 5.3. Besides, it can be interest-
ing to study what the impact of time granularity — the
number of failure probabilities calculated from time
zero to the mission time — is on quantitative analysis
in both cases. The influence of this parameter is stud-
ied in Section 5.2.

5.2 Impact of time granularity

The computation time and memory usage obtained
with Galileo to perform the quantitative analysis of
the subtree 2 of the DFT in Fig. 3 when gate FDEP is
considered as dynamic or static are presented in Ta-
ble 1. The quantitative analysis was performed on a
Pentium 4 processor with 4 GB RAM for a mission
time of 7" = 10, 000 hours, and with a time granular-
ity varying from 10 to 10,000. The memory usage of
Galileo — approximately 7 MB — was removed from
the memory usage obtained to get the memory usage
needed for the quantitative analysis in itself.

It can be seen in Table 1 that the fact to consider
gate FDEP as equivalent to a set of OR gates allows
to divide the computation time for the failure proba-
bility of the TE by a factor of between 6 and 15. Even
though the memory usage is a linear function of the
time granularity in both cases, it can be divided by
a factor of approximately 2 by exploiting this equiva-
lence, thus allowing to reach a higher time granularity
on the same computer.

Table 1: Computation Time CT (s) and Memory Us-
age MU (MB) obtained with Galileo when gate FDEP
is considered as dynamic and equivalent to a set of OR
gates

. Galileo
Time . .
granularity dynamic static
CT | MU | CT | MU
10 1 3 0 2
50 4 11 0 6
100 9 21 0 10
500 46 99 3 47
1,000 93 197 7 94
5,000 577 | 980 | 73 | 465
10,000 1,293 | 1,959 | 220 | 930

5.3 Impact of the number of FDEP gates
Let us consider the DFT in Fig. 3. Subtree 2 models
the behavior of the subsystem in Fig. 5.

The analysis of this subsystem allows to understand
the corresponding DFT: the failure of the Memory In-



Table 2: Variation of the Computation Time CT (s) and Memory Usage MU (MB) obtained with Galileo with the
number of FDEP gates when gate FDEP is considered as dynamic or static. Two mission times are considered:

T = 100 hours and 7" = 10, 000 hours.

Order Number dynamic static
n of FDEP | Pr{T'E} (100) | Pr{T'E} (10,000) | Pr{T'E} (100) | Pr{T'E} (10,000)
gates CT MU CT MU CT MU CT MU
2 3 0 0.5 0 0.5 0 0.4 0 0.4
3 5 0 1 0 1 0 0.5 0 0.5
4 7 0 3 2 3 0 1.5 0 1.5
5 9 2 8 5 8 0 3 0 3
6 11 4 13 13 13 0 7 0 7
7 13 11 24 41 24 0 15 1 15
8 15 28 41 104 41 2 30 4 30
9 17 51 66 193 66 11 59 17 59
10 19 82 100 300 100 25 105 35 105
11 21 125 148 445 148 35 186 56 186

L1

MIU1 MIU/

Figure 6: DFT of the order-n subsystem

Memory
Interface Interface
Unit 1 Unit 2

Figure 5: Subsystem modeled by subtree 2 in the DFT
in Fig. 3

Memory

terface Unit 1 — M U1 — will cause memories M1
and M2 to fail; in the same way, the failure of the
Memory Interface Unit 2 — M 1U2 — will cause mem-
ories M4 and M5 to fail; however, the failure of both
Memory Interface Units — M U1 and M1U2 — will
be needed to cause memory M 3 to fail.

This subsystem can be generalized to see the im-
pact of the number of FDEP gates on the complexity
of quantitative analysis. Let us consider the subsys-
tem in Fig. 5 as the order-2 subsystem since it has
2 Memory Interface Units; its DFT contains 3 FDEP

gates. The order-n subsystem with n Memory Inter-
face Units is shown in Fig. 8. In the same way that
subtree 2 in the DFT in Fig. 3 describes the potential
failure of the subsystem in Fig. 5, the subsystem in
Fig. 8 can be described by a DFT which is shown in
Fig. 6 and contains (2n — 1) FDEP gates. The equiva-
lent SFT is shown in Fig. 7 and contains (2n + 1) OR
gates.

The computation time and memory usage needed
by Galileo to perform the quantitative analysis of the
DFT in Fig. 6 and of the SFT in Fig. 7 are presented
in Table 2.

The results obtained in Table 2 show that the com-
putation time varies with the mission time while the
memory usage does not. However, once again, the fact
to considerate gate FDEP as equivalent to a set of OR
gates allows to divide the computation time for the
failure probability of the 7E by a factor of between 3
and 25, even though this equivalence becomes fruitful
for a high number of FDEP gates, only.
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6 CONCLUSION

In this paper, we have studied the influence of the
equivalence between gate FDEP and a set of OR gates
on Dynamic Fault Tree analysis. This influence has
been illustrated on a DFT example from the literature.

The results obtained show that this equivalence has
a significant influence on the computational complex-
ity for the determination of the failure probability of
the TE of a DFT when time granularity increases.
However, this influence is somehow limited when the
number of FDEP gates increases, and even least than
expected, since it becomes fruitful for a high number
of FDEP gates, only.

Even if this aspect is less quantifiable, we reckon
that this equivalence is more fruitful on the qualitative
analysis of DFTs. Indeed, as shown for the subtree 2
of the DFT example in Fig. 3, a large set of minimal
cut sequences can happen to be quite difficult to ex-
ploit whereas an equivalence with a small set of min-
imal cuts may be more useful to the practitioner.

In any case, we have shown in this study that the
fact to consider gate FDEP as a static gate can allow
to convert dynamic parts of a DFT into static parts,
thus simplifying both the qualitative and quantitative
analysis of the DFT. It can be noted that it is in the
case of dynamic subtrees containing gates FDEP only,
and no other dynamic gate, that this equivalence has
the most significant impact, since it allows to convert
whole dynamic subtrees into static — and hence more
readily analyzable — subtrees.
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