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Analytical Calculation of Failure Probabilities in Dynamic Fault Trees
including Spare Gates

Guillaume Merle, Jean-Marc Roussel, and Jean-Jacques Lesage
LURPA, ENS de Cachan, Cachan, France
Nicolas Vayatis
CMLA, ENS de Cachan, Cachan, France

This paper focuses on one of the dynamic gates which are used in Dynamic Fault Trees (DFT): the Spare gate.
We provide an algebraic model which allows to determine the structure function of DFTs with Spare gates
from which qualitative analysis can be performed directly. We also provide a probabilistic model allowing
to determine the failure probability of Spare gates without any restriction on the failure distribution for basic
events.

1 INTRODUCTION
Fault Tree Analysis (FTA) is one of the oldest, most
diffused techniques in industrial applications, for the
dependability analysis of large safety-critical systems
(Henley and Kumamoto 1981; Leveson 1995; Sta-
matelatos and Vesely 2002). When the interactions
between events can be described by means of boolean
OR/AND gates only, so that only the combination
of events is relevant, and not their sequence, Fault
Trees are called Static Fault Tree (SFT). Dugan et
al. (Dugan, Bavuso, and Boyd 1990; Dugan, Sullivan,
and Coppit 2000) proposed a new model allowing to
include various kinds of temporal and statistical de-
pendencies in the SFT model, which is the Dynamic
Fault Tree (DFT). The DFT is based on the definition
of new gates: Priority-AND (PAND), Functional De-
pendency (FDEP), Warm Spare (WSP), and Sequence
Enforcing (SEQ).

The first dynamic gate, gate Priority-AND, was in-
troduced in 1976 (Fussel, Aber, and Rahl 1976) to
model sequences of failures. Then, gate FDEP was
introduced in 1990 (Dugan, Bavuso, and Boyd 1990)
to model common cause failures, and the Spare gate
was finally introduced in 2002 (Coppit and Sullivan
2002) to model redundancies.

Even though such dynamic gates allow to model
failure scenarios that SFTs cannot handle, the analy-
tical techniques commonly used to analyze SFTs can-
not be used to analyze DFTs, and other types of tech-
niques, mainly based on state models, must be used.

As stated in (Merle, Roussel, Lesage, and Bob-

bio 2010), gates PAND and FDEP have sequential or
preemption-based behaviors and can easily be mod-
eled by means of discrete mathematics. However, the
Spare gate is more complex since statistically depen-
dent on the failure order of events and its probability
of occurrence is not completely defined by an order
relation.

Many compositional techniques have been envis-
aged to analyze DFTs with Spare gates, either in
terms of Stochastic Petri Nets (Bobbio and Raiteri
2004; Raiteri 2005), or in terms of Input/Output
Interactive Markov Chains (Boudali, Crouzen, and
Stoelinga 2007). In (Dutuit and Rauzy 1996), the
quantitative analysis of the DFT consists in explod-
ing minimal subtrees containing dynamic gates into
their state-space representation, and computing nu-
merically the related occurrence probability by means
of a Continuous Time Markov Chain (Dugan, Bavuso,
and Boyd 1992; Gulati and Dugan 1997), thus assum-
ing exponential time-to-failure distributions. Another
approach, based on Temporal Bayesian Networks, is
introduced in (Boudali and Dugan 2005) and allows to
include any probability distribution. In (Amari, Dill,
and Howals 2003), closed form expressions are deter-
mined as a function of the generic probability distri-
butions of the basic events, and a numerical integra-
tion is proposed to solve them. In any case, the solu-
tion of a DFT forces a quantitative analysis. A com-
mon obstacle in any quantitative technique is the lack
of accurate, reliable data on the failure distribution of
the components. To overcome this well-known defi-
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ciency, the qualitative analysis is often the only valu-
able information on the system dependability. Nev-
ertheless, the qualitative analysis of DFTs has never
been fully considered in the literature, and the concept
of minimal cut set needs to be revisited to account for
the possible order of the failure events. The authors
of (Tang and Dugan 2004) propose to decompose the
qualitative analysis into a logical (Boolean) part, and
into a timing part. Dynamic gates are replaced with
the static gates which correspond to their logical con-
straints, the minimal cut sets of the resulting SFT are
then generated, and each minimal cut set is expanded
to minimal cut sequences by considering timing con-
straints. However, the procedure is not completely de-
veloped.

In previous papers, we presented an algebraic
framework allowing to determine the structure func-
tion of DFTs with PAND gates (Merle and Roussel
2007) and FDEP gates (Merle, Roussel, Lesage, and
Bobbio 2009; Merle, Roussel, Lesage, and Bobbio
2010). We also detailed how to perform the quantita-
tive analysis of such DFTs from their structure func-
tion. In this paper, we recall the basics of this alge-
braic framework and we extend the previous results
to the case of Spare gates.

The algebraic framework that we introduce to
model Spare gates is presented in Section 2. The al-
gebraic model of Spare gates is introduced in Section
3, and the probabilistic model which can be deduced
from it is given in Section 4. Finally, a DFT example
allows to highlight the usefulness of both models for
the qualitative and quantitative analysis in Section 5.

2 BASICS AND NOTATIONS OF THE ALGE-
BRAIC FRAMEWORK

This algebraic framework was described in (Merle,
Roussel, Lesage, and Bobbio 2010) and has been pro-
posed to render the order of occurrence of events
which is necessary for the modeling of dynamic gates.
It will not be detailed here, and only the basics and
notations needed to understand the remainder of this
paper will be explained. To take into account the tem-
poral aspect of events, we consider the top event, the
intermediate events, and the basic events as tempo-
ral functions which are defined on the set of positive
times and take Boolean values. As we consider non-
repairable events only, a generic timing diagram of an
event a is given in Fig. 1, where d(a) is the unique
date of occurrence of a. The never-occurring event is
denoted by ⊥.
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Figure 1: A non-repairable event.

This algebraic framework does not need to ex-

plicitly take time into account, since we only need
to know the order in which events occur to model
dynamic gates. We then defined three temporal op-
erators to model dynamic gates, which are opera-
tors non-inclusive BEFORE (noted �), SIMULTA-
NEOUS (noted 4), and Inclusive BEFORE (noted
�). Thus, for instance, the algebraic model of the
PAND gate in Fig. 2 becomes

Q = (A ·B) · (A�B),

which expresses that the output Q of the gate fails if
A and B fail and if A fails before or at the same time
as B.

Figure 2: A PAND gate

As the non-inclusive BEFORE operator is suffi-
cient to model Spare gates, it is the only temporal op-
erator that will be retained in the remainder of this pa-
per. Furthermore, we have demonstrated that this al-
gebraic framework allows to determine the structure
function of SFTs as it is commonly done by using
the classical Boolean algebra of Boolean variables.
Besides, the definition of the three temporal opera-
tors allows to determine the structure function of any
DFT with gates PAND, and FDEP, and some theo-
rems which were provided allows to reduce this struc-
ture function to the canonical form in (1), where TE
is the Top Event of the DFT and the events bi are the
basic events of the DFT.

TE =
∑(∏

bi ·
∏

(bj � bk)
)
, j /∈ {i, k} . (1)

3 ALGEBRAIC MODEL OF THE SPARE GATE
Two factors impact the difficulty to model the Spare
gate: the number of input events of the Spare gate,
and the possibility for many Spare gate to share one
or many spare events. This section presents the alge-
braic model of the Spare gate in an increasing order
of complexity. The algebraic model of a single Spare
gate with 2 to n input events is presented in Sections
3.1 to 3.3. The particular case of 2 Spare gates with
2 input events sharing a spare event is presented in
Section 3.4, and we show how to generalize it to n
Spare gates with 2 input events sharing a spare event
in Section 3.5.

Besides, we consider that there is only one type of
Spare gate, which is the Warm Spare gate, and that
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Cold and Hot Spare gates (Stamatelatos and Vesely
2002) are particular cases of Warm Spare gates. Both
of them are studied in Section 3.6.

3.1 Algebraic model of a single Spare gate with 2
input events

Let us consider a Spare gate with 2 input events – the
primary event A and one spare event B – as shown in
Fig. 3. As stated in (Stamatelatos and Vesely 2002),

Figure 3: A single Spare gate with one primary event
A and one spare event B

the output Q of the gate occurs when the primary and
all spares have failed, so when A and B have failed,
in this case. A and B are basic events and cannot fail
simultaneously (noted A4B =⊥) so Q will occur if
A and B fail according to sequences [A,B] or [B,A].
It is important to note that in sequence [A,B], B fails
while in its active mode (denoted as Ba), whereas in
sequence [B,A], B fails while in its dormant mode
(denoted asBd). It is essential to distinguish both fail-
ure modes by using two different variables, for quan-
titative analysis purposes. Indeed, B does not have
the same failure distribution when it fails during its
dormant mode (B ≡ Bd) or during its active mode
(B ≡ Ba). As we aim at making possible the quanti-
tative analysis of DFTs from their structure function,
this structure function must hence provide sufficient
information to know whether spare events are in their
dormant or active mode. The algebraic behavior of
gate Spare can hence be expressed as

Q = Ba · (A�Ba) +A · (Bd �A).

which expresses that the output Q of the gate fails if
A fails beforeB –Ba · (A�Ba),B hence being in its
active modeBa – or ifB fails beforeA –A · (Bd�A),
B hence being in its dormant mode Bd.

Furthermore, as B cannot be both in an active state
and in a dormant state, we have

Bd ·Ba = ⊥.

3.2 Algebraic model of a single Spare gate with 3
input events

Let us consider a Spare gate with 3 input events – the
primary event A and two spare events B and C – as
shown in Fig. 4.

Figure 4: A single Spare gate with one primary event
A and two spare events B and C

As stated in (Stamatelatos and Vesely 2002), the
output Q of the gate occurs when the primary and all
spares have failed, so when A, B, and C have failed.
A, B, and C are basic events and cannot fail simulta-
neously so Q will occur if A, B, and C fail according
to sequences [A,B,C], [A,C,B], [B,A,C], [B,C,A],
[C,A,B], or [C,B,A]. It is important to note that,
when the quantitative analysis will be performed from
the structure function,B andC will not have the same
distribution function in the 6 sequences. For instance,
in sequence [A,B,C], both B and C fail during their
active mode (denoted by Ba and Ca), whereas in se-
quence [B,C,A], both B and C fail during their dor-
mant mode (denoted by Bd and Cd). The algebraic
behavior of gate Spare can hence be expressed as

Q = Ca · (A�Ba) · (Ba �Ca)

+Ba · (A�Cd) · (Cd �Ba)

+Ca · (Bd �A) · (A�Ca)

+A · (Bd �Cd) · (Cd �A)

+Ba · (Cd �A) · (A�Ba)

+A · (Cd �Bd) · (Bd �A)

As B and C cannot be both in an active state and in a
dormant state, we have{

Bd ·Ba = ⊥
Cd ·Ca = ⊥

3.3 Algebraic model of a single Spare gate with n
input events

The algebraic model of a single Spare gate with n
input events can be determined in the same way. It
is just necessary to determine the n! possible failure
sequences of the input events of the Spare gate and
denote the dormant and active mode of the (n − 1)
spare events in these failure sequences. The algebraic
model of the Spare gate will then be the algebraic sum
of the expressions for which each failure sequences
holds, with the additional condition that each spare
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event cannot be both in an active and in a dormant
mode.

3.4 Algebraic model of 2 Spare gates with 2 input
events sharing a spare event

Let us consider 2 Spare gates with 2 input events –
with primary events A and B – sharing a spare event
C, as shown in Fig. 5.

Figure 5: Two Spare gates sharing a spare event C

If we focus on the Spare gate on the left side, Q1
occurs as soon as A and C have failed – as stated in
Section 3.1 – or if A fails and C is made unavailable
because B has failed before A. As a consequence, the
algebraic model of the first Spare gate is

{
Q1 = Ca · (A�Ca) +A · (Cd �A) +A · (B �A)
Cd ·Ca = ⊥

The algebraic expression for Q2 can be determined
in the same way by symmetry. Consequently, the final
algebraic model of any of two Spare gates sharing a
spare event is

{
Q1 = Ca · (A�Ca) +A · (Cd �A) +A · (B �A)
Q2 = Ca · (B �Ca) +B · (Cd �B) +B · (A�B)
Cd ·Ca = ⊥

3.5 Algebraic model of n Spare gates with 2 input
events sharing a spare event

Let us consider n Spare gates with 1 output event Qi

and 2 input events: a primary event Pi – i∈ {1, · · · , n}
– and a spare event S.

If we focus on the first Spare gate, Q1 will occur
as soon as P1 and S have failed – as stated in Sec-
tion 3.1 – or if P1 fails and S is made unavailable
because the primary event of any of the other Spare
gates has failed before P1. As a consequence, the al-
gebraic model of the first Spare gate is Q1 = Sa · (P1 � Sa) + P1 · (Sd � P1)

+
∑

i 6=1P1 · (Pi � P1)
Sd · Sa = ⊥

The algebraic expression forQi, i ∈ {1, . . . , n}, can
be determined in the same way by symmetry. Conse-
quently, the final algebraic model of any of n Spare
gates sharing a spare event is Qi = Sa · (Pi � Sa) + Pi · (Sd � Pi)

+
∑

j 6=iPi · (Pj � Pi)
Sd · Sa = ⊥

3.6 Specific case of Cold and Hot Spare gates
The algebraic models presented in Sections 3.1 to 3.5
are the algebraic models of Spare gates in the general
case of Warm Spare events. These algebraic models
can be simplified in the specific cases of Cold and Hot
Spare events:
• if a spare event S is a Cold Spare event, it cannot

fail while in a dormant state, so Sd will never
occur and any expression containing Sd in the
algebraic models can be removed;

• if a spare event S is a Hot Spare event, it will
have the same distribution function when in an
active and in a dormant state, so Sa ≡ Sd ≡ S
and the algebraic models can be simplified.

It can be noted that the algebraic models defined
involve the temporal operator which is used to model
gates PAND and FDEP, so the expression (1) still
holds in the case of a DFT with Spare gates, and the
structure function of any DFT can be determined and
reduced to the canonical form in (1) as well.

4 PROBABILISTIC MODEL OF THE SPARE
GATE

The probabilistic model of the Spare gates can be de-
duced from their algebraic model presented in Section
3 by determining the failure probability of each failure
sequence thanks to the standard inclusion-exclusion
formula (Trivedi 2001) and the following expressions
(Amari, Dill, and Howals 2003; Fussel, Aber, and
Rahl 1976), which hold under the hypothesis of sta-
tistical independence:

Pr {a · b} (t) = Fa(t)× Fb(t)

Pr {a+ b} (t) = Fa(t) + Fb(t) − Fa(t)× Fb(t)

Pr {a� b} (t) =

∫ t

0

fa(u)(1− Fb(u))du

Pr {b · (a� b)} (t) =

∫ t

0

fb(u)Fa(u)du (2)

The probabilistic model of a single Spare gate with
2 input events is presented in Section 4.1 whereas
the probabilistic model of 2 Spare gates with 2 input
events sharing a spare event is presented in Section
4.2.
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4.1 Probabilistic model of a single Spare gate with
2 input events

According to Section 3.1, the algebraic model of a
single Spare gate with 2 input events is

Q = Ba · (A�Ba) +A · (Bd �A).

On the one hand, the cumulative distribution func-
tion (Cdf) and probability density function (pdf) ofBd

do not depend on A, so Pr {A · (Bd �A)} (t) can be
determined by means of the expressions (2) as

Pr {A · (Bd �A)} (t) =

∫ t

0

fA(u)FBd(u)du

On the other hand, the Cdf and pdf ofBa depend on
the failure date of A, so Pr {Ba · (A�Ba)} (t) can-
not be determined by means of the expressions (2).
If we respectively denote by TA and TBa the failure
dates of A and Ba, Pr {Ba · (A�Ba)} (t) can be de-
fined as

Pr {Ba · (A�Ba)} (t) = Pr {TA ≤ TBa ≤ t}

= E
[
1{TA≤TBa}1{TBa≤t}

]
,

where 1 is the indicator function and E is the expec-
tation value such that

E [1A] = Pr {A}
According to the law of total expectation (Billings-

ley 1995), ifX is an integrable random variable and if
Y is any random variable, not necessarily integrable,
on the same probability space, then

E [X] = E [E [X|Y ]]

As a consequence,

Pr {Ba · (A�Ba)} (t)

=

∫ t

0

(∫ t

v

fTB |TA(u|TA = v)du

)
fTA(v)dv

=

∫ t

0

(∫ t

v

fBa(u, v)du

)
fA(v)dv

The probabilistic model of a single Spare gate with
2 input events hence is

Pr {Q} (t) =

∫ t

0

(∫ t

v

fBa(u, v)du

)
fA(v)dv

+

∫ t

0

FBd(u)fA(u)du.

The probabilistic model of a single Spare gate with
3 or even n input events can be determined in the same
way from the algebraic model of Spare gates presents
in Sections 3.2 and 3.3.

4.2 Probabilistic model of 2 Spare gate with 2 input
events sharing a spare event

According to Section 3.4, the algebraic model of the
Spare gate on the left side in Fig. 5 is

Q1 = Ca · (A�Ca) +A · (Cd �A) +A · (B �A)

It can be noted that the first two terms of this ex-
pression –Ca · (A�Ca) andA · (Cd�A) – do not de-
pend on B while the third term – A · (B �A) – does.
As a consequence, these three terms are not disjunc-
tive. This expression can be converted to an equivalent
form which contains only disjunctive terms by intro-
ducing B in the first two terms:

Q1 = Ca · (A�B) · (B �Ca)

+B · (A�Ca) · (Ca �B)

+Ca · (A�Ca) · B̄ (3)

+B · (Cd �A) · (A�B)

+A · (Cd �A) · B̄ +A · (B �A),

Its failure probability thus is

Pr {Q1} (t) = Pr {Ca · (A�B) · (B �Ca)} (t)

+Pr {B · (A�Ca) · (Ca �B)} (t)

+Pr
{
Ca · (A�Ca) · B̄

}
(t) (4)

+Pr {B · (Cd �A) · (A�B)} (t)

+Pr
{
A · (Cd �A) · B̄

}
(t)

+Pr {A · (B �A)} (t)

and can hence be expressed according to the failure
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distributions of A, B, and C as follows:

Pr {Q1} (t) =∫ t

0

(∫ t

w

(∫ u

w

fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v

fCa(w,v)dw

)
fA(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0

(∫ t

v

fCa(u, v)du

)
fA(v)dv

+

∫ t

0

(∫ u

0

fA(v)FCd(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0

fA(u)FCd(u)du

+

∫ t

0

fA(u)FB(u)du

The failure probability of Q2 can be determined in
the same way, by symmetry. The probabilistic model
of n Spare gate with 2 input events sharing a common
event can be determined in the same way from the
algebraic model in Section 3.5.

5 APPLICATION TO A DFT EXAMPLE
We propose to determine the failure probability of
the Spare gates of a DFT example from (Boudali and
Dugan 2005) which is depicted in Fig. 6.

This DFT models the failure of a cardiac assist sys-
tem (HCAS) which is divided into 4 modules: Trig-
ger, CPU unit, motor section, and pumps. The Trig-
ger consists of a crossbar switch (CS) and a system
supervision (SS). The failure of either CS or SS trig-
gers the failure of both CPUs. The CPU unit is a warm
spare, which has a primary P and a spare unit B hav-
ing a dormancy of 0.5. For the motor section to func-
tion, either MOTOR or MOTORC need to be work-
ing. The pumps unit is comprised of two cold spares,
each having a primary pump (PUMP 1 and PUMP 2),
and sharing a common spare pump (Backup PUMP).
In order for the pumps unit to fail, all three pumps
need to fail and CSP 1 needs to fail before (or at the
same time as) CSP 2, i.e. PAND gate.

This DFT can be divided into 3 subtrees:

• subtree 1, which corresponds to the failure of the
CPU unit: this subtree contains one OR gate, one
FDEP gate, and one Warm Spare gate, and is
hence dynamic;

• subtree 2, which corresponds to the failure of
the motor section: this subtree contains a single
AND gate and is hence static;

• subtree 3, which corresponds to the failure of the
pumps unit: this subtree contains one PAND gate
and two Cold Spare gates, and is hence dynamic.

The failure probability of the two Spare gates of
subtree 3 can be determined thanks to the probabilis-
tic model of Section 4.2:

Pr {CSP1} (t) =∫ t

0

(∫ t

w

(∫ u

w

fP2(v)dv

)
fBPa(u,w)du

)
fP1(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v

fBPa(w,v)dw

)
fP1(v)dv

)
fP2(u)du

+(1− FP2(t))

∫ t

0

(∫ t

v

fBPa(u, v)du

)
fP1(v)dv

+

∫ t

0

fP1(u)FP2(u)du

where CSP1 denotes the output of the Spare gate
CSPGate 1, and P1, P2, and BP denote the basic
events PUMP 1, PUMP 2, and Backup PUMP ,
respectively. It can be noted that, contrary to the prob-
abilistic model of Section 4.2, this expression con-
tains only 4 terms since BP is a cold spare event
which can consequently not fail while in its dormant
mode.

In the same way,

Pr {CSP2} (t) =∫ t

0

(∫ t

w

(∫ u

w

fP1(v)dv

)
fBPa(u,w)du

)
fP2(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v

fBPa(w,v)dw

)
fP2(v)dv

)
fP1(u)du

+(1− FP1(t))

∫ t

0

(∫ t

v

fBPa(u, v)du

)
fP2(v)dv

+

∫ t

0

fP2(u)FP1(u)du

where CSP2 denotes the output of the Spare gate
CSPGate 2.

In the particular case of exponential distributions,
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Figure 6: The HCAS Dynamic Fault Tree from (Boudali and Dugan 2005)


FP1(t) = 1− e−λP1t

FP2(t) = 1− e−λP2t

FBPd(t) = 0
FBPa(t,min(tP1, tP2)) = 1− e−λBP (t−min(tP1,tP2))

If we consider failure rates λP1 = λP2 = λBP =
2.5× 10−3 for P1, P2, andBP , we get a failure prob-
ability of 0.84 at mission time T = 1,000 hours for
both Spare gates. This result is the same as the result
obtained thanks to the tool Galileo (Dugan, Sullivan,
and Coppit 2000). It can be noted that the failure prob-
ability of the Top Event of the DFT in Fig. 6 could be
determined as well, thanks to the theorems and the
probabilistic models of gates PAND and FDEP pre-
sented in (Merle, Roussel, Lesage, and Bobbio 2010).

However, a Weibull distribution would be more
suitable to model the failure behavior – and the aging
– of pumps, but such a distribution could not be han-
dled by Continuous-Time Markov Chains or Stochas-
tic Petri Nets based methods. The probabilistic model
that we provide for Spare gates does not depend on the
failure distribution considered for basic events, and
thus allows to consider such a case. The Weibull dis-
tribution has the expression

F (t) = 1− e−( t−γη )
β

λ(t) = β(t−γ)β−1

ηβ

so that
1− e−

∫ t
0 λ(u)du

Let us consider that the failure of basic events is
modeled by a Weibull distribution with a failure rate
λ(t) = 5× 10−3− 10−6t, which means that the pumps
have an ”infant mortality” and will fail at a constant
failure rate λ= 2.5× 10−3 after 2,500 hours. We thus
obtain a failure probability of 0.98 at mission time
T = 1,000 hours for both Spare gates.

6 CONCLUSION
In this paper, we have presented an algebraic model
of Spare gates. This model can be determined for
any number of Spare gates with any number of input
events, whether they are sharing spare events or not,
and for any type of Spare gate. This algebraic model
allowed us to deduce a probabilistic model of Spare
gates which does not depend on the failure distribu-
tion considered for basic events.

Ongoing work is currently addressed to the elab-
oration of efficient algorithms allowing to automati-
cally perform the calculation of the structure function
of DFTs and their analysis.
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