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Abstract.  A new concept, called silhouette, and the related parameterization are introduced and 

studied. Applications show how to extend maximally the mean-variance domain of a count 

distribution, and how to construct a single variable for any mean-variance and any requirements 

on distribution shape. 
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1.  Introduction 

We consider count variables, i.e. nonnegative integer-valued random variables, 

whose mean μ and deviation σ are finite. A μσ-domain, i.e. the set of all pairs (μ, σ) of a 

set of count variables, will be called maximal if it contains all pairs (μ, σ) satisfying  

( ) ( ) ( )2[ ] [ ] 1 Nμ − μ μ + − μ < σ < μ − μ ,      (1) 

where N is the supremum of the variables (possibly N = ∞), and [μ] is the largest integer 

not exceeding μ. On the other hand, no μσ-domain exceeds the closure of (1).  

In commonly used count distributions, the μσ-domain is very seldom maximal, and 

good general shape flexibility is practically non-existent. In count data modeling this can 

mean that the μσ-domain of the planned model does not contain the mean-deviation pair 

estimated from the data, or that no distribution shape offered by the model matches the 
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data. The famous distribution of Consul and Jain (1973) is a typical example with 

seriously incomplete underdispersion ability, i.e. σ stays on a nonzero distance from the 

left side of (1). The so-called ‘generalized Poisson law’ again does have maximal μσ-

domain, but the shape is always unimodal, and besides, the relations between the 

parameters and the μσ-pair are laborious (Morlat 1952, Winkelmann 1995). For theory 

and practice of count models, see e.g. Johnson et al. (1992), Ridout and Besbeas (2004), 

Castillo & Perez-Casany (2005), and Hagmark (2008). 

This study develops a new general approach. We introduce a new concept, the 

‘silhouette’, and a related one-parameter extension for non-binary bounded count 

variables. Basic theoretical results with examples are presented in Sec.2-5, applications 

follow in Sec.6-8, and a summary in Sec.9.  

2.  Basic concepts and formulas 

Let F0, F1, F2, … be a non-decreasing sequence with 0 ≤ Fn ≤ 1 and limn nF→∞  = 1. 

In other words, Fn is the (cumulative) distribution of a count variable (Cv). The related 

sequence Y0 = 0, Yn+1 = +n nY F  will be called integral distribution (Id). Clearly, the 

sequence nn Y−  is non-decreasing, and the mean is given by μ = lim ( )n nn Y→∞ − . If μ < 

∞, it follows that nn Y− ≤ μ, and combining with Yn ≥ 0 one has the basic inequality 

( )≥ μn nY y ,  
0 [ ]

( )
[ ]

≤ μ⎧
μ = ⎨ − μ > μ⎩

n
if n

y
n if n

.      (2) 

After further calculation, one obtains the variance formula 

σ2 = ( ) ( ) ( )
1

[ ] [ ] 1 2 ( )
∞

=

μ − μ μ + − μ + − μ∑ n n
n

Y y .     (3) 
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The sequence y(μ)n defined in (2) is the Id of the binary Cv with mean μ and values 

[μ] & [μ]+1. These Cvs will be called minimal. Among all Cvs with the same mean, the 

minimal Cv has the least variance (μ − [μ])([μ] + 1 − μ), which follows from (2) and (3), 

and is the left side of (1). For an example, see Fig.1.  

 

Figure 1. The integral distribution of a binomial Cv and the corresponding minimal Cv.  

Mean μ = 2.4, max. N = 5, Y = (0, 0.038, 0.2515, 0.789, 1.6255, 2.6), y = (0, 0, 0, 0.6, 1.6, 2.6). 

 

Remark. Two general geometric features can also be pointed out in Fig.1. The 

variance is twice the area of the shadowed polygon, and the Id is always inside the dash 

triangle. This follows easily from (2), (3) and the convexity of an Id. 

3.  Definition of the silhouette  

The basic definitions and results in Section 2 lead immediately to a characterization 

of the class of Cvs to be studied hereafter. 

Theorem 1.  The sequence Y0, Y1, Y2, … is the Id of a Cv with minimum 0 

(probability > 0), maximum N ≥ 2 (probability > 0) and mean μ∈(0, N), if and only if  

(i) Y0 = 0   & Yn = n − μ ,  n ≥ N 

(ii) Y1 > 0   & YN−1 > N − μ – 1  

(iii) 1 12 0n n nY Y Y+ −− + ≥ ,  n = 1...N-1. 
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Moreover, (i), (ii) and (iii) imply Yn > y(μ)n, n = 1...N-1. ■ 

Definition. The silhouette of a Cv with minimum 0, maximum N ≥ 2 and Id Y is 

defined as the nonnegative N-1-tuple  

1 12
( )

+ −− +
α =

− μ
n n n

n
n n

Y Y Y
Y y

,  n = 1...N-1,      (4) 

where the mean μ = N − YN. For example, the silhouette of the binomial Cv with N = 5 

and μ = 2.4 is α ≈ (4.615, 1.288, 1.582, 5.417), Fig.1.  

The basic properties of the silhouette concept will be derived in the next two sections. 

For this purpose we write (4) as a matrix equation:  

1 1 1

2 2 2

2 2 2

1 1 1

( )
( )

( ) ... ...
( )

( )
− − −

− − −

α μ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥α μ⎢ ⎥ ⎢ ⎥

α =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥α μ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥α μ + − μ⎣ ⎦ ⎣ ⎦

N N N

N N N

Y y
Y y

Y y
Y y N

A ,      (5) 

where  

1

2

2

1

2 1 0 .. 0 0 0
1 2 1 .. 0 0 0

( ) .. .. .. .. .. .. ..
0 0 0 .. 1 2 1
0 0 0 .. 0 1 2

N

N

−

−

+ α −⎡ ⎤
⎢ ⎥− + α −⎢ ⎥

α = ⎢ ⎥
⎢ ⎥− + α −⎢ ⎥
⎢ ⎥− + α⎣ ⎦

A .   (6) 

4.  Construction and parameterization 

Every mean-silhouette pair (μ, α1...αN-1) is of course an element of the set 

(0, N)× [0, ∞)N-1. Next we show that the converse is true. Therefore, let (5) and (6) be a 

formal starting point with any μ∈(0, N) and any nonnegative N-1-tuple α. 
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The inverse of the ‘symmetric Jacobi’ matrix A(α) is a ‘one-pair’ matrix that can be 

constructed as follows: 

U1 = 1       1 1(2 )n n n nU U U+ −= + α −   (U0 = 0)   (7) 

VN−1 = 1    1 1(2 )N n N n N n N nV V V− − − − − += + α −  (VN = 0)   (8) 

1
,

1( ) n j
n j

j nN

U V if n j
A

U V if n jU
− ≤⎧

α = ⎨ >⎩
,  n = 1...N-1, j = 1...N-1.   (9) 

For more details, see Vandebril et al. (2008), Sec. 3.1.3 and 7.2.3. Further, define  

[ ] 1 [ ]
( ) [ ] [ ] 1

0

μ + − μ = μ⎧
⎪μ = μ − μ = μ +⎨
⎪⎩

n

if n
B if n

otherwise
,   n = 1...N-1.     (10) 

Now equation (5) and its solution adopt the form 

( )( ) ( ) ( )α − μ = μA Y y B         (11)    

1( ) ( ) ( )−= μ + α μY y A B .        (12) 

We complete the components Y1…YN-1 according to Theorem 1i, Y0 = 0, YN = N-μ …, and 

we show that this sequence Y is the Id of a unique Cv.  

It is easy to see that every element of U (7), V (8) and 1−A  (9) is positive, and that at 

least one element of B (10) is positive. Hence, (12) implies ( )> μn nY y , n = 1...N-1. 

Especially, we get Y1 > y(μ)1 ≥ 0, and YN−1 > y(μ)N−1 ≥ N − 1 − μ = YN − 1, i.e. condition 

(ii) in Theorem 1. Then we have from (5) and (2) Yn+1 – 2Yn + Yn-1 = ( )( )α − μn n nY y  ≥ 0, 

n = 1...N-1, i.e. condition (iii) in Theorem 1 and (4). Now Theorem 1 yields the next 

result. 
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Theorem 2.  Every element (μ, α)∈(0, N)× [0, ∞)N-1, N ≥ 2, is the mean-silhouette 

pair of a unique Cv. No other Cvs with minimum 0 and maximum N exist. ■ 

In other words, (μ, α) is a complete and one-to-one parameterization with no other 

restrictions or interrelations than 0 < μ < N and αn ≥ 0 (n = 1…N-1). The corresponding 

Cvs will be denoted Z(μ, α).  

5.  Relations between the silhouette and the variance 

We study the parameterization defined above. The following properties are quite 

comfortable in theory and applications.  

Theorem 3.  The Id components Yn (n = 1...N-1) and the variance σ2 of Z(μ, α) are 

functions of the silhouette components αj (j = 1…N-1) with the following properties: 

(i) Monotony:  0n

j

Y∂
<

∂α
  and  

2
0

j

∂σ
<

∂α
. 

(ii) If  αj → 0  for each  j, then Yn → ( )1n N− μ  and  σ2 → ( )Nμ − μ  from below.   

(iii) Assume that (α[μ] → ∞ if 1 ≤ [μ] ≤ N-1) & (α[μ]+1 → ∞ if 0 ≤ [μ] < μ < Ν-1).  

 Then Yn → y(μ)n  and  σ2 → ( [ ])([ ] 1 )μ − μ μ + − μ  from above. ■ 

Proof.  (i)  Writing Δ = Y – y in (11) and applying partial differentiation one has 

 
j j j

∂ ∂ ∂
+ =

∂α ∂α ∂α
A BA Δ

Δ     

where  , 1
0

n k

j

if n k jA
otherwise

= =∂ ⎧
= ⎨∂α ⎩

  and  0n

j

B∂
=

∂α
.  Hence, 

 j
j

j

∂
+ Δ =

∂α
0A IΔ , 1 j

j
j

−∂
= −Δ

∂α
AΔ , 1

,
n

j n j
j

A−∂Δ
= −Δ

∂α
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where I is the identity matrix and jB  is the jth column of B. Since all elements of Δ and 

1−A  are positive, the first inequality follows, and so the second one follows from (3). 

(ii)  If αn → 0 for each n = 1...N-1, it follows from (4) and Yn−y(μ)n ≤ (1−μ/N)μ that 

the probability fn = Yn+1 − 2Yn + Yn-1 → 0. Hence, the points (n, Yn) approach the straight 

line (0, 0)...(N, N-μ) and the limit statements follow (Fig.1 and the remark). 

(iii)  First, (4) adopts the form Yn = yn + fn /αn if αn > 0 (0 ≤ fn ≤ 1). If α[μ] → ∞ then 

Y[μ] → y[μ]. Using the convexity of Ids and Y0 = y0, one has Yk → yk  (= 0) for k ≤ [μ]. In 

case [μ] = μ, more is true: The convexity and YN = yN (= N-μ) imply also Yk → yk (= k-μ) 

for k ≥ [μ]+1. One is left with the case α[μ]+1 → ∞ & [μ] < μ. Now Y[μ]+1 → y[μ]+1, and a 

similar argumentation yields Yk → yk  for all k ≥ [μ]+1. The variance follows from (3). 

Hereby the proof is complete. ■ 

Remark. The extreme Ids in Theorem 3 belong to two binary Cvs with mean μ. In the 

case (ii) one has the {0, N}-valued Cv Z(μ, 0…0), and in the case (iii) one has the 

{[μ], [μ]+1}-valued minimal Cv (Sec.2). Compare with inequality (1) and Fig.1. 

6.  Extension for full under- and overdispersion ability 

For applications and systematic computation we draw a useful variance formula from 

(3) and (12), and formulate a condition for pairs (μ, α)∈(0, N)× [0, ∞)N-1: 

Var(Z(μ, α)) = ( ) ( )[ ] [ ] 1μ − μ μ + −μ  + 12 ( ) ( )− α μ∑A B     (13) 

(α[μ] > 0 if 1 ≤ [μ] ≤ N-1) & (α[μ]+1 > 0 if 0 ≤ [μ] < μ < Ν−1).   (14) 

For example, every pair (μ, α)∈(0, N)× (0, ∞)N-1 satisfies (14). The following statement 

is an immediate consequence of earlier results. 
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Corollary.  If μ and α satisfy condition (14), then φ > 0 aVar(Z(μ, αφ)), (αφ)n = 

φαn, is a decreasing continuous bijection from (0, ∞) to ((μ−[μ])([μ]+1−μ), μ(Ν−μ)). ■ 

For fixed μ and α, the one-parameter Cv Z(μ, αφ), φ > 0, will be called the extension 

of Z(μ, α). According to the corollary, if μ and α satisfy (14), then the extension has full 

under- and overdispersion ability, i.e. for any theoretically possible σ (1), there is a 

unique φ > 0 such that Var(Z(μ, αφ)) = σ2. The “extra dispersion parameter” φ can be 

computed with (15) to any accuracy. More exactly, denoting φ(ε) = ( , , , )Φ σ μ α ε , ε > 0, 

one has φ = 0lim ( )ε→ φ ε  and  |Var(Z(μ, αφ(ε))) − σ2| < ε. 

  Φ(σ, μ, α, ε) =  

 

2 ( [ ])([ ] 1 )v = σ − μ − μ μ + − μ                                                    (15) 

1h =  

0φ =  

12 ( ) ( )−= αφ μ −∑dv vA B  

while dv ≥ ε  

( 0)( 1) / 2dvh h>= −  

ln(1 )h eφφ = φ − +  

12 ( ) ( )−= αφ μ −∑dv vA B  

( )outputφ  

 
Example. Suppose maximum N = 5, mean μ = 2.4 and variance σ2 = 0.9 have been 

assessed from count data. The binomial model satisfying N and μ is Z(μ, α) with α ≈ 

(4.615, 1.288, 1.582, 5.417), Sec.2-3, but the variance is μ−μ2/N = 1.248 > σ2 

(underdispersion). Since σ satisfies (1) and α satisfies (14), there is a φ such that Z(μ, αφ) 

has the desired variance σ2. From (15), φ ≈ 1.714, and (12) yields related distributions: 
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20 1 2 3 4 5
( ) 0.038 0.2135 0.5375 0.8365 0.9745 1 1.248 1
( ) 0.0178 0.1587 0.5482 0.8864 0.989 1 0.9 1.714

σ φ
α
αφ

n

n

n
F
F

. 

7.  Extending for maximal mean-deviation domain 

Every parameterized Cv with minimum 0 and maximum N ≥ 2 is (in principle) of the 

form Z(μ(θ), α(θ)), where θ is the parameter (Theorem 2). If the mean domain is (0, N), 

i.e. maximal, and all pairs (μ(θ), α(θ)) satisfy (14), then it follows from Sec.6 that the 

extensions Z(μ(θ), α(θ)φ) form a parameterized Cv with maximal μσ-domain (Sec.1). 

Example. Consider all binomial Cvs with the same maximum N ≥ 2. The point 

probabilities are strictly positive for all means (0, )Nμ ∈ , so (4) implies that the 

silhouettes α(μ) satisfy condition (14). Hence, the two-parameter Z(μ, α(μ)φ) defines a 

generalized binomial Cv with maximal μσ-domain. Some of the φ-level curves 

Var(Z(μ, α(μ)φ)) = σ2 in the μσ-plane are depicted in Fig.2 (N = 5). The curve φ = 1 is 

the μσ-domain of the binomial Cv (equidispersion), and the curves φ = 0.2 and φ = 5 are 

examples of overdispersion and underdispersion, respectively. The single point is the 

case (μ, σ) = (2.4, 0.9 ) from the example in Sec.6. 

  
Figure 2. Maximal μσ-domain for N = 5 (bounded by half circles). The single point and the φ-level 

curves concern the extended binomial distribution explained in the main text. 
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8.  Design of single count variables (an outline) 

Suppose a non-binary Cv is to be designed for minimum 0, maximum N ≥ 2, mean μ, 

and deviation σ. The required triplet (N, μ, σ) must be theoretically possible, i.e. satisfy 

(1). In addition, the final distribution F should also resemble a given distribution shape 

model G, i.e. the Euclidean norm ||F – G|| must be minimized, at least nearly.  

Consider the parameterized Cv T(α) = Z(μ, α 0lim ( , , , )ε→ Φ σ μ α ε ), α∈(0,∞)N-1, with 

related distribution F(α). According to Sec.6, every T(α) has automatically the correct 

triplet (N, μ, σ). It can also be shown that, among all Cvs with this triplet, the subset 

{T(α)} is dense in distribution! Thus, a suitable minimization procedure applied to ||F(α) 

– G|| produces a satisfactory α. Also, if G is not very contradictory to μ and σ, then a 

good initial α for the search is given by the silhouette of G. (Compare with the example 

in Sec.6.) 

9.  Summary 

We have considered integer-valued count variables with minimum 0 and maximum N 

≥ 2. Our presentation is self-contained, and only elementary concepts are needed. Instead, 

a new concept, the silhouette, and a related complete parameterization, are introduced. 

Several theoretically and computationally advantageous properties are found, e.g. the 

monotonous effect of the silhouette on the integral distribution and the variance.  

The theory (Sec.1-5) is followed by applications (Sec.6-8). The one-parameter 

extension of any single count variable satisfying (14) possesses full under- and 

overdispersion ability. A procedure that enlarges the mean-deviation domain of a 

parameterized count variable to maximal size is described, and as an example, a new 
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generalized binomial distribution is defined. Finally, an outline is given for how a single 

count variable can be constructed for any theoretically appropriate maximum-mean-

deviation triplet, and with a distribution shape resembling a desired model.  
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