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Measure changes with extinction

S.C. Harris∗, M.I. Roberts∗∗

Department of Mathematical Sciences, University of Bath,

Claverton Down, Bath, BA2 7AY, UK

Abstract

We consider a martingale change of measure Q|Ft
:= ZtP|Ft

and clarify that in general
1/Zt is only a supermartingale under Q. Defining Υ := inf{t ≥ 0 : Zt = 0} as the
extinction time, we then give a necessary and sufficient condition under which the identity
P(Υ = ∞) = P(Z∞ > 0) = Q[1/Z∞] holds.

Key words: measure change, extinction, martingale, Galton Watson process,
branching Brownian motion

1. Introduction

Consider two probability measures P and Q on the same filtered space (Ω, F , Ft)
along with a càdlàg adapted non-negative process (Zt) such that, for each t,

dQ

dP

∣

∣

∣

∣

Ft

= Zt.

A simple example of such a process is to take the number of particles alive at time t in
some branching process, and normalize it by its expected value to give Zt. The process
Z may be in either continuous (usually t ∈ R+) or discrete (usually t ∈ Z+) time; we
shall not always distinguish between the two. It is easy to see that Z is necessarily a
P-martingale. We define

Υ := inf{t ≥ 0 : Zt = 0};

we call this the extinction time of the process Z.
It has been claimed, in particular in Lyons (1997), Biggins & Kyprianou (2004) and

Engländer & Kyprianou (2004), that the process 1/Zt is automatically a Q-martingale.
This is not always true, as shown in the example below. However, in Proposition 2
we show that 1/Zt is a supermartingale. Since the proofs in Lyons (1997), Biggins &
Kyprianou (2004) and Engländer & Kyprianou (2004) depend only on showing that 1/Zt

converges Q-almost surely, the supermartingale property is sufficient and their results
are unaffected.
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Example 1. Consider the (discrete time) Galton-Watson process with offspring distri-
bution L, where

P(L = 2) = p and P(L = 0) = 1 − p.

Let Xn be the number of particles in the nth generation, and set

m = P[L] = 2p and Zn = Xn/mn.

It is well-known that Z is a P-martingale. Making the change of measure to Q, we can
check immediately that

Q(Z1 = 0) = P[Z1
�

{Z1=0}] = 0,

so

Q[1/Z1] = m

∞
∑

j=1

Q(X1 = j)/j = m

∞
∑

j=1

P[Z1
�

{X1=j}]/j

= m(2/2m)P(X1 = 2) = P(X1 = 2) = p.

Since Q[1/Z0] = 1, we see that (1/Zn) is not a Q-martingale if p < 1.

In fact we show in Lemma 5 that in all cases

Q[1/Zt] = P(Zt > 0) = P(Υ > t)

and in Theorem 6 we see that the identity

Q[1/Z∞] = P(Z∞ > 0) = P(Υ = ∞)

holds if and only if 1/Z is uniformly integrable. Such results, linking the extinction of
the process to the event that the martingale limit is zero, are often of great value in the
branching process scenario. We stress, however, that all of our results apply to general
measure changes rather than just those related to branching processes.

2. Main results

2.1. The Q-supermartingale property of 1/Z

We may easily show that, as claimed earlier, 1/Z is a Q-supermartingale.

Proposition 2.

Q

[

1

Zt+s

∣

∣

∣

∣

Ft

]

=
1

Zt
P(Zt+s > 0 | Ft).

In particular, (1/Zt) is a Q-supermartingale.

Proof. First, note that there is no extinction under Q: for all t > 0,

Q(Zt = 0) = P[Zt
�

Zt=0] = 0.

Also, there is no rebirth after extinction; that is, for all s, t > 0,

Zt = 0 ⇒ Zt+s = 0 (a.s. under P).
2
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This fact can be shown directly, using the martingale property of Z; however, the measure
change allows us a simple proof:

P(Zt+s > 0, Zt = 0) = P

[

Zt+s

Zt+s

�
Zt+s>0,Zt=0

]

= Q

[

1

Zt+s

�
Zt+s>0,Zt=0

]

= 0,

since Q(Zt = 0) = 0. Using these two facts, we see that for any A ∈ Ft,

Q

[

1

Zt
P(Zt+s > 0|Ft)

�
A

]

= Q

[

1

Zt

�

{Zt>0}P(Zt+s > 0|Ft)
�

A

]

= P

[

Zt

Zt

�

{Zt>0}P(Zt+s > 0|Ft)
�

A

]

= P(Zt > 0, Zt+s > 0, A) = P(Zt+s > 0, A)

= P

[

Zt+s

Zt+s

�

{Zt+s>0}
�

A

]

= Q

[

1

Zt+s

�
A

]

.

Thus, by definition of conditional expectation,

Q

[

1

Zt+s

∣

∣

∣

∣

Ft

]

=
1

Zt
P(Zt+s > 0|Ft).

Remark. Kuhlbusch (2004) gives a very similar proof of this fact, albeit in discrete time
only. The proof above also has the advantage that it gives an explicit formula for the
rate at which the process is decaying.

Corollary 3. (1/Zt) is a true Q-martingale if and only if there is no extinction under

P.

2.2. Extinction probabilities

In work on branching processes, extinction probabilities often cause difficulties. For
example, let Υ be the extinction time,

Υ := inf{t : Zt = 0}

and set
Z∞ := lim sup

t→∞
Zt;

then it can be a major problem to prove that

P(Z∞ > 0) = P(Υ = ∞). (1)

In this section we give an identity that has already proved useful for this purpose (see
Harris & Roberts (2008)) and a necessary and sufficient condition for (1) to hold. We
begin by stating a well-known result – a proof can be found, for example, in Durrett
(2004) (Theorem 3.3).

Lemma 4. Set

Z∞ := lim sup
t→∞

Zt.

Then for A ∈ F ,

Q(A) = P[Z∞
�

A] + Q(A ∩ {Z∞ = ∞}).

3
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We may now easily prove the following identity. Despite its simplicity, it can be extremely
useful – for example it is an essential ingredient in the proofs of Harris & Roberts (2008).

Lemma 5. For any t ∈ [0,∞),

P(Υ > t) = P(Zt > 0) = Q[1/Zt];

also

P(Z∞ > 0) = Q[1/Z∞].

Proof. Using various facts from earlier,

Q[1/Zt] = Q

[

1

Zt

�

{Zt>0}

]

= P

[

Zt
1

Zt

�

{Zt>0}

]

= P(Zt > 0)

which establishes the first equality. For the second, we use Lemma 4. Note that

Q(Z∞ = 0) = P[Z∞
�

{Z∞=0}] + Q({Z∞ = 0} ∩ {Z∞ = ∞}) = 0.

Thus, using Lemma 4 again,

Q[1/Z∞] = Q

[

1

Z∞

�

{Z∞>0}

]

= P(Z∞ > 0) + Q

[

1

Z∞

�

{Z∞=∞}

]

= P(Z∞ > 0).

This allows us to give a simple necessary and sufficient condition for (1) to hold.

Theorem 6. The full identity

Q[1/Z∞] = P(Z∞ > 0) = P(Υ = ∞)

holds if and only if the set {1/Zt : t ≥ 0} is Q-uniformly integrable.

Proof. If {1/Zt : t > 0} is Q-uniformly integrable then we have immediately that

P(Z∞ > 0) = Q[1/Z∞] = lim
t→∞

Q[1/Zt] = lim
t→∞

P(Υ > t) = P(Υ = ∞).

Conversely, if P(Z∞ > 0) = P(Υ = ∞), then as above we have

Q[1/Z∞] = lim
t→∞

Q[1/Zt].

Thus (by Scheffé’s lemma – Theorem 5.10 of Williams (1991)) 1/Zt converges in L1

to 1/Z∞. Convergence in L1 then implies uniform integrability (see Theorem 13.7 of
Williams (1991) for example); hence {1/Zt : t ≥ 0} is Q-uniformly integrable.

3. The Q-local martingale property

We may now ask whether 1/Z is even a Q-local martingale. The intuition is that
if, as is often the case, Zt is some suitable rescaling of the number of particles alive at
time t, then 1/Zt is perfectly well-behaved under Q: there is always at least one particle
alive, so Zt cannot get within a certain distance of zero. Thus 1/Zt can only be a local
martingale if it is a true martingale; but it is not a true martingale, and thus not a local
martingale.

This notion is made precise in Proposition 8 below. The result is really just a rephras-
ing of a standard fact about local martingales, which we state in Lemma 7; we give a
proof of Proposition 8 regardless.

4
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Lemma 7. Suppose that (Xt, t ≥ 0) is a local martingale. Then the following are

equivalent:

• X is a martingale;

• For each t > 0, {XT : T is a stopping time, T ≤ t} is uniformly integrable.

Proposition 8. Suppose that extinction occurs with positive probability under P, i.e.

there exists s > 0 such that P(Zs = 0) > 0, and that the set

{1/ZT : T is a stopping time, T ≤ t}

is Q-uniformly integrable for each t > 0. Then 1/Zt is not a local martingale under Q.

Proof. For a contradiction, suppose that 1/Zt is a local martingale under Q, with a
reducing sequence of stopping times (Tn, n ≥ 0). Then for any bounded stopping time
T ≤ t, say,

Q[1/Z0] = Q[1/ZTn

0 ] = Q[1/ZTn

T ] = Q[1/ZT∧Tn
],

where the second equality holds by the optional stopping theorem. Now by hypothesis
{ZT∧Tn

: n ≥ 0} is uniformly integrable and thus

Q[1/ZT∧Tn
] → Q[1/ZT ] as n → ∞.

So Q[1/ZT ] = Q[1/Z0] for all bounded stopping times T , and hence by optional stopping
1/Zt is a true Q-martingale. We have already shown that this is not true when there is
a positive probability of extinction (Corollary 3); hence by contradiction 1/Zt is not a
Q-local martingale.

Example 9. Consider a standard branching Brownian motion, where each particle gives
birth at rate r to L new particles with P[L] = m ∈ (0,∞). Let N(t) be the set of particles
at time t, with particle u having position Xu(t). Then it is well-known that

Zλ(t) :=
∑

u∈Nt

e−mrt+λXu(t)−λ2t/2

is a martingale. Suppose that P(L = 0) > 0. Then, making the usual change of measure
to Q, we know that 1/Zλ is not a Q-martingale. It is possible to show that it is not even
a local martingale, by using the spine interpretation of the measure change – details of
this can be found in Hardy & Harris (2009) and we give only a vague explanation here.
We embellish our probability space with extra information concerning one distinguished
infinite line of descent, called the spine, and define a new measure Q̃ which is an extension
of Q. Under Q̃ the spine moves with a drift λ, and the birth rate along the spine is also
altered. The spine slmost surely survives forever under Q̃, and we denote its position at
time t by ξt. Thus almost surely under Q̃, for a bounded stopping time T ≤ t say,

1

Zλ(T )
=

1
∑

u∈N(T ) e−rT+λXu(T )−λ2T/2

≤
1

e−rT+λξT −λ2T/2

= e(r+λ2)T · e−λ(ξT −λT )−λ2T/2

≤ e(r+λ2)t · e−λ(ξT −λT )−λ2T/2.
5
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Since (e−λ(ξt−λt)−λ2t/2, t ≥ 0) is a martingale under Q̃ (because ξ is a Brownian motion
with drift λ), by Lemma 7 the set

{e−λ(ξT−λT )−λ2T/2 : T is a stopping time, T ≤ t}

is Q̃-uniformly integrable. Multiplying each element of the set by a constant e(r+λ2)t

does not change this property, and hence by domination

{1/Zλ(T ) : T is a stopping time, T ≤ t}

is uniformly integrable under Q̃ (and so under Q). Proposition 8 now tells us that 1/Zλ

is not a local martingale under Q.
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