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1 Introduction

Let (X,Y ) be a pair of random variables (rv) in F × IR, where the space F is endowed with a semi-metric

d(·, ·) (this covers the case of semi-normed spaces of possibly infinite dimension). In this context, X can be

a functional random variable. In the following, we fix a point x ∈ F and we consider a given neighborhood

Nx of x. We assume that the regular version F z of the conditional distribution function of Y given X = z

exists for any z ∈ Nx. Moreover we suppose that F x has a continuous density fx with respect to (w.r.t.)

Lebesgue’s measure over IR.

Now for p ∈ (0, 1), we consider the conditional quantile of order p of F x

tp(x) = inf {t ∈ IR : F x(t) ≥ p} . (1)

Alternatively, the pth conditional quantile tp(x) can be defined as the unique solution wrt t of the optimiza-

tion problem

min
t∈IR

Ψp(x, t) (2)

where

Ψp(x, t) = IE [ψp(Y − t) |X = x]

with ψp(t) = (2p− 1)t+ |t|.

During the last decade, thanks to progress in computer tools, it has become easier to deal with increasingly

bulky data. Therefore statistical problems related to the modelization of functional random variables have

received an increasing interest in the recent literature (see, e.g., Bosq, 2000, Ramsay and Silverman, 2002

and 2005 for the linear model and Ferraty and Vieu (2006) in the nonparametric case). It is well

known that traditional statistical methods fail when dealing with functional data. Then, the goal

of this paper is to study a nonparametric estimator of tp(x) when the explanatory variable X is

functional.

Conditional quantiles are widely studied when the explanatory variable lies within a finite dimen-

sional space and there are many references on this topic (see, e.g., Samanta (1989) for previous

results and Gannoun et al. (2003) for recent advances and references). Let us also mention Zhou

and Liang (2000) and Lin and Li (2007) where the asymptotic normality is considered in the case

of the conditional median (p = 1/2) under α-mixing and association conditions, respectively. Note

here that in our approach we get, for the median, the well-known L1-norm estimator.
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However the number of papers dealing with this model, in the case of functional X, is fairly limited.

For instance, a B-spline approach is used in Cardot et al. (2004) to study the linear model of

regression on quantiles with explanatory variable taking values in a Hilbert space. The authors

obtained the estimator’s L2-convergence. In the nonparametric context, the almost complete (a.co.)1

convergence of the conditional quantile’s kernel estimator is established in Ferraty et al. (2006)

when the observations are independent and identically distributed (iid) whereas the dependent case

is considered in Ferraty et al. (2005) with an application to climatologic data. The asymptotic

normality of this estimator was studied in both cases (iid and strong mixing) by Ezzahrioui and

Ould-Saïd (2008). Recently, Dabo-Niang and Laksaci (2008) stated the convergence in Lp-norm

under less restrictive conditions. They considered the concentration property on small balls of the

probability measure of the underlying explanatory variable, in the iid case. All the works mentioned

above use an estimation procedure based on the double-kernel method.

In this paper, we estimate the conditional quantile nonparametrically, by adapting the L1-norm

method which enjoys some robustness properties. This is done by replacing the absolute value

function by ψp(·) and is motivated by the fact that L1 is the natural space where the rvs live. To

our knowledge, this kind of result has not so far been addressed. We establish, under mild assump-

tions (which include the concentration property), the almost complete consistency and asymptotic

normality of this estimator. These results complete those obtained in Ferraty et al. (2006) where

consistency with rate (but not asymptotic normality) is given for a smoothed estimator. On the

other hand, using a robust approach allows us to avoid the classical small-departure-related prob-

lems which may occur for the double-kernel method. Moreover we do not have to care, in our case,

for a second smoothing parameter.

The paper is organized as follows. We present our estimation procedure in Section 2 before giving

the hypotheses and stating the main results in Section 3. The proofs of the auxiliary results are

relegated to Section 4.
1We say that a sequence Zn converges a.co. to Z if and only if, for any ε > 0,

∑
n IP (|Zn − Z| > ε) <∞.
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2 Nonparametric estimator of the conditional quantile

Let (X1, Y1), . . . (Xn, Yn) be n independent random pairs in F × IR which are identically distributed

as (X, Y ). Based on this n-sample, a kernel estimate of Ψp(x, t) is given by

Ψ̂p(x, t) =
n∑

i=1

Wni(x)ψp(Yi − t), ∀t ∈ IR

whereWni(x) =
K(h−1d(x,Xi))∑n
j=1K(h−1d(x,Xj))

2, K is a kernel function and h := hn is a sequence of positive

real numbers which goes to zero as n goes to infinity. A natural estimator of tp(x) is then

t̂p(x) = arg min
t∈IR

Ψ̂p(x, t). (3)

Note here that Ψ̂p(x, ·) being convex with limit +∞ at both −∞ and +∞ (with great probability), it

has at least one minimizing value over IR. Note also that Ψ̂p(x, ·) is piecewise linear (with increasing

slope) and may have a flat (zero-slope) part where it takes its minimum value. In that case, we

take t̂p(x) as the smallest minimizing value (thus the lowest abscissa of the flat part). Otherwise

t̂p(x) is unique and locates the turning point from negative to positive slope. It can be shown that

(see the proof in the appendix)

t̂p(x) = ̂̂tp(x) := inf{t ∈ IR : F̂ x(t) ≥ p} (4)

where F̂ x(·) is the estimator of F x(·) defined by

F̂ x(·) =
n∑

i=1

Wni(x)1I{Yi≤·} (5)

with 1I{·} being the indicator function.

3 Main results

In the following, the ball of center x and radius r > 0 is denoted B(x, r). Moreover, for i = 1, . . . , n,

let Ki(x) = K(h−1d(x,Xi)) and, in view of (5), put

F̂ x(t) =
F̂ x
N(t)

F̂ x
D

(6)

2In the case where the denominator of Wni(x) is zero, we use the convention 0/0 = 0. We here point out that

this event has small probability under suitable condition (see Lemma 3.4 below).
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where

F̂ x
N(t) =

1

n IE[K1(x)]

n∑

i=1

Ki(x)1I{Yi≤t} and F̂ x
D =

1

n IE[K1(x)]

n∑

i=1

Ki(x). (7)

We first study the consistency of our estimator before addressing the asymptotic normality issue.

3.1 Consistency

In this subsection, we establish the almost complete convergence of t̂p(x) to tp(x). To do that, we

consider the following hypotheses (hereafter C1, C2, . . . denote positive constants). Recall that we

assume that F z exists for any z ∈ Nx and that F x admits a continuous density fx.

(H1) IP(X ∈ B(x, r)) =: φx(r) > 0 for all r > 0 and limr→0 φx(r) = 0.

(H2) ∃δ > 0,∀(t1, t2) ∈ [tp(x)− δ, tp(x) + δ]2, ∀(x1, x2) ∈ N 2
x ,

|F x1(t1)− F x2(t2)| ≤ C1

(
db(x1, x2) + |t1 − t2|k

)
, for b, k > 0.

(H3) K is a measurable function with support [0, 1] and satisfies 0 < C2 ≤ K(·) ≤ C3 <∞.

(H4) nφx(h)/ log n −→∞ as n→∞.

Comments on the hypotheses

Hypothesis (H1) characterizes the classical concentration property (see Ferraty and Vieu, 2006). A

mild regularity condition (H2) is assumed for the distribution function. Hypotheses (H3)-(H4) are

technical conditions imposed for the brievity of proofs.

Now, in order to state the a.co. convergence of our estimate, we need the following result.

Proposition 3.1 Under Hypotheses (H1)-(H4), we have,

sup
t∈[tp(x)−δ, tp(x)+δ]

|F̂ x(t)− F x(t)| = O
(
hb
)

+O

((
log n

nφx(h)

)1/2
)

a.co.

Theorem 3.1 Under the hypotheses of Proposition 3.1, if fx(tp(x)) > 0, then

|t̂p(x)− tp(x)| = O
(
hb
)

+O

((
log n

nφx(h)

)1/2
)

a.co.
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Proof of Theorem 3.1. As F x is continuously differentiable with fx(tp(x)) > 0, we have for any

small enough ε > 0

∑

n

IP
(
t̂p(x) > tp(x) + ε

)
≤
∑

n

IP

(
sup

t∈[tp(x), tp(x)+ε]

|F̂ x(t)− F x(t)| ≥ εfx(ξ1(ε))

)
(8)

and
∑

n

P
(
t̂p(x) < tp(x)− ε

)
≤
∑

n

IP

(
sup

t∈[tp(x)−ε, tp(x)]

|F̂ x(t)− F x(t)| ≥ εfx(ξ2(ε))

)
(9)

where ξ1(ε) (resp. ξ2(ε)) is between tp(x) and tp(x) + ε (resp. tp(x)− ε and tp(x)). Moreover, there

exists δ0 ∈]0, δ] such that

inf
t∈[tp(x)−δ0, tp(x)+δ0]

fx(t) ≥ C4 > 0.

Then applying (8) and (9) with ε =

(
hb +

(
log n

nφx(h)

)1/2
)
, we get for a large enough n0

∑

n≥n0

P
(
|t̂p(x)− tp(x)| > ε

)
≤
∑

n≥n0

IP

(
sup

t∈[tp(x)−δ0, tp(x)+δ0]

|F̂ x(t)− F x(t)| ≥ C4ε

)
<∞.

Then Theorem 3.1 is an easy consequence of Proposition 3.1.

Proof of Proposition 3.1.

Using (6) and (7) and remarking that IE
[
F̂ x
D

]
= 1, we write

F̂ x(t)− F x(t) =
1

F̂ x
D

[(
F̂ x
N(t)− IE

[
F̂ x
N(t)

] )
−
(
F x(t))− IE

[
F̂ x
N(t)

] )]
− F x(t)

F̂ x
D

[
F̂ x
D − IE

[
F̂ x
D

] ]

for all t ∈ IR. The proof is achieved through the following lemmas.

Lemma 3.1 (see Ferraty et al., 2006) Under Hypotheses (H1), (H3) and (H4), we have

F̂ x
D − IE

[
F̂ x
D

]
= O

((
log n

nφx(h)

)1/2
)

a.co.

Moreover
∑

n

IP

(
F̂ x
D <

1

2

)
<∞.

Lemma 3.2 Under Hypotheses (H1)-(H3), we have,

sup
t∈[tp(x)−δ, tp(x)+δ]

∣∣∣F x(t)− IE
[
F̂ x
N(t)

]∣∣∣ = O
(
hb
)
.

6
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Lemma 3.3 Under Hypotheses (H1), (H3) and (H4), we have,

sup
t∈[tp(x)−δ, tp(x)+δ]

∣∣∣F̂ x
N(t)− IE

[
F̂ x
N(t)

]∣∣∣ = O

((
log n

nφx(h)

)1/2
)
, a.co.

3.2 Asymptotic normality

Now, we study the asymptotic normality of t̂p(x). We replace (H1), (H3) and (H4) by the following

hypotheses, respectively.

(H1′) The concentration property (H1) holds. Moreover, there exists a function βx(·) such that

∀s ∈ [0, 1], lim
r→0

φx(sr)/φx(r) = βx(s).

(H3′) The kernel K satisfies (H3) and is a differentiable function on ]0, 1[ with derivative K ′ such

that −∞ < C5 < K ′(·) < C6 < 0.

(H4′) nφx(h)/ log n −→∞ and nh2bφx(h) −→ 0 as n→∞.

In what follows, we assume that x is inA = {z ∈ F , f z(tp(z)) 6= 0 and βz(·) is not identically zero}.

Remark 3.1 - The function βx(·) defined in (H1′) plays a fundamental role in the asymptotic

normality result. It permits to give the variance term explicitly. Noting that (H1′) is fulfilled by

several small ball probability functions, we quote the following cases (which can be found in Ferraty

et al. (2007)):

i) φx(h) = Cxh
γ for some γ > 0 with βx(u) = uγ,

ii) φx(h) = Cxh
γ exp

{
−Ch−p

}
for some γ > 0 and p > 0 with βx(u) = δ1(u) where δ1(·) is Dirac’s

function,

iii) φx(h) = Cx| lnh|−1 with βx(u) = 1I]0,1](u).

- The first condition defining the set A is classical and related to a nonvanishing conditional density.

The second condition means that a small amount a concentration is needed in order to ensure

asymptotic normality.

- Finally we point out that the second rate in our Hypothesis (H4′) is the same as the one in Masry

(2005, Corollary 2) for infinite-dimension spaces. More precisely, this assumption is used to remove

7
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the bias term. In other words, asymptotic normality could be established without this assumption

but, in that case, the result would be perturbed by the presence of the bias term.

Now we are in position to give our main result.

Theorem 3.2 Under Hypotheses (H1′), (H2), (H3′) and (H4′), we have
(
nφx(h)

σ2(x)

)1/2 (
t̂p(x)− tp(x)

) D−→ N (0, 1) as n→∞

where D−→ denotes the convergence in distribution, σ2(x) =
p(1− p)a2(x)

(fx(tp(x)))2a2
1(x)

and

aj(x) = Kj(1)−
∫ 1

0

(Kj)′(s)βx(s)ds for j = 1, 2. (10)

Proof of Theorem 3.2

For u ∈ IR, put τp(u, x) := tp(x) + u [nφx(h)]−1/2 σ(x) and Φ̂(u, x) := pF̂ x
D − F̂ x

N (τp(u, x)). Then

IP
{√

nφx(h)σ−1(x)
(
t̂p(x)− tp(x)

)
≤ u

}
= IP

{
t̂p(x) ≤ τp(u, x)

}

= IP
{
p ≤ F̂ x (τp(u, x))

}
+ IP

{(
F̂ x
D = 0

)
∩
(
t̂p(x) ≤ τp(u, x)

)}

= IP
{

Φ̂(u, x)− IE
[
Φ̂(u, x)

]
≤ IE

[
−Φ̂(u, x)

]}

+ IP
{(
F̂ x
D = 0

)
∩
(
t̂p(x) ≤ τp(u, x)

)}
.

So the proof is a consequence of the following lemmas.

Lemma 3.4 Under Hypotheses (H1), (H3) and (H4′), we have

IP
{(
F̂ x
D = 0

)
∩
(
t̂p(x) ≤ τp(u, x)

)}
≤ exp {−nφx(h)} .

Lemma 3.5 Under the hypotheses of Theorem 3.2, we have, for all u ∈ IR,

√
nφx(h) [fx(tp(x))σ(x)]−1 IE

[
−Φ̂(u, x)

]
= u+ o(1) as n −→∞.

Lemma 3.6 Under the hypotheses of Theorem 3.2, we have, for all u ∈ IR,

√
nφx(h) [fx(tp(x))σ(x)]−1

(
Φ̂(u, x)− IE

[
Φ̂(u, x)

])
D−→ N (0, 1) as n −→∞.

8
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Remark 3.2 In Lemma 3.5, Hypothesis (H4′) allows to get a result with no asymptotic bias term.

Weaking this hypothesis into nφx(h) → ∞ and proceeding as in Ferraty et al. (2007) we consider

the function ζ(r) = IE
[{
FX(tp(x))− p

}∣∣ d(x,X) = r
]
and suppose it to be differentiable at zero.

Moreover we assume that F z is absolutely continuous for z ∈ Nx with density f z. In that case we

get the bias term

ζ ′(0)
a0(x)

a1(x)
h

where

a0(x) = K(1)−
∫ 1

0

(sK(s))′βx(s)ds.

4 Auxiliary results and proofs

Proof of (4)

From (3) it is easy to see that t̂p(x) is the smallest minimizor of
n∑

i=1

Wni(x)|Yi − t| − (2p − 1)t.

Writing |Yi− t| = (Yi− t)1I{Yi>t}+ (t− Yi)1I{Yi≤t}, we get the equivalent minimization problem (wrt

t) of

D(t) = t(F̂ x(t)− p)−
n∑

i=1

Wni(x)Yi1I{Yi≤t}.

Then, by simple calculations, we get, for any t ≥ s

(t− s)(F̂ x(s)− p) ≤ D(t)−D(s) ≤ (t− s)(F̂ x(t)− p). (11)

Since t̂p(x) minimizes D(·) then for any t ≥ t̂p(x) we have D(t)−D(t̂p(x)) ≥ 0 which by (11) implies

(t− t̂p(x))(F̂ x(t)− p) ≥ 0 and thus

∀t > t̂p(x) F̂ x(t) ≥ p. (12)

In the same way, as t̂p(x) is the smallest among all minimizers, then for any s < t̂p(x) we have

D(t̂p(x))−D(s) < 0. Using the other part of (11) we obtain

∀s < t̂p(x) F̂ x(s) < p. (13)

The equivalence between (3) and (4) is then a direct consequence of (12) and (13).

Proof of Lemma 3.2

9
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First note that K1(x) = K1(x)1IB(x,h)(X1), under (H3). We deduce from (7) and (H1)

F x(t)− IE
[
F̂ x
N(t)

]
=

1

IE [K1(x)]
IE
[
K1(x)1IB(x,h)(X1)

(
F x(t)− FX1(t)

)]
.

Then by (H2) we have

1IB(x,h)(X1)|F x(t)− FX1(t)| ≤ C1h
b,

this last inequality completes the proof, since C1 does not depend on t ∈ [tp(x)− δ, tp(x) + δ].

Proof of Lemma 3.3

Using the compactness of [tp(x)− δ, tp(x) + δ], we can write

[tp(x)− δ, tp(x) + δ] ⊂
dn⋃

j=1

]yj − ln, yj + ln[ (14)

with ln = n−1/2k and dn = O
(
n1/2k

)
. The monotony of IE[F x

N(·)] and F̂ x
N(·) gives, for 1 ≤ j ≤ dn

IEF̂ x
N(yj − ln) ≤ sup

t∈]yj−ln,yj+ln[

IEF̂ x
N(t) ≤ IEF̂ x

N(yj + ln)

F̂ x
N(yj − ln) ≤ sup

t∈]yj−ln,yj+ln[

F̂ x
N(t) ≤ F̂ x

N(yj + ln). (15)

Now, from (H2) and (7) we have, for any t1, t2 ∈ [tp(x)− δ, tp(x) + δ]

∣∣∣IEF̂ x
N(t1)− IEF̂ x

N(t2)
∣∣∣ ≤ C1|t1 − t2|k. (16)

So, we deduce from (14)–(16) that

sup
t∈[tp(x)−δ, tp(x)+δ]

∣∣∣F̂ x
N(t)− IEF̂ x

N(t)
∣∣∣ ≤ max

1≤j≤dn

max
z∈{yj−ln,yj+ln}

∣∣∣F̂ x
N(z)− IEF̂ x

N(z)
∣∣∣+ 2kC1l

k
n.

Since ln = n−1/2k, it follows that, under (H4), lkn = o

(√
log n

nφx(h)

)
. Thus, it remains to show that

max
1≤j≤dn

max
z∈{yj−ln,yj+ln}

∣∣∣F̂ x
N(z)− IEF̂ x

N(z)
∣∣∣ = O

(√
log n

nφx(h)

)
, a.co. (17)

For this, using IP (∪iΩi) ≤
∑

i IP(Ωi), we have for any η > 0

IP

(
max

1≤j≤dn

max
z∈{yj−ln,yj+ln}

∣∣∣F̂ x
N(z)− IEF̂ x

N(z)
∣∣∣ > η

√
log n

nφx(h)

)

≤ 2dn max
1≤j≤dn

max
z∈{yj−ln,yj+ln}

IP

(∣∣∣F̂ x
N(z)− IEF̂ x

N(z)
∣∣∣ > η

√
log n

nφx(h)

)
.

10
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Set

Λi(z) =

[
Ki(x)1I{Yi≤z} − IE

[
K1(x)1I{Y1≤z}

]]

IE [K1(x)]
.

From (H1), (H3) and (H4) we get

|Λi(z)| ≤ C3/C2φx(h) and V ar [Λi(z)] ≤ C3/C
2
2φx(h).

Applying Bernstein’s exponential inequality we get

IP

(∣∣∣F̂ x
N(z)− IEF̂ x

N(z)
∣∣∣ > η

√
log n

nφx(h)

)
≤ 2 exp{−C7η

2 log n}, z ∈ {yj− ln, yj + ln}, 1 ≤ j ≤ dn.

Therefore, using dn = O
(
n1/2k

)
and choosing η such that C7η

2 = 1 + 1/k, the right-hand side of

the last inequality is the general term of a convergent series which, in view of (17), completes the

proof.

Proof of Lemma 3.4.

Since the Xi’s are independent we get, under (H1), (H3) and (H4′)

IP
{(
F̂ x
D = 0

)
∩
(
t̂p(x) < τp(u, x)

)}
≤ IP

{
F̂ x
D = 0

}

= IP

(
n⋂

i=1

{ω ∈ Ω such that Xi(ω) 6∈ B(x, h)}
)

= (1− φx(h))n ≤ exp(−nφx(h)).

Proof of Lemma 3.5.

First recall that τp(u, x) = tp(x) + u [nφx(h)]−1/2 σ(x) and Φ̂(u, x) = pF̂ x
D − F̂ x

N (τp(u, x)). Since

pIE
[
F̂ x
D

]
= p = F x(tp(x)), we have

IE
[
−Φ̂(u, x)

]
=

1

IE[K1(x)]
IE
{
K1(x)

[
FX1 (τp(u, x))− F x(tp(x))

]}

=
IE
{
K1(x)

[
FX1 (τp(u, x))− F x (τp(u, x))

]}

IE[K1(x)]
+ F x (τp(u, x))− F x(tp(x))

=: I1(x) + I2(x). (18)

For I1(x) we write, under (H2) and (H3′),

K1(x)
∣∣FX1 (τp(u, x))− F x (τp(u, x))

∣∣ ≤ C1h
bK1(x)

11
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which yields

I1(x) = O
(
hb
)
.

Then using a Taylor expansion we get, under (H1′)

I2(x) = u [nφx(h)]−1/2 σ(x)fx(tp(x)) + o
(

[nφx(h)]−1/2
)
.

The result is then a consequence of (18), under (H4′).

Proof of Lemma 3.6.

We use Liapounov’s theorem (see Loève (1963, p. 275). In the first step we consider the asymptotics

of the variance term

nφx(h)V ar
[
Φ̂(u, x)

]
=

φx(h)

IE2[K1(x)]
V ar

{
K1(x)

[
1I{Y1≤τp(u,x)} − p

]}

= φx(h)
IE[K2

1(x)]

IE2[K1(x)]
IE

[
K2

1(x)(1I{Y1≤τp(u,x)} − p)2

IE[K2
1(x)]

]
− φx(h)IE2

[
K1(x)

(
1I{Y1≤τp(u,x)} − p

)

IE[K1(x)]

]

=: φx(h)
IE[K2

1(x)]

IE2[K1(x)]
J1(x) + J2(x). (19)

Conditioning wrt X1, we prove using the triangle inequality that, under (H2)

1I{d(x,X1)≤h}
∣∣IE
[
1I{Y1≤τp(u,x)}‖X1

]
− p
∣∣ = 1I{d(x,X1)≤h}

∣∣FX1 (τp(u, x))− F x(tp(x))
∣∣

≤ C1h
b + u [nφx(h)]−1/2 σ(x)fx

(
t?p(x)

)
(20)

where t?p(x) is between tp(x) and τp(u, x). Since fx is continuous, we deduce from Theorem 3.1 that,

under (H1′) and (H4′)

J2(x) = o(1). (21)

On the other hand, simple calculations lead to

J1(x) = (1− 2p)
IE
[
K2

1(x)(1I{Y1≤τp(u,x)} − p)
]

IE[K2
1(x)]

+ (p− p2).

Using the same analytic arguments as for (20) allows us to obtain

J1(x) −→ p(1− p) as n→∞. (22)

Next, by integrating wrt the distribution of the real rv Z := d(x,X1), we can show that, under

(H1′) and (H3′) (see Ferraty and Vieu, 2006, p. 44),

IE
[
Kj

1(x)
]

= Kj(1)φx(h)−
∫ 1

0

(Kj)′(s)φx(sh) ds+ o (φx(h)) , j = 1, 2. (23)

12
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From (10) it follows that

φx(h)IE [K2
1(x)]

IE2[K1(x)]
−→ a2(x)

a2
1(x)

as n→∞. (24)

Then, using (19), (21), (22) and (24), we get

nφx(h)V ar
[
Φ̂(u, x)

]
−→ p(1− p)a2(x)

a2
1(x)

= [fx(tp(x))σ(x)]2 as n→∞. (25)

In the second step we focus on the asymptotic normality. For this, let

Mi(x) =
1

nIE[K1(x)]
Ki(x)

[
1I{Yi≤τp(u,x)} − p

]
.

It is enough to show that for some δ > 0

n∑

i=1

IE
[
|Mi(x)− IE [Mi(x)] |2+δ

]

(
V ar

(
n∑

i=1

Mi(x)

))(2+δ)/2
−→ 0 as n→∞. (26)

From (25) it is clear that nφx(h)V ar (
∑n

i=1Mi(x)) converges to [fx(tp(x))σ(x)]2 as n tends to

infinity. Therefore, to conclude the proof, it is enough to show that, after normalization, the

numerator in (26) converges to 0. Since the observations are iid, using the Cr-inequality (see Loève

(1963, p. 155), we get

(nφ(h))(2+δ)/2

n∑

i=1

IE

[∣∣∣Mi(x)− IE [Mi(x)]
∣∣∣
2+δ
]
≤ 21+δn (nφ(h))(2+δ)/2 {IE

[
|M1(x)|2+δ

]
+ |IE [M1(x)] |2+δ

}

=: N1(x) +N2(x). (27)

Observe that, according to (23), we have, for j = 1, 2, under (H1′), IE
[
Kj

1(x)
]

= O(φx(h)). Then,

N1(x) = 21+δn−δ/2(φx(h))−1−δ/2
( φx(h)

IE[K1(x)]

)2+δ

IE
[
K2+δ

1 (x)
∣∣1I{Y1≤τp(u,x)} − p

∣∣2+δ
]

≤ 21+δ(nφx(h))−δ/2
( φx(h)

IE[K1(x)]

)2+δ(
IE
[
K2+δ

1 (x)
]
/φx(h)

)
−→ 0 as n→∞

under (H1′), (H3′) and (H4′). Similarly,

N2(x) = 21+δn−δ/2 (φx(h))(2+δ)/2 IE−2−δ[K1(x)]IE2+δ
[
K1(x)

∣∣1I{Y≤τp(u,x)} − p
∣∣]

≤ 21+δn−δ/2 (φx(h))(2+δ)/2 → 0 as n→∞

13
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which concludes the proof.
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