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Deviation of discrete distributions – positive

and negative results 1

Tamás F. Móri

Department of Probability Theory and Statistics, Eötvös Loránd University,
Pázmány P. s. 1/C, H-1117 Budapest, Hungary

Abstract

The paper is devoted to the problem of estimating the deviation of two discrete
probability distributions in terms of the supremum distance between their generat-
ing functions over the interval [0, 1]. The deviation can be measured by the difference
of the kth terms, or by total variation distance. In addition to upper bounds we
illustrate the limitations of such estimations by counterexamples. Such problems
arise e.g. when Poisson limit results are proved by sieve methods.

Key words: Poisson approximation, Rényi sieve, Bonferroni inequalities,
generating function, spread polynomials
1991 MSC: 60E15

1 Poisson approximation by sieve methods

In discrete probability there are naturally arising situations where given are
two discrete probability distributions, and one can derive estimates for the
difference of the corresponding generating functions over the interval [0, 1].
Then the problem is, how those estimates can be transformed into estimations
for the difference of probabilities.

For example, consider a finite collection of possibly dependent random events
A1, A2, . . . , An. Let N denote the (random) number of events that occur. In
many cases N is approximately Poisson distributed, particularly, when the
number of events is large, their probabilities are small, and the dependence is
weak. This can be quantified in several ways, like sieve methods or Chen–Stein
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approximation. A great advantage of the latter is that it provides an estimate
for the total variation distance of N from the Poisson law, see Arratia et al.
(1989), but there are models, lacking independence, where it is very hard to
apply. Sieve methods often work with generalized Bonferroni inequalities of
the form

P (N = k) ≤ (≥)
∑

M

c(M)P

( ⋂

i∈M

Ai

)
, (1)

where in the sum M runs over the subsets of {1, 2, . . . , n}, and the c(M)
are real constants. Note that such an estimation is supposed to be valid for
arbitrary events in an arbitrary probability space. Bonferroni-type inequalities
with applications are collected in the monograph Galambos and Simonelli
(1996).

An important example is the graph-sieve of Rényi (1976) (originally published
in Hungarian in 1961), see also Móri (1990) for an application. While Rényi’s
formula only applies to the case k = 0, the general case is covered by Galambos
(1966), but his estimates become more and more difficult to calculate as k
grows. Therefore it is more convenient to show the approximate Poissonity
of N by applying generating functions. If we have a lower or upper estimate
for P (N = 0) of the form (1), we also have an estimate for the probability
generating function of N , namely,

gN(t) = E(tN) ≤ (≥)
∑

M

c(M)P

( ⋂

i∈M

Ai

)
(1 − t)|M |, (2)

for 0 ≤ t ≤ 1, see Móri (1996). In this way we can estimate the deviation of
gN(t) from the generating function of the approximating Poisson distribution.
Based on this information, can we estimate the deviation of P (N = k) from
the corresponding Poisson probability?

More generally, let F be the set of real power series f(t) =
∑∞

k=0 akt
k such

that
∑∞

k=0 |ak| ≤ 2 and
∑∞

k=0 ak = 0. Such a power series is convergent over
the interval [0, 1]. Let ∆ = ∆(f) = max0≤t≤1 |f(t)|. How large can |ak | be if
∆ is fixed?

If p = (p0, p1, . . . ) and q = (q0, q1, . . . ) are discrete probability ditributions
with generating functions gp(t) and gq(t), resp., then f = gp − gq ∈ F , and
ak = pk − qk.

The problem differs from those investigated in probability and mathematical
analysis by the constraint that f , the generating function of the real sequence
a = (a0, a1, . . . ), is only available over the real interval [0, 1]. In a more common
situation it is known over the complex unit circle (that is, we can work with
the difference of characteristic functions), and estimates like the Caregradsky –
Franken inequality are at hand, see Caregradsky (1958), Franken (1963/64).
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In Móri (1996) it is shown that |ak | cannot be estimated uniformly in k. A
simple counterexample is constructed by setting ak = 1, ak+1 = −1, and
aj = 0 otherwise. Then |ak | = 1, while

∆ = max
0≤t≤1

tk(1 − t) ∼ 1

ek
.

Let ϕ : [0, 1] → R be an arbitrary increasing function such that limt↓0 ϕ(t) < 1.
Then maxj≥0 |aj | = 1 > ϕ(∆), if k is chosen sufficiently large.

Thus one can only hope to estimate |ak | in terms of ∆ and k. Such an estimate
is given by the following result of Móri (1996).

Theorem 1.1 Let ε > 0 be arbitrarily small. Then there exists a sequence of
finite constants ck(ε), k = 0, 1, . . . , such that

|ak| ≤ ck(ε)∆
1−ε

for every f ∈ F .

Can ε be 0? This question was posed and left unanswered in Móri (1996). As we
shall see in Section 2, the answer is negative. However, the result of Theorem
1.1 can still be improved. New upper estimates are presented is Section 3.

Acknowledgement

The author wishes to thank an anonymous referee for his/her valuable com-
ments and suggestions.

2 Lower estimates

In the problem of estimating |ak| in terms of ∆ for every fixed k, our next aim
is to point out the limitations of such an estimation.

Theorem 2.1 Let k be an arbitrary positive integer and C a positive constant
satisfying

C < Ck =
1

2(2k)!
[
log

(√
2 + 1

)]2k .

Then for every sufficiently small ∆ > 0 there exists an f ∈ F such that
∆(f) = ∆, and

|ak | ≥ C ∆
(
log

1

∆

)2k

. (3)

3
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In other words, suppose that |ak| ≥ ϕk(∆) is valid for every f ∈ F with some
positive function ϕk. Then, by Theorem 2.1,

lim inf
∆ ↓ 0

ϕk(∆)

∆
(
log 1

∆

)2k ≥ Ck.

Proof. Let Tn denote the degree n Chebyshev polynomial of the first kind,
defined by the trigonometric formula

cos(nω) = Tn(cos ω).

It is well known that

Tn(t) =
1

2

[(
t +

√
t2 − 1

)n
+
(
t −

√
t2 − 1

)n
]
. (4)

The polynomials

Sn(t) =
1

2

(
1 − Tn(1 − 2t)

)

are called the spread polynomials. They were introduced by Wildberger for use
in rational trigonometry. A list of properties of spread polynomials, together
with a reference, can be found in Wikipedia (available online
http://en.wikipedia.org/wiki/Spread Polynomials ).

For our construction we will use the polynomials

Qn(t) = Sn(1 − t) =
1

2

(
1 − Tn(2t − 1)

)
. (5)

They satisfy the trigonometric identity

Qn(cos2 ω) = sin2(nω).

From (5) it is clear that Qn(t) = Sn(t) for even n, and Qn(t) = 1 − Sn(t) for
odd n, thus

Qn(t) =
1 − (−1)n

2
+ (−1)nSn(t).

Using Goh’s explicit formula for the spread polynomials we obtain that

Qn(t) =
1 − (−1)n

2
+

1

2

n∑

k=1

(−1)n−k+1 n

k + n

(
k + n

2k

)
(4t)k.

Hence, the coefficient of tk in Qn(t) satisfies

|an,k| =
n

k + n

(
k + n

2k

)
22k−1 ∼ 22k−1n2k

(2k)!
, (6)

4
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as n → ∞ and k > 0 remains fixed. Moreover, by the inequality of arithmetic
and geometric means, |an,k| is majorized by the right-hand side of (6).

Though
∑n

k=0 an,k = Qn(1) = 1
2

(
1 − Tn(1)

)
= 0, Qn cannot belong to F when

n is large enough, because sn =
∑n

k=0 |an,k| tends to infinity:

sn = (−1)n+1Qn(−1) =
(−1)n

2

(
Tn(−3) − 1

)
.

By (4) we have sn ∼ 2−2
(
3 +

√
8
)n

= 2−2
(√

2 + 1
)2n

.

Let f = ∆Qn, where

n =

⌊
log 1

∆

2 log(
√

2 + 1)

⌋
,

then obviously ∆(f) = ∆. Since ∆sn ∼ 2−2∆
(√

2 + 1
)2n

< 1, it follows that
f ∈ F if n is large enough, that is, if ∆ is sufficiently small. We then have

log
1

∆
∼ log sn ∼ 2n log

(√
2 + 1

)
.

Comparing this with (6) we conclude that

lim
∆↓ 0

|an,k|
(log ∆)2k

= Ck.

Thus f satisfies (3) if ∆ is small enough. This completes the proof. 2

Let us repeat this result in terms of probability distributions.

Corollary 2.1 Let k be an arbitrary positive integer and C < Ck a posi-
tive constant. Then for every sufficiently small ∆ > 0 there exist discrete
probability distributions p and q with generating functions gp(t) and gq(t),
respectively, such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

|pk − qk | ≥ C ∆
(
log

1

∆

)2k

. 2

Here both p and q depend on k and C, but in Poisson approximation one of
the distributions is fixed. This constraint may improve the upper bound by
excluding certain counterexamples. As we shall see in Section 3, in this case
even the total variation distance

‖p − q‖ =
∞∑

k=0

|pk − qk |

can be estimated in terms of ∆ = max0≤t≤1 |gp(t) − gq(t)|.

5
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However, the following theorem shows that the lower bound of Corollary 2.1
remains valid, apart from the value of the threshold Ck, even if one of the
distributons is fixed in such a way that its tail is not too light.

Theorem 2.2 Let p = (p0, p1, . . . ) be a fixed discrete probability distribution
such that pk > 0 for every k = 0, 1, . . . , and

lim sup
k→ ∞

1

2k
log

1

pk
= v < ∞. (7)

Let k be a positive integer and C a positive constant such that

2(2k)!(1 + v)2kC < 1

Then for every sufficiently small positive ∆ there exists a discrete probability
distribution q = (q0, q1, . . . ), such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

|pk − qk | > C ∆
(
log

1

∆

)2k

.

Proof. Let ε > 0 be sufficiently small to satisfy 2(2k)!(1 + v + ε)2kC < 1. Let
qj = pj + ∆an,j for j = 0, 1, . . . , n, where

n =

⌊
1

2(1 + v + ε)
log

1

∆

⌋
, (8)

and qj = pj for j > n. Note that ∆ ≤ e−2n(1+v+ε) by this choice of n.

First we show that this definition is correct, that is, q is a probability distri-
bution if ∆ is small enough, or equivalently, n is large enough. From (7) it
follows that pj ≥ u e−(v+ε)2j , j = 0, 1, . . . , with some positive u, thus for every
j ≤ n we have

pj

|∆an,j | ≥ 2u(2j)!

∆(2n)2je(v+ε)2j
.

By analyzing the ratio of consecutive terms one can see that the right-hand
side is a decreasing function of j. Hence, by applying (8) and the Stirling
formula we obtain that

pj

|∆an,j | ≥ 2u(2n)!

∆(2n)2ne(v+ε)2n
≥ 2u(2n)!e2n

(2n)2n
≥ 4u

√
nπ > 1.

Now, gq(t) − gp(t) = ∆ · Qn(t), hence ∆(gp − gq) = ∆. Therefore, by (6),

|pk − qk|
∆
(
log 1

∆

)2k =
|an,k|

(
log 1

∆

)2k ∼ 1

2(2k)!(1 + v + ε)2k
> C,

6
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as ∆ → 0. 2

If the tail of p is lighter than exponential, the order of magnitude of the lower
bound decreases. Namely, the following variant of Theorem 2.2 can be proved
by similar reasoning.

Theorem 2.3 Let p = (p0, p1, . . . ) be a fixed discrete probability distribution
such that pk > 0 for every k = 0, 1, . . . , and

lim sup
k→ ∞

1

h(k)
log

1

pk
= v,

where v is positive and finite, h is a positive, continuous, increasing func-
tion, regularly varying at infinity with exponent α, and limk→ ∞ h(k)/k = ∞
(hence α ≥ 1). Let k be a positive integer and C a positive constant satisfying

21−2k(2k)! v2k/α C < 1.

Then for every sufficiently small positive ∆ there exists a discrete probability
distribution q = (q0, q1, . . . ), such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

|pk − qk | > C ∆
(
h−1

(
log

1

∆

))2k

.

Proof. Choose ε > 0 to satisfy

C <
22k−1

(2k)!(v + ε)2k/α
. (9)

Let qj = pj + ∆an,j for j = 0, 1, . . . , n, where

n =
⌊
h−1

(
1

v + ε
log

1

∆
,
)⌋

and qj = pj for j > n. Then ∆ ≤ e−h(n)(v+ε). Again, q is a probability
distribution if n is large enough; this can be shown in the same way as in the
proof of Theorem 2.2.

This time log 1
∆

∼ h(n)(v + ε), and h−1 is regularly varying at infinity with
exponent 1/α. Therefore, by (6) and (9),

|pk − qk |
∆
(
h−1

(
log 1

∆

))2k =
|an,k|

(
h−1

(
log 1

∆

))2k ∼ 22k−1n2k

(2k)! (n(v + ε)1/α)
2k > C,

as ∆ → 0. 2

7
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Particularly, when pk =
λk

k!
e−λ, we have

lim
k→ ∞

1

k log k
log

1

pk
= 1,

hence the following theorem holds.

Corollary 2.2 Let p be the Poisson distribution with parameter λ. Let k
be a positive integer and 0 < C < 22k−1/(2k)!. Then for every sufficiently
small positive ∆ there exists a discrete probability distribution q such that
max
0≤t≤1

|gp(t) − gq(t)| = ∆, and

|pk − qk | > C ∆

(
log 1

∆

log log 1
∆

)2k

. 2

Next, let us see what the constructions of Theorems 2.2 and 2.3 give for the
total variation distance ‖p − q‖.

Theorem 2.4 Let p = (p0, p1, . . . ) be a fixed discrete probability distribution
satisfying the conditions of Theorem 2.2, and let

C > 1 − log(
√

2 + 1)

1 + v

Then for every sufficiently small positive ∆ there exists a discrete probability
distribution q = (q0, q1, . . . ), such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

‖p − q‖ > ∆C .

Proof. Let q be the discrete probability distribution constructed in the proof
of Theorem 2.2, with a sufficiently small ε. Then ‖p − q‖ = ∆sn, where sn is
the quantity introduced in the proof of Theorem 2.1. Thus, we have

‖p − q‖ = ∆ · 2−2
(√

2 + 1
)2n

(1 + o(1)).

Here

log
(
2−2

(√
2 + 1

)2n
)

log ∆
= −

log
(√

2 + 1
)

1 + v + ε
+ O(1/n),

which is smaller than C − 1, if n is large and ε is small enough. 2

Theorem 2.5 Let p = (p0, p1, . . . ) be a fixed discrete probability distribution
satisfying the conditions of Theorem 2.3, and let

0 < C < 2 log
(√

2 + 1
)
v−1/α. (10)

8
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Then for every sufficiently small positive ∆ there exists a discrete probability
distribution q = (q0, q1, . . . ), such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

‖p − q‖ > ∆ · exp
(
C h−1

(
log

1

∆

))
.

Proof. Let q be the discrete probability distribution constructed in the proof
of Theorem 2.3, with a sufficiently small ε. Then ‖p − q‖ = ∆sn again. Since
log 1

∆
= h(n)(v+ε)(1+o(1)), and h−1 is regularly varying with exponent 1/α,

we obtain that

n = h−1

(
1 + o(1)

v + ε
log

1

∆

)
=

1 + o(1)

(v + ε)1/α
h−1

(
log

1

∆

)
.

Therefore

sn =
1

4
exp

(
2n log

(√
2 + 1

))
(1 + o(1))

= exp

(
2 log

(√
2 + 1

)

(v + ε)1/α
(1 + o(1)) h−1

(
log

1

∆

)
+ O(1)

)

> exp
(
C h−1

(
log

1

∆

))
,

if n is large and ε is small enough. 2

Corollary 2.3 Let p be the Poisson distribution with parameter λ. Then for
every sufficiently small positive ∆ there exist a discrete probability distribution
q = (q0, q1, . . . ), such that max

0≤t≤1
|gp(t) − gq(t)| = ∆, and

‖p − q‖ > ∆ exp

(
1.76

log 1
∆

log log 1
∆

)
.

Proof. In the case of Poisson distribution h(n) = n log n, α = 1, and v = 1,
thus the right-hand side of (10) equals 1.7627 . . . 2

Let us close this section with an open problem. Are the above constructions ex-
tremal in the sense that the bounds of Corollaries 2.1 and 2.2 are sharp? That
is, are there finite constants C ′

k such that for arbitrary discrete distributions
p and q we can write

|pk − qk| ≤ C ′
k ∆

(
log

1

∆

)2k

?

9



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Are there finite constants C ′′
k such that for every λ > 0 and discrete distribu-

tion q ∣∣∣∣∣
λk

k!
e−λ − qk

∣∣∣∣∣ ≤ C ′′
k ∆

(
log 1

∆

log log 1
∆

)2k

?

Chebyshev polynomials are characterized by their heavy oscillation with small
amplitude. I have the feeling that oscillation is somehow necessary for getting
relatively large coefficients. For instance, Chebyshev polynomials are known
to have the largest principal coefficient among all polynomials of the same
degree with fixed L∞-norm over the interval [−1, +1]. In the light of these
facts our construction seems extremal, at least in the order of magnitude.

3 Upper estimates

First we show that the ∆1−ε bound of Theorem 1.1 can be improved to ∆
multiplied by a function of ∆, which is slowly varying at 0. All one has to do
is to choose ε optimally in Theorem 2(c) of Móri (1996).

Theorem 3.1 For every f ∈ F ,

|ak| ≤ ∆ exp

(
2
(
k log

1

∆

)4/5
)
, k = 0, 1, . . . .

Proof. For k = 0 the inequality is obvious. Let k ≥ 1. If log 1
∆

< 25k4, then

∆ exp
(
2
(
k log 1

∆

)4/5
)

= exp
(
2
(
k log 1

∆

)4/5 − log 1
∆

)

= exp
((

log 1
∆

)4/5
((

25k4
)1/5 −

(
log 1

∆

)1/5
))

≥ 1,

hence we can suppose that

log 1
∆

≥ 25k4. (11)

By Theorem 2(c) of Móri (1996) we have

|ak| ≤ 2 · 3

(
⌈u⌉+1

2

)
∆1−ε,

where u =
k2

πε2
. Therefore

|ak | ≤ ∆ exp

(
log 2 + log 3

(
u + 2

2

)
+ ε log

1

∆

)
.

10
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For fixed k and ∆ let us choose ε to minimize the order of magnitude of the
exponent above. Let

ε =
1.6k

(
k log 1

∆

)1/5
. (12)

Then

u =

(
k log 1

∆

)2/5

1.62k2π
, (13)

and, by (11), ε ≤ 0.8, u ≥ 1

πε2
> 0.4. Hence

(
u + 2

2

)
u−2 < 11, thus

|ak | ≤ ∆ exp

(
log 2 + 13 u2 + ε log

1

∆

)
. (14)

Here

log 2 ≤ log 2

24k4

(
k log

1

∆

)4/5

follows by (11). Plugging this, (12), and (13) into (14) one obtains that

|ak| ≤ ∆ exp

(
C
(
k log

1

∆

)4/5
)
,

where

C =
log 2

24k4
+

13

1.64k4π2
+ 1.6 < 2. 2

Though we have seen in Section 1 that |ak| cannot be estimated uniformly
in k in terms of ∆, this is not the case when ak = pk − qk with a fixed,
known probability distribution p = (p0, p1, . . . ). Then, for arbitrary discrete
probability distribution q, even the total variation distance

‖p − q‖ =
∞∑

k=0

|pk − qk |

can be estimated in terms of ∆ = max0≤t≤1 |gp(t) − gq(t)|.

Theorem 3.2 Let the distribution p be fixed. Then there exists an increasing
function ϕ : [0, 1] → R, depending on p, such that limt↓0 ϕ(t) = 0, and ‖p −
q‖ ≤ ϕ(∆) holds for arbitrary discrete probability distribution q.

Proof. Introduce the notation x+ = max{x, 0}, and let rn = pn + pn+1 + . . . .
Then for arbitrary positive integer N we can write

‖p − q‖ = 2
∞∑

k=0

(pk − qk)
+ ≤ 2

N −1∑

k=0

|pk − qk| + 2rN

≤ 2
N −1∑

k=0

∆ exp

(
2
(
k log

1

∆

)4/5
)

+ 2rN , (15)

11
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by Theorem 3.1. The right-hand side of (15) is independent of q. Let ϕ(∆)
be its minimum as N runs over the positive integers. The minimum exists,
because the first sum becomes greater than 1 if n is large enough. Let N be
fixed. The first sum vanishes as ∆ tends to 0, thus lim∆↓0 ϕ(∆) ≤ rN . Since
rN can be arbitrarily small, the proof is completed. 2

Unfortunately, the function ϕ obtained this way is slowly varying at 0 in the
most important cases, namely, whenever the tail of p is not extremely light.
Indeed, suppose that pN > exp

(
−N4−ε

)
holds eventually, and ∆ is small

enough. The right-hand side of (15) is greater than

2∆ exp

(
2
(
(N − 1) log

1

∆

)4/5
)

+ 2pN .

If N >
(
log 1

∆

)1/4
, the first term is at least 2. In the complementary case the

second term is greater than

exp

(
−
(
log

1

∆

)1−ε/4
)
,

hence the minimum must be slowly varying at 0.

Finally, we return to our starting problem of Poisson approximation.

Theorem 3.3 Let p be the Poisson distribution with parameter λ. Then

‖p − q‖ = o

(
exp

(
−
(
log

1

∆

)1/4
))

,

as q varies in such a way that ∆ → 0.

This bound could be improved with a more careful analysis, but not essentially:
the exponent 1/4 cannot be increased with our method.

Proof. Let ξ be a random variable with Poisson(λ) distribution. Then, by the
Markov inequality we have

rN = P (ξ ≥ N) = P
(
N ξ ≥ NN

)
≤ N −NEN ξ = e−λ

(
e−λN

)−N
.

From (15) it follows that

‖p − q‖ ≤ 2N∆ exp

(
2
(
N log

1

∆

)4/5
)

+ 2e−λ
(
e−λN

)−N

. (16)
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Now is the time for us to choose N . Let

N =




5
(
log 1

∆

)1/4

log log 1
∆




.

The exponent in the first term of the right-hand side of (16) is o
(
log 1

∆

)
, thus

the first term is negligible compared to what we have to prove. In the second
term we can write

(
e−λN

)−N
= exp

(
λN − N log N

)
= exp

(
− 5

4

(
log

1

∆

)1/4

(1 + o(1))

)
,

which proves the theorem. 2
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