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A random walk performs a motion in an iid-environment and observes an iid-scenery along its path.

Assuming the scenery is in the domain of attraction of an extreme-value distribution, we prove a limittheorem for the observed extremes.

Introduction

The following model for a random walk in random environment can be found in the physical literature (see Anshelevic and Vologodskii (1980), Alexander et al. (1981), [START_REF] Kawazu | On birth and death processes in symmetric random environment[END_REF]). The random
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environment is described by a family of positive iid random variables {λ j ; j ∈ Z} on a fixed probability space (Ω, F, IP). We denote by A the σ-algebra generated by the random variables {λ j ; j ∈ Z}. Further, let {X(t); t ≥ 0} be a continuous-time random walk on Z with transition rates given by IP(X(t + h) = j + 1|X(t) = j, A) = λ j h + o(h)

IP(X(t + h) = j -1|X(t) = j, A) = λ j-1 h + o(h) IP(X(t + h) = j|X(t) = j, A) = 1 -(λ j + λ j-1 )h + o(h)
as h → 0. The resulting process is a birth-death process with random birth and death rates. It is a special case of a random walk in a random environment. The process {X(t); t ≥ 0} is symmetric in the sense that the probability of moving from j to j + 1 is equal to that of moving from j + 1 to j. This models the physical phenomenon that the permeability of the edge connecting the vertex j with the vertex j + 1 does not depend on the direction of the motion. A lot of results have been obtained so far on the asymptotic behavior of the resulting random walk under suitable scaling. In this article we want to investigate how the resulting random walk explores the extremes of a random scenery.

Let {ξ(k); k ∈ Z} be a family of R-valued iid random variables which are assumed to be independent of the process {X(t); t ≥ 0}. The resulting stochastic process {ξ(X(t)); t ≥ 0} is called a random walk in random scenery in the literature.

In this letter we investigate the asymptotic behavior of the maxima Ξ(t) := max{ξ(X(s)); 0 ≤ s ≤ t}.

We assume that the distribution function F of the random variable ξ(1) is in the domain of attraction of an extreme-value distribution G. Then there are two sequences {a n > 0; n ∈ N} and {b n ∈ R; n ∈ N} such that for

M n := max{ξ(1), ..., ξ(n)} follows IP ((M n -b n )/a n ≤ x) = (F (a n x + b n )) n -→ G(x) as n → ∞.
It follows from the convergence of types theorem that the distribution G is either of Fréchet-, Gumbel-or Weibull-type (see [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF]). The characterization of the corresponding domains of attraction and suitable norming constants {a n > 0; n ∈ N} and {b n ∈ R; n ∈ N} were investigated by [START_REF] Gnedenko | Sur la distribution limité du terme d'une série aléatoire[END_REF] and can be found in [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF]. The distribution-function G can be used to define an extreme-value process {Z(t); t ≥ 0} with the following finite dimensional distributions

G t1,...,t k (x 1 , ..., x k ) := G t1 k i=1 x i G t2-t1 k i=2 x i • ... • G t k -t k-1 (x k ).
The process {Z(t); t > 0} is a Markov process and has non-decreasing paths. Further, there exists a version of {Z(t); t ≥ 0} in the space D(0, ∞) := {γ : (0, ∞) → R; γ is right continuous and has left limits}.

It was proved by [START_REF] Lamperti | On extreme order statistics[END_REF] that the rescaled maximum-process

Z (n) (t) := (M [nt] -b n )/a n = (max{ξ(1), ..., ξ([nt])} -b n )/a n
converges in distribution toward Z with respect to the Skorohod-topology on D(0, ∞) (see [START_REF] Resnick | Extreme Values, Regular Variation and Point Processes[END_REF] p.211). Subsequently we will need some results on the random walk {X(t); t ≥ 0}. The following convergence results are described in [START_REF] Kawazu | On birth and death processes in symmetric random environment[END_REF]:

W1. If c := IE[λ -1 0 ] < ∞,
then for almost all environments the sequence of processes

X (n) (t) := n -1 X(n 2 t)
converges in distribution toward the process {c -1/2 B(t); t ≥ 0}, where {B(t); t ≥ 0} is standard Brownian motion on R. (see also [START_REF] Papanicolaou | Boundary value problems with rapidly oscillating random coefficients[END_REF])

W2. If there exists a slowly varying function L 1 such that

1 nL 1 (n) n j=1 1 λ j -→ 1 in probability as n → ∞,
then the sequence of processes

X (n) (t) := 1 n X(n 2 L 1 (n)t)
converges in distribution toward the standard Brownian motion {B(t); t ≥ 0}.

W3. If there exists a slowly varying function L 2 such that the sequence of random variables

Λ (n) := 1 n 1/α L 2 (n) n j=1 1 λ j
converges in distribution toward a one-sided stable distribution Λ with index 0 < α < 1, then the sequence of processes

X (n) (t) := 1 n X(n (1+α)/α L 2 (n)t)
converges in distribution toward a continuous and self-similar process {X * (t); t ≥ 0}.

The self-similar process {X * (t); t ≥ 0} in the previous statement can be constructed as follows:

To the stable distribution Λ corresponds a stable Lévy-subordinator {W o (t); t ≥ 0} starting in zero. Let W + and W -be two independent copies of W o and define

W (t) :=        W + (t) if t ≥ 0 W -(-t) if t < 0.
Let {B(τ ); τ ≥ 0} be standard Brownian motion, which is independent of W + and W -. We denote by {L(τ, x); τ ≥ 0, x ∈ R} the local time of B and define

V * (τ ) := R L(τ, W (x))dx.
Since W and V * are increasing we can define the following pseudo-inverse

W -1 (x) := inf{y ∈ R : W (y) > x} and V -1 * (t) := inf{τ ≥ 0 : V * (τ ) > t} A C C E P T E D M A N U S C R I P T
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In [START_REF] Kawazu | On birth and death processes in symmetric random environment[END_REF] the following representation for X * was given

X * (t) := W -1 (B(V -1 * (t))).
All three situations which were studied by [START_REF] Kawazu | On birth and death processes in symmetric random environment[END_REF] have in common the property that there exists a suitable increasing sequence {k n ; n ∈ N} and a suitable continuous process {Y (t); t ≥ 0} such that for n → ∞ the sequence of processes

X (n) (t) := 1 n X(k n t)
converges in distribution toward the process Y . Without loss of generality we assume that the processes Y and Z are independent. In the following we will use the following notation for the range of Y during the

time interval (t 1 , t 2 ] Y (t 1 , t 2 ] := {Y (s); s ∈ (t 1 , t 2 ]}.
Moreover, we will denote by m the Lebesgue measure on R. According to the three situations we will prove the following theorem in this letter.

Theorem 1 The sequence

Ξ (n) (t) := (max{ξ(X(s)); 0 ≤ s ≤ k n t} -b n )/ a n
converges in distribution toward the stochastic process {Z(m(Y (0, t])); t ≥ 0}.

Remarks: 1) We note that the results from [START_REF] Kawazu | On birth and death processes in symmetric random environment[END_REF] were generalized in [START_REF] Kawazu | A one-dimensional birth and death process in random environment[END_REF].

He considered random walks in random environments defined by the following transition asymptotics

IP(X(t + h) = j + 1|X(t) = j, A) = (λ j /η j )h + o(h) IP(X(t + h) = j -1|X(t) = j, A) = (λ j-1 /η j )h + o(h) IP(X(t + h) = j|X(t) = j, A) = 1 -((λ j + λ j-1 )/η j )h + o(h),
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where {η j ; j ∈ N} is an iid family of positive random variables satisfying suitable assumptions. It is not difficult to see that our results can be generalized to this situation after some straight forward modification of the scaling.

2) The process {ξ(X(s)); s ≥ 0} is stationary. There exist general results on the extremes of stationary sequences (see [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF]). However those results need some special mixing-conditions called

D(u n ) and D ′ (u n ).
It can be proved that the condition D(u n ) does not hold for the sequence {ξ(X(k n )); n ∈

N} with u n = a n x -b n .
3) In [START_REF] Franke | The extremes of random walks in random scenery[END_REF] we proved similar theorems for a situation which is related to classical random walks {S n ; n ∈ N}. The proofs presented there are based on random point processes and can be generalized to cover the present situation. However, the proof presented in the next section is more elementary and therefore interesting for a larger audience.

4) We remark that the distribution of Z(m(Y (0, 1])) has the following expression

IP(Z(m(Y (0, 1])) ≤ x) = IE (G(x)) m(Y (0,1]) = ∞ 0 (G(x)) t IP m(Y (0,1]) (dt).
If we use the known expressions for the extreme-value distribution G, we see that the limit-distributions are mixtures of extreme-value distributions. Those distributions are in general not extreme-value distributions.

The Proof of Theorem 1

Obviously the distribution of Ξ(t) = max{ξ(X(s)); 0 ≤ s ≤ t} depends on the range of the underlying random walk {X(t); t ≥ 0}. We therefore have to understand the asymptotic behavior of the process

R(t) := card{X(s); 0 ≤ s ≤ t}.
Lemma 1 For all M ∈ N and 0 < t 1 < ... < t M the joint distributions of (R(k n t 1 )/n, ..., R(k n t M )/n) converge in distribution toward the random vector (m(Y (0, t 1 ]), ..., m(Y (0, t M ])).

Proof: We use the independence of the random walk and the scenery to prove

IP(τ 1 ∈ B 1 , τ 2 ∈ B 2 , ξ(X(τ 1 )) ∈ A 1 , ξ(X(τ 2 )) ∈ A 2 ) = z z ′ =z IP(X(τ 1 ) = z, ξ(z) ∈ A 1 , τ 1 ∈ B 1 , X(τ 2 ) = z ′ , ξ(z ′ ) ∈ A 2 , τ 2 ∈ B 2 ) = z z ′ =z IP(X(τ 1 ) = z, τ 1 ∈ B 1 , X(τ 2 ) = z ′ , τ 2 ∈ B 2 )IP(ξ(1) ∈ A 1 , ξ(2) ∈ A 2 ) = IP(τ 1 ∈ B 1 , τ 2 ∈ B 2 )IP(ξ(1) ∈ A 1 , ξ(2) ∈ A 2 ).
The general case follows similarly.

For t 1 < t 2 we define the random variables Ξ(t 1 , t 2 ) := max{ξ(X(s)); t 1 < s ≤ t 2 } and R(t 1 , t 2 ) := R(t 2 ) -R(t 1 ). The following lemma holds.

Lemma 3 For all k ∈ N, x 1 , ..., x k ∈ R and t 1 < t 2 < ... < t k we have that

IP(Ξ(t 1 ) ≤ x 1 , ..., Ξ(t k ) ≤ x k ) = IE (F (x 1 ∨ ... ∨ x k )) R(t1) (F (x 2 ∨ ... ∨ x k )) R(t1,t2) • ... • (F (x k )) R(t k-1 ,t k ) .
Proof: As before we show the case k = 2. The general case follows by the same arguments. We have t1,t2) .

IP(Ξ(t 1 ) ≤ x 1 , Ξ(t 2 ) ≤ x 2 ) = IP(Ξ(t 1 ) ≤ x 1 ∨ x 2 , Ξ(t 1 , t 2 ) ≤ x 2 ) = ∞ m1=1 ∞ m2=1 IP(Ξ(t 1 ) ≤ x 1 ∨ x 2 , Ξ(t 1 , t 2 ) ≤ x 2 , R(t 1 ) = m 1 , R(t 1 , t 2 ) = m 2 ) = ∞ m1=1 ∞ m2=1 (F (x 1 ∨ x 2 )) m1 (F (x 2 )) m2 IP(R(t 1 ) = m 1 , R(t 1 , t 2 ) = m 2 ) = IE (F (x 1 ∨ x 2 )) R(t1) (F (x 2 )) R(
Here we have used the previous lemma and the fact that on the set

{ω ∈ Ω; R(t 1 , t 2 ) = m 2 , R(t 1 ) = m 1 } the statement Ξ(t 1 , t 2 ) ≤ x 2 is equivalent to max{ξ(X(τ i )); m 1 < i ≤ m 1 + m 2 } ≤ x 2 .
Proposition 1 The finite-dimensional distributions of the processes {Ξ (n) (t); t ≥ 0} converge the finite-dimensional distributions of {Z(m(Y (0, t]); t ≥ 0}.

Proof: We first note that for u n = a n x + b n we have

(F (u n )) n -→ G(x) as n → ∞.
By Lemma 1 the random variables R 

(n) 1 := n -1 R(k n t) and R (n) 2 := n -1 R(k n t 1 , k n t 2 ) converge jointly in distribution toward the random variables R 1 := m(Y (0, t 1 ]) and R 2 := m(Y (0, t 2 ]) -m(Y (0, t 1 ]).
((F (u n )) n ) R(n) i -→ (G(x)) Ri IP-almost surely as n → ∞.
Moreover, by Lemma 3 it follows that IP(Ξ (n) (t 1 ) ≤ x 1 , Ξ (n) (t 2 ) ≤ x 2 ) = IP(Ξ(k n t 1 ) ≤ a n x 1b n , Ξ(k

n t 2 ) ≤ a n x 2 -b n ) = IE (F (a n (x 1 ∨ x 2 ) -b n )) R(knt1) (F (a n (x 2 -b n )) R(knt1,knt2) = IE (F (a n (x 1 ∨ x 2 ) -b n )) n R(n) 1 (F (a n x 2 -b n )) n R(n) 2 .
The dominated convergence theorem then yields

IP(Ξ (n) (t 1 ) ≤ x 1 , Ξ (n) (t 2 ) ≤ x 2 ) -→ IE (G(x 1 ∨ x 2 )) R1 (G(x 2 )) R2
as n → ∞.

The proposition now follows from the definition of the extreme-value process Z, which yields the identity IP(Z(m(Y (0, t 1 ])) ≤ x 1 , Z(m(Y (0, t 2 ])) ≤ x 2 ) = IE (G(x 1 ∨ x 2 )) R1 (G(x 2 )) R2 .

Of course the general statement holds with the same arguments.
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Proof: Since the random walk {X(t); t ≥ 0} makes only jumps of size one, we immediately see that R(t) = 1 + max{X(s); s ≤ t} + min{X(s); s ≤ t}.

Since the functions max and min are continuous with respect to the Skorohod-topology, we can use the continuous mapping theorem and the statements (W1), (W2) and (W3) to prove the convergence of R(k n t)/n toward m(Y (0, t]) = max{Y (s); s ≤ t} + min{Y (s); s ≤ t}.

The same arguments prove the joint convergence of the vector-components.

For k ∈ N we define the sequence of random variables

The random variable τ k is the waiting times until the process X has visited k sites. The number of new sites visited by X (n) during the time-interval (t 1 , t 2 ] is equal to

∈ {X(r); r < s}}.

The process X (n) visits a new site during the time-interval (t 1 , t 2 ] if and only if there exists an integer l such that τ l /k n ∈ (t 1 , t 2 ]. This implies the following identity

The following lemma states that conditioned on τ 1 , ..., τ k the distribution of ξ(X(τ 1 )), ..., ξ(X(τ k )) equals the distribution of ξ(1), ..., ξ(k).

Lemma 2 For all L ∈ N and all measurable sets
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Proof of Theorem 1: It remains to prove that the sequence {Ξ (n) ; n ∈ N} is tight in the J 1 -topology on D(0, ∞). We first note that the processes {Ξ (n) (t); t ≥ 0} has the same distributions as the process

Then it is sufficient to prove the tightness for the process

To see the equivalence of the two sequences we note that by Lemma 3

Now we prove the tightness of the process Z (n) • R (n) . We use a criterion for tightness which can be found in [START_REF] Stone | Weak convergence of stochastic processes defined on semi-infinite time-intervals[END_REF]. For a given D-valued process W , N > 0 and c > 0 we define the random variable ∆

(2)

Further, we define the random variables ∆

(1)

The criterion proved by [START_REF] Stone | Weak convergence of stochastic processes defined on semi-infinite time-intervals[END_REF] states that

and N > 0 one has IP ∆

(2)
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The statement ∆

(2)

implies for all µ > 0 and M > 0 ∆

(1)

Since R (n) converges in distribution toward the process R(t) := m(Y (0, t]), we can find for a given δ > 0 a suitable M > 0 such that IP ∆ (0)

Further, since the process R is continuous, we have IP ∆

(1)

Moreover, the weak convergence of {Z (n) ; n ∈ N} was proved in [START_REF] Lamperti | On extreme order statistics[END_REF]. Therefore, we have that IP ∆

(2)

M,µ Z (n) > ǫ -→ 0 as n → ∞ and then µ → 0.

The result now follows from those considerations.
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