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Abstract
The classical Marcinkiewicz-Zygmund law for iid random variables has been generalized by
Gut (1978) to random fields. Therein all indices have the same power in the normalization.
Looking into some weighted means of random fields, such as Cesàro summation, it is of in-
terest to generalize these laws to the case where different indices have different powers in the
normalization. In this paper we give precise moment conditions for such laws.

1 Introduction

Let X, {Xk, k ≥ 1} be i.i.d. random variables with and partial sums {Sn, n ≥ 1}. The classical
Marcinkiewicz-Zygmund strong law of large numbers [6] (see also [3], Theorem 6.7.1) reads as
follows.

Theorem 1.1 Let 0 < r < 2, and suppose that X, X1, X2, . . . are independent, identically dis-
tributed random variables. If E|X |r < ∞, and E X = 0 when 1 ≤ r < 2, then

Sn

n1/r

a.s.→ 0 as n → ∞.

Conversely, if almost sure convergence holds as stated, then E|X |r < ∞, and E X = 0 when
1 ≤ r < 2.

Now, let, for d ≥ 2, Zd, be the positive integer d-dimensional lattice with coordinate-wise partial
ordering ≤. The following multiindex version of the Marcinkiewicz-Zygmund strong law was given
in [2].

Theorem 1.2 Let 0 < r < 2, and suppose that X, {Xk, k ∈ Zd} be i.i.d. random variables with
partial sums Sn =

∑
k≤n Xk, n ∈ Zd. If E|X |r(log+ |X |)d−1 < ∞, and E X = 0 when 1 ≤ r < 2,

then
Sn

|n|1/r

a.s.→ 0 as n → ∞.

Conversely, if almost sure convergence holds as stated, then E|X |r(log+ |X |)d−1 < ∞, and E X = 0
when 1 ≤ r < 2.

Here |n| =
∏d

k=1 nk and n → ∞ means min1≤k≤d nk → ∞, that is, all coordinates tend to infinity.
Also, throughout, log+ x = max{1, logx}.

We wish to generalize the multiindex version so that instead of normalizing with |n|1/r we
normalize with different powers for different coordinates. Looking into Cesàro means for random
fields (see [4]) it is of interest to control these sums. The main results are presented in the following
section followed by a section with proofs. For convenience we will use the parametrization α = 1/r,
i.e., 1 ≤ r < 2 is translated into 1/2 < α ≤ 1.
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2 A. Gut and U. Stadtmüller

2 Main results

In order to formulate our main results let |nα| =
∏d

k=1 nαk

k . More precisely, we wish to examine
the asymptotics for

Sn

|nα| =

∑
k≤n Xk

|nα| , where w.l.o.g. 1/2 < α1 = · · · = αp < αp+1 ≤ · · · ≤ αd ≤ 1 , (2.1)

and where p is some integer between 1 and d. In case p = d the situation reduces to that of
Theorem 1.2. Our main result is as follows.

Theorem 2.1 Assume the parameter constellation (2.1). Then E|X |1/α1(log+ |X |)p−1 < ∞, and
E X = 0 imply that

Sn

|nα|
a.s.→ 0 as n → ∞. (2.2)

Conversely, (2.2) implies that E|X |1/α1(log+ |X |)p−1 < ∞ and that E X = 0.

Secondly we give a result on convergence in probability, which we need for e.g. desymmetrization,
where a weaker moment assumption should suffice. Here only the number of indices but not the
order of the index set is important. The following result is a slight extension of a result of Le Van
Thanh in [5].

Theorem 2.2 Suppose that 1/2 ≤ α1 ≤ α2 ≤ · · · ≤ αd ≤ 1 with αd > 1/2. If E|X |1/α1 < ∞ and
E X = 0, then

|Sn|
|nα| ≤ |Sn|

|n|α1
→ 0 in L1/α1 and in probability as n → ∞. (2.3)

Actually it suffices here that max
{j:αj>1/2}

{nj } → ∞ .

For the case 1/2 < α1 < 1 we have the following somewhat stronger result.

Theorem 2.3 Suppose that 1/2 < α1 ≤ α2 ≤ · · · ≤ αd < 1. If

n P (|X | > nα1) → 0 as n → ∞ (2.4)

then E|X | < ∞, and if E X = 0, then

Sn

|nα|
p→ 0 as max

j
{nj } → ∞.

Remark 2.1 Note that the Feller-type condition (2.4) is somewhat weaker than demanding that
E(|X |1/α1) < ∞.

Remark 2.2 The case maxj {nj } → ∞ is not relevant in Theorem 2.1 since the result there
depends on the structure of the index set.

The results so far show that the case when one or several α:s are equal to 1/2 are special.
Indeed, in the most extreme case when α1 = · · · = αd = 1/2 there is obviously no convergence in
probability in view of the CLT. Let us therefore discuss the boundary cases w.r.t. a.s. convergence
in dimension d = 2 in more detail. Again, if α1 = α2 = 1/2 then we are in the domain of the
CLT and the pointwise sequences are a.s. unbounded. What happens if only α1 = 1/2? Here the
following situation occurs.
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Theorem 2.4 If 1/2 = α1 < α2 ≤ 1 and E X2 < ∞ and E X = 0, then the following holds:

Sm,n

m1/2nα2

p→ 0 as m, n → ∞ , (2.5)

lim sup
m,n→∞

Sm,n

m1/2nα2
= ∞ a.s., (2.6)

Sm,n√
m log log m nα2

a.s.→ 0 as m, n → ∞ , (2.7)

where for the last result we assume the slightly stronger moment condition E(X2 log+ |X|
log+ log+ |X| ) < ∞.

Remark 2.3 If in (2.7) we replace log log m by a function f(m) = o(log log m) then the random
field is again a.s. unboundedly oscillating. For the proof arguments similar to those for (2.6) can
be used.

3 Proofs

Proof of Theorem 2.1: For the following we define the random variables Yn = Xn 11{ |Xn| ≤ |nα|}.
Then,

∑

n

P (Xn 6= Yn) =
∑

n

P (|Xn| > |nα|) =
∞∑

ν=1

P (|Xn| > να1)
∑

n1 · · ·np n
αp+1/α1
p+1 · · ·nαd/α1

d
=ν

1

=
∞∑

ν=1

P (|Xn| > να1)∆g(ν) ≤
∞∑

ν=0

g(ν)P (να1 < |X | ≤ (ν + 1)α1) ,

where

g(ν) :=
∑

n1· · ·np·nαp+1/α1
p+1 · · ·nαd/α1

d
≤ν

1 ∼ c
ν(log ν)p−1

(ν − 1)!
as ν → ∞

with a suitable constant c > 0 (see Lemma 3 in [9]) and ∆g(ν) = g(ν) − g(ν − 1). Now standard
arguments show that the sum is finite iff E(|X |1/α1(log+ |X |)p−1) < ∞.

Hence we restrict our attention to the random variables Yn. Now, with βℓ = αℓ/α1 > 1 for
p + 1 ≤ ℓ ≤ d , the function

f(ν) :=
∑

n1· · ·np ≤ν

1 ∼ ν(log ν)p−1

(ν − 1)!
as ν → ∞

(see again Lemma 3 in [9]), with differences ∆f(ν) = f(ν) − f(ν − 1) =
∑

n1· · ·np=ν 1, we find that

∑

n

Var (Yn)
|nα|2 =

=
∞∑

ν,np+1,...,nd=1

∆f(ν)
1

ν2α1 · n
2αp+1
p+1 · · · n2αd

d

να1n
αp+1
p+1 · · ·nαd

d∑

j=1

E(X211{j − 1 < |X | ≤ j})

≤
∞∑

ν,np+1,...,nd=1

1

ν2α1 · n
2αp+1
p+1 · · · n2αd

d

∆f(ν)
να1n

αp+1
p+1 · · ·nαd

d∑

j=1

j2P (j − 1 < |X | ≤ j)
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≤ c

∞∑

ν,np+1,...,nd=1

1

ν2α1 · n
2αp+1
p+1 · · · n2αd

d

∆f(ν)
να1n

αp+1
p+1 · · ·nαd

d∑

j=1

( j∑

i=1

i
)
P (j − 1 < |X | ≤ j)

≤ c

∞∑

ν,np+1,...,nd=1

1

ν2α1 · n
2αp+1
p+1 · · · n2αd

d

∆f(ν)
να1n

αp+1
p+1 · · ·nαd

d∑

i=1

iP (|X | > i)

≤ c

∞∑

np+1,...,nd=1

1

n
2αp+1
p+1 · · · n2αd

d




n
αp+1
p+1 · · ·nαd

d∑

i=1

i1/α1−1i2−1/α1P (|X | > i)
∞∑

ν=1

ν−2α1 ∆f(ν)

+
∞∑

i=n
αp+1
p+1 · · ·nαd

d +1

iP (|X | > i)
∞∑

ν=(i/n
αp+1
p+1 · · ·nαd

d )1/α1

ν−2α1 ∆f(ν)




≤ c

∞∑

np+1,...,nd=1

1

n
2αp+1
p+1 · · · n2αd

d


(nαp+1

p+1 · · · nαd

d )2−1/α1

n
αp+1
p+1 · · ·nαd

d∑

i=1

i1/α1−1 P (|X | > i)

+
∞∑

i=n
αp+1
p+1 · · ·nαd

d +1

iP (|X | > i)
∞∑

ν=(i/n
αp+1
p+1 · · ·nαd

d )1/α1

(ν−2α1 − (ν + 1)−2α1) f(ν)




≤ c

∞∑

np+1,...,nd=1

1

n
βp+1
p+1 · · · nβd

d

∞∑

i=1

i1/α1−1 (log i)p−1P (|X | > i) ,

which is finite iff E(|X |1/α1(log+ |X |)p−1) < ∞, once again by Lemma 3 in [9], since βk > 1 for
p + 1 ≤ k ≤ d.

In order to apply the multiindex Kolmogorov’s convergence criterion (see e.g [1]) we next show
that

∣∣∣∣∣
∑

n

E(Yn)
|nα|

∣∣∣∣∣ =

∣∣∣∣∣
∑

n

E(X11{ |X | > |nα|})
|nα|

∣∣∣∣∣

≤
∞∑

ν=1

1
να1

∆g(ν)
∞∑

j=ν

jα1 P ((j − 1)α1 < |X | ≤ jα1)

≤
∞∑

j=1

jα1 P ((j − 1)α1 < |X | ≤ jα1)
j∑

ν=1

1
να1

∆g(ν) ,

which is again finite by our moment assumption. Hence Kolmogorov’s convergence criterion applies
and

∑
n

Yn

|nα| and thus
∑

n
Xn

|nα | converge almost surely.
Finally, by the multiindex Kronecker lemma (cf. [7] for the necessary multiindex partial sum-

mation formula) we conclude that Sn/|nα| → 0 a.s.
For the converse, we note that

Sn

|nα|
a.s.→ 0 as n → ∞ =⇒ Xn/|nα| → 0 as n → ∞ =⇒

∑

n

P (|X | > |nα|) < ∞,

yielding the desired moment condition E(|X |1/α1) < ∞ (cf. [9]) and, obviously, that E X = 0. 2

Proof of Theorem 2.2: Since the inequality in the statement is trivial we only have to prove
convergence of |Sn|

|n|α1 .
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In case α1 = 1/2 we may simply compute the variance which is bounded by

E(X2)/(n2αp+1−1
p+1 · · · n2αd−1

d ) ,

and tends to zero as max{np+1, . . . , nd} → ∞. For α1 > 1/2 the Pyke-Root-inequality (see [8])
tells us that

E
( |Sn|

|n|α1

)1/α1

≤ o(|n|)
|n| → 0 as |n| → ∞ ,

which, in turn, establishes L1/α1-convergence, and, hence, in particular, also convergence in prob-
ability. 2

Proof of Theorem 2.3: Define Y n
k = Xk11{ |Xk| ≤ |nα|} and µn = |n|E(Y n

k ). Then, by the
truncated Chebyshev inequality, we have

P

(∣∣∣∣
Sn − µn

|nα|

∣∣∣∣ > ε

)
≤ 1

|nα|2ε2

n∑

k=1

Var (Y n
k ) + |n|P (|X | > |nα|) = In + IIn .

Note that IIn ≤ |n|P (|X | > |n|α1) → 0 as n → ∞ by assumption. Next,

In ≤ |n|
|nα|2

n1n
α2/α1
2 · · ·nαd/α1

d∑

j=1

E(X211{(j − 1)α1 < |X | ≤ jα1 })

≤ 1
|n2α−1|

n1n
α2/α1
2 · · ·nαd/α1

d∑

j=1

j2α1P ((j − 1)α1 < |X | ≤ jα1)

≤ c

|n2α−1|

n1n
α2/α1
2 · · ·nαd/α1

d∑

j=1

( j∑

i=1

i2α1−1
)
P ((j − 1)α1 < |X | ≤ jα1)

≤ c

|n2α−1|

n1n
α2/α1
2 · · ·nαd/α1

d∑

i=1

i2α1−2 · i P (|X | > iα1)

≤ c n
1−α2/α1
2 · · · n

1−αd/α1
d

n2α1−1
1 n

2α2−α2/α1
2 · · · n

2αd −αd/α1
d

n1n
α2/α1
2 · · ·nαd/α1

d∑

i=1

i2α1−2 · i P (|X | > iα1)

→ 0 as max
j

{nj } → ∞ ,

since we apply — up to a bounded or asymptotically vanishing factor — a regular mean to a
nullsequence (cf. [3], Lemma A.6.1).

If in addition α1 < 1 then, condition (2.4) implies that E(|X |) < ∞, since
∞∑

n=1

P (|X | > n) =
∞∑

n=1

1
n1/α1

· n1/α1P (|X | > n) < ∞ ,

and, moreover, that

|n|
∣∣E(X 11{ |X | ≤ |n|})

∣∣/|nα| = |n|
∣∣ − E(X 11{ |X | > |n|})

∣∣/|nα|
≤ |n|E(|X |11{ |X | > |n|})/|nα| → 0 as |n| → ∞ . 2

Proof of Theorem 2.4: The first result was just shown. For the next one we consider the subse-
quences mk = k and nk = log3 k := log log log k. Then, with the i.i.d. random variables Zk

d= X
and partial sums Tn =

∑n
k=1 Zk, we may, equivalently, consider

Tℓk√
ℓk log2 ℓk

· (log2 ℓk)1/2

(log3 ℓk)α2−1/2
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with ℓk = k log3 k . This sequence oscillates unboundedly as k → ∞ by the law of iterated logarithm
for any α2 . Note that in the LIL the behaviour along the subsequence ℓk is the same as that of
the full sequence.

The third result follows from the LIL for random arrays by Wichura [11], which under the given
moment assumption yields

lim sup
m,n→∞

Smn√
mn log log mn

a.s.= Var (X) .

Now, since
log log m

log log mn
n2α2−1 → ∞ as m, n → ∞ ,

the desired conclusion follows. 2
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