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Introduction

Let X, {X k , k ≥ 1} be i.i.d. random variables with and partial sums {S n , n ≥ 1}. The classical Marcinkiewicz-Zygmund strong law of large numbers [START_REF] Marcinkiewicz | Sur les fonctions indépendantes[END_REF] (see also [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Theorem 6.7.1) reads as follows.

Theorem 1.1 Let 0 < r < 2, and suppose that X, X 1 , X 2 , . . . are independent, identically distributed random variables. If E|X| r < ∞, and E X = 0 when 1 ≤ r < 2, then S n n 1/r a.s.

→ 0 as n → ∞.

Conversely, if almost sure convergence holds as stated, then E|X| r < ∞, and E X = 0 when 1 ≤ r < 2. Now, let, for d ≥ 2, Z d , be the positive integer d-dimensional lattice with coordinate-wise partial ordering ≤. The following multiindex version of the Marcinkiewicz-Zygmund strong law was given in [START_REF] Gut | Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices[END_REF]. Theorem 1.2 Let 0 < r < 2, and suppose that X, {X k , k ∈ Z d } be i.i.d. random variables with partial sums

S n = k≤n X k , n ∈ Z d . If E|X| r (log + |X|) d-1 < ∞, and E X = 0 when 1 ≤ r < 2, then S n |n| 1/r a.s. → 0 as n → ∞.
Conversely, if almost sure convergence holds as stated, then E|X| r (log

+ |X|) d-1 < ∞, and E X = 0 when 1 ≤ r < 2.
Here |n| = d k=1 n k and n → ∞ means min 1≤k≤d n k → ∞, that is, all coordinates tend to infinity. Also, throughout, log + x = max{1, log x}.

We wish to generalize the multiindex version so that instead of normalizing with |n| 1/r we normalize with different powers for different coordinates. Looking into Cesàro means for random fields (see [START_REF] Gut | Cesàro summation for random fields[END_REF]) it is of interest to control these sums. The main results are presented in the following section followed by a section with proofs. For convenience we will use the parametrization α = 1/r, i.e., 1 ≤ r < 2 is translated into 1/2 < α ≤ 1.
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Main results

In order to formulate our main results let

|n α | = d k=1 n αk k .
More precisely, we wish to examine the asymptotics for

S n |n α | = k≤n X k |n α | , where w.l.o.g. 1/2 < α 1 = • • • = α p < α p+1 ≤ • • • ≤ α d ≤ 1 , (2.1) 
and where p is some integer between 1 and d. In case p = d the situation reduces to that of Theorem 1.2. Our main result is as follows.

Theorem 2.1 Assume the parameter constellation (2.1). Then E|X| 1/α1 (log + |X|) p-1 < ∞, and

E X = 0 imply that S n |n α | a.s. → 0 as n → ∞. (2.2)
Conversely, (2.2) implies that E|X| 1/α1 (log + |X|) p-1 < ∞ and that E X = 0.

Secondly we give a result on convergence in probability, which we need for e.g. desymmetrization, where a weaker moment assumption should suffice. Here only the number of indices but not the order of the index set is important. The following result is a slight extension of a result of Le Van Thanh in [START_REF] Van | On the L p -convergence for multidimensional arrays of random variables[END_REF].

Theorem 2.2 Suppose that 1/2 ≤ α 1 ≤ α 2 ≤ • • • ≤ α d ≤ 1 with α d > 1/2. If E|X| 1/α1 < ∞ and E X = 0, then |S n | |n α | ≤ |S n | |n| α1 → 0 in L 1/α1
and in probability as n → ∞.

(2.3)

Actually it suffices here that max {j:αj >1/2} {n j } → ∞ .

For the case 1/2 < α 1 < 1 we have the following somewhat stronger result.

Theorem 2.3 Suppose that 1/2 < α 1 ≤ α 2 ≤ • • • ≤ α d < 1. If n P (|X| > n α1 ) → 0 as n → ∞ (2.4)
then E|X| < ∞, and if E X = 0, then

S n |n α | p → 0 as max j {n j } → ∞.
Remark 2.1 Note that the Feller-type condition (2.4) is somewhat weaker than demanding that

E(|X| 1/α1 ) < ∞.
Remark 2.2 The case max j {n j } → ∞ is not relevant in Theorem 2.1 since the result there depends on the structure of the index set.

The results so far show that the case when one or several α:s are equal to 1/2 are special. Indeed, in the most extreme case when α 1 = • • • = α d = 1/2 there is obviously no convergence in probability in view of the CLT. Let us therefore discuss the boundary cases w.r.t. a.s. convergence in dimension d = 2 in more detail. Again, if α 1 = α 2 = 1/2 then we are in the domain of the CLT and the pointwise sequences are a.s. unbounded. What happens if only α 1 = 1/2? Here the following situation occurs.
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Asymmetric Marcinkiewicz-Zygmund LLN 3 Theorem 2.4 If 1/2 = α 1 < α 2 ≤ 1 and E X 2 <
∞ and E X = 0, then the following holds:

S m,n m 1/2 n α2 p → 0 as m, n → ∞ , (2.5) lim sup m,n→∞ S m,n m 1/2 n α2 = ∞ a.s., (2.6) 
S m,n √ m log log m n α2 a.s. → 0 as m, n → ∞ , (2.7) 
where for the last result we assume the slightly stronger moment condition E(X 

Proofs

Proof of Theorem 2.1: For the following we define the random variables

Y n = X n 1 1{|X n | ≤ |n α |}. Then, n P (X n = Y n ) = n P (|X n | > |n α |) = ∞ ν=1 P (|X n | > ν α1 ) n1 •••np n α p+1 /α 1 p+1 •••n α d /α 1 d =ν 1 = ∞ ν=1 P (|X n | > ν α1 )∆g(ν) ≤ ∞ ν=0 g(ν)P (ν α1 < |X| ≤ (ν + 1) α1 ) ,
where

g(ν) := n1•••np•n α p+1 /α 1 p+1 •••n α d /α 1 d ≤ν 1 ∼ c ν(log ν) p-1 (ν -1)! as ν → ∞
with a suitable constant c > 0 (see Lemma 3 in [START_REF] Stadtmüller | Strong laws for delayed sums of random fields[END_REF]) and ∆g(ν) = g(ν)g(ν -1). Now standard arguments show that the sum is finite iff E(|X| 1/α1 (log + |X|) p-1 ) < ∞.

Hence we restrict our attention to the random variables Y n . Now, with

β ℓ = α ℓ /α 1 > 1 for p + 1 ≤ ℓ ≤ d , the function f (ν) := n1•••np≤ν 1 ∼ ν(log ν) p-1 (ν -1)! as ν → ∞ (see again Lemma 3 in [9]), with differences ∆f (ν) = f (ν) -f (ν -1) = n1•••np=ν 1, we find that n Var (Y n ) |n α | 2 = = ∞ ν,np+1,...,nd=1 ∆f (ν) 1 ν 2α1 • n 2αp+1 p+1 • • • n 2αd d ν α 1 n α p+1 p+1 •••n α d d j=1 E(X 2 1 1{j -1 < |X| ≤ j}) ≤ ∞ ν,np+1,...,nd=1 1 
ν 2α1 • n 2αp+1 p+1 • • • n 2αd d ∆f (ν) ν α 1 n α p+1 p+1 •••n α d d j=1 j 2 P (j -1 < |X| ≤ j) A. Gut and U. Stadtmüller ≤ c ∞ ν,np+1,...,nd=1 1 
ν 2α1 • n 2αp+1 p+1 • • • n 2αd d ∆f (ν) ν α 1 n α p+1 p+1 •••n α d d j=1 j i=1 i P (j -1 < |X| j) ≤ c ∞ ν,np+1,...,nd=1 1 
ν 2α1 • n 2αp+1 p+1 • • • n 2αd d ∆f (ν) ν α 1 n α p+1 p+1 •••n α d d i=1 iP (|X| > i) ≤ c ∞ np+1,...,nd=1 1 
n 2αp+1 p+1 • • • n 2αd d    n α p+1 p+1 •••n α d d i=1 i 1/α1-1 i 2-1/α1 P (|X| > i) ∞ ν=1 ν -2α1 ∆f (ν) + ∞ i=n α p+1 p+1 •••n α d d +1 iP (|X| > i) ∞ ν=(i/n α p+1 p+1 •••n α d d ) 1/α 1 ν -2α1 ∆f (ν)    ≤ c ∞ np+1,...,nd=1 1 
n 2αp+1 p+1 • • • n 2αd d   (n αp+1 p+1 • • • n αd d ) 2-1/α1 n α p+1 p+1 •••n α d d i=1 i 1/α1-1 P (|X| > i) + ∞ i=n α p+1 p+1 •••n α d d +1 iP (|X| > i) ∞ ν=(i/n α p+1 p+1 •••n α d d ) 1/α 1 (ν -2α1 -(ν + 1) -2α1 ) f (ν)    ≤ c ∞ np+1,...,nd=1 1 
n βp+1 p+1 • • • n βd d ∞ i=1 i 1/α1-1 (log i) p-1 P (|X| > i) ,
which is finite iff E(|X| 1/α1 (log + |X|) p-1 ) < ∞, once again by Lemma 3 in [START_REF] Stadtmüller | Strong laws for delayed sums of random fields[END_REF], since

β k > 1 for p + 1 ≤ k ≤ d.
In order to apply the multiindex Kolmogorov's convergence criterion (see e.g [START_REF] Gabriel | An inequality for sums of independent random variables indexed by finite dimensional filtering sets and its applications to the convergence of series[END_REF]) we next show that

n E(Y n ) |n α | = n E(X1 1{|X| > |n α |}) |n α | ≤ ∞ ν=1 1 ν α1 ∆g(ν) ∞ j=ν j α1 P ((j -1) α1 < |X| ≤ j α1 ) ≤ ∞ j=1 j α1 P ((j -1) α1 < |X| ≤ j α1 ) j ν=1 1 ν α1 ∆g(ν) ,
which is again finite by our moment assumption. Hence Kolmogorov's convergence criterion applies and n

Yn

|n α | and thus n Xn |n α | converge almost surely. Finally, by the multiindex Kronecker lemma (cf. [START_REF] Moore | Summable Series and Convergence Factors[END_REF] for the necessary multiindex partial summation formula) we conclude that S n /|n α | → 0 a.s.

For the converse, we note that

S n |n α | a.s. → 0 as n → ∞ =⇒ X n /|n α | → 0 as n → ∞ =⇒ n P (|X| > |n α |) < ∞,
yielding the desired moment condition E(|X| 1/α1 ) < ∞ (cf. [START_REF] Stadtmüller | Strong laws for delayed sums of random fields[END_REF]) and, obviously, that E X = 0. 2

Proof of Theorem 2.2: Since the inequality in the statement is trivial we only have to prove convergence of |Sn| |n| α 1 .
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In case α 1 = 1/2 we may simply compute the variance which is bounded by

E(X 2 )/(n 2αp+1-1 p+1 • • • n 2αd-1 d ) ,
and tends to zero as max{n p+1 , . . . , n d } → ∞. For α 1 > 1/2 the Pyke-Root-inequality (see [START_REF] Pyke | On convergence in r-mean for normalized partial sums[END_REF]) tells us that

E |S n | |n| α1 1/α1 ≤ o(|n|) |n| → 0 as |n| → ∞ ,
which, in turn, establishes L 1/α1 -convergence, and, hence, in particular, also convergence in probability.

2 Proof of Theorem 2.3: Define Y n k = X k 1 1{|X k | ≤ |n α |} and µ n = |n|E(Y n k ).
Then, by the truncated Chebyshev inequality, we have

P S n -µ n |n α | > ε ≤ 1 |n α | 2 ε 2 n k=1 Var (Y n k ) + |n|P (|X| > |n α |) = I n + II n .
Note that II n ≤ |n|P (|X| > |n| α1 ) → 0 as n → ∞ by assumption. Next,

I n ≤ |n| |n α | 2 n1n α 2 /α 1 2 •••n α d /α 1 d j=1 E(X 2 1 1{(j -1) α1 < |X| ≤ j α1 }) ≤ 1 |n 2α-1 | n1n α 2 /α 1 2 •••n α d /α 1 d j=1 j 2α1 P ((j -1) α1 < |X| ≤ j α1 ) ≤ c |n 2α-1 | n1n α 2 /α 1 2 •••n α d /α 1 d j=1 j i=1 i 2α1-1 P ((j -1) α1 < |X| ≤ j α1 ) ≤ c |n 2α-1 | n1n α 2 /α 1 2 •••n α d /α 1 d i=1 i 2α1-2 • i P (|X| > i α1 ) ≤ c n 1-α2/α1 2 • • • n 1-αd/α1 d n 2α1-1 1 n 2α2-α2/α1 2 • • • n 2αd-αd/α1 d n1n α 2 /α 1 2 •••n α d /α 1 d i=1 i 2α1-2 • i P (|X| > i α1 ) → 0 as max j {n j } → ∞ ,
since we apply -up to a bounded or asymptotically vanishing factor -a regular mean to a nullsequence (cf. [START_REF] Gut | Probability: A Graduate Course, Corr. 2nd printing[END_REF], Lemma A.6.1).

If in addition α

1 < 1 then, condition (2.4) implies that E(|X|) < ∞, since ∞ n=1 P (|X| > n) = ∞ n=1 1 n 1/α1 • n 1/α1 P (|X| > n) < ∞ ,
and, moreover, that with ℓ k = k log 3 k . This sequence oscillates unboundedly as k → ∞ by the law of iterated logarithm for any α 2 . Note that in the LIL the behaviour along the subsequence ℓ k is the same as that of the full sequence.

|n| E(X 1 1{|X| ≤ |n|}) /|n α | = |n| -E(X 1 1{|X| > |n|}) /|n α | ≤ |n|E(|X|1 1{|X| 
The third result follows from the LIL for random arrays by Wichura [START_REF] Wichura | Some Strassen-type law of the iterated logarithm for multiparameter stochastic processes with independent increments[END_REF], which under the given moment assumption yields lim sup m,n→∞ S mn √ mn log log mn a.s.

= Var (X) .

Now, since log log m log log mn n 2α2-1 → ∞ as m, n → ∞ , the desired conclusion follows. 2

2 Proof of Theorem 2 . 4 :

 224 > |n|})/|n α | → 0 as |n| → ∞ . The first result was just shown. For the next one we consider the subsequences m k = k and n k = log 3 k := log log log k. Then, with the i.i.d. random variables Z k d = X and partial sums T n = n k=1 Z k , we may, equivalently, considerT ℓk ℓ k log 2 ℓ k • (log 2 ℓ k ) 1/2 (log 3 ℓ k ) α2-1/2 A. Gut and U. Stadtmüller
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