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Abstract 

 

The paper investigates the boundary effect on the behaviour of granular materials during plane 

strain compression using finite element method. A micro-polar hypoplastic constitutive model 

was used. The numerical calculations were carried out with different initial densities and 

boundary conditions. The behaviour of initially dense, medium dense and loose sand specimen 

with very smooth or very rough horizontal boundary was investigated. The formation of shear 

zones gave rise to different global and local stress and strain. Comparisons of the mobilized 

internal friction, dilatancy and non-coaxiality between global and local quantities were made.  

 

Keywords: boundary roughness, finite element method, micro-polar hypoplasticity, non-

coaxiality, plane strain compression, shear localization, void ratio 

 

1. Introduction 
 

Our knowledge on the mechanical behavior of granular materials is largely based on element 

tests with uniform stress and homogeneous strain. Some important parameters can be obtained 

from the element tests such as internal friction angle and dilatancy angle (Vardoulakis 1980, 

Yoshida et al. 1994, Desrues et al. 1996). However, the parameters are determined with the aid 

of measurements of global (exterior) quantities at specimen boundaries (force and displacement), 

which may differ from their local quantities inside the material (impossible to be measured). 

These differences are caused by localized deformation in shear zones and the imperfect 

boundaries of specimen in laboratory tests. The effect of localized deformation and boundary 

conditions is important to differentiate between material behavior from structural behavior.  
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This paper presents some numerical simulations into the effect of localized deformation and 

boundary conditions during plane strain compression. The finite element method was used with a 

micro-polar hypoplastic constitutive model. This boundary effect was estimated by comparing 

the evolutions of the global and local mobilized friction, dilatancy and non-coaxiality. A uniform 

distribution of the initial void of sand was assumed. Our previous numerical study showed that a 

stochastic distribution of void ratio had only minor effect on the numerical results (Tejchman 

and Górski 2008). Three initial densities were studied, i.e. initially dense, medium dense and 

loose specimens. The lateral pressure was assumed to be constant. The horizontal boundaries 

were assumed to be either very smooth or very rough. The former represents ideal boundary 

conditions, while the latter stands for imperfect boundary conditions. Obviously, the real 

boundaries in the element tests are likely to be in between. This papers continues our previous 

study (Tejchman and Wu 2009a), where non-coaxiality and dilatancy have been investigated. 

 

Throughout the paper, tensor notations are used. Summation over repeated indices is assumed. A 

superposed circle denotes an objective time derivation and a superposed dot denotes the material 

time derivation. Compressive stress and shortening strain are taken as negative. As a consequence, 

contractancy is negative and dilatancy is positive. 

 

2. Micro-polar hypoplastic model 
 

Non-polar hypoplastic constitutive models (Gudehus 1996, Bauer 1996, von Wolffersdorff 1996) 

describe the evolution of the effective stress tensor as a non-linear tensorial function of the current 

void ratio, stress state and rate of deformation. The non-linear tensorial functions can be formulated 

according to the representation theorem (Wang 1970). These constitutive models were formulated 

by considering the essential properties of granular materials undergoing homogeneous deformation. 

Hypoplastic models are capable of describing some salient properties of granular materials, e.g. 

non-linear stress-strain relationship, dilatant and contractant behaviour, pressure dependence, 

density dependence and material softening. A further feature of hypoplastic models is the inclusion 

of critical states, in which deformation may occur continuously at constant stress and volume. In 

contrast to elasto-plastic models, the following assumptions are not necessary: decomposition of 

deformation into elastic and plastic parts, yield surface, plastic potential, flow rule. Moreover, 

neither coaxiality, i.e. coincidence of principal axes of stress and principal plastic strain 

increments nor stress-dilatancy rule are not assumed in advance (Tejchman and Wu 2009a). The 

hallmark of the hypoplastic models is their simple formulation and procedure for determining the 
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parameters with standard laboratory experiments. The material parameters are related to 

granulometric properties, viz. size distribution, shape, angularity and hardness of grains (Herle 

and Gudehus 1999, Rondón 2007). A further advantage lies in the fact that one single set of 

material parameters is valid for wide range of pressure and density. The hypoplastic models have 

been extended to increase the application range, small strain (Niemunis and Herle 1997), 

anisotropy (Tejchman and Bauer 2007), and viscosity (Niemunis 2003, Gudehus 2006, Tejchman 

and Wu 2009b). It can be also used for soils with low friction angles (Herle and Kolymbas 2004) 

and clays (Masin 2005, Weifner and Kolymbas 2007). 

 

Hypoplastic constitutive models without a characteristic length can describe realistically the 

onset of shear localization, but not its further evolution. In order to account for the post 

bifurcation behaviour, a characteristic length can be introduced into the hypoplastic model by 

means of micro-polar, non-local or second-gradient theories (Tejchman 2004) . In this paper, a 

micro-polar theory was adopted. The micro-polar model makes use of rotations and couple 

stresses, which have clear physical meaning for granular materials. In general, the stress and 

strain tensor is not symmetric. The rotations can be observed during shearing and remain 

negligible during homogeneous deformation (Oda 1993). Pasternak and Mühlhaus (2001) 

demonstrated that the additional rotational degree of freedom of a micro-polar continuum arises 

naturally by mathematical homogenization of an originally discrete system of spherical grains 

with contact forces and contact moments.  

 

A micro-polar continuum which is a continuous collection of particles behaving like rigid bodies 

combines two kinds of deformation at two different levels, viz: micro-rotation at the particle 

level and macro-deformation at the structural level (Schäfer 1962) . For the case of plane strain, 

each material point has three degrees of freedom, i.e. two translations and one independent 

rotation (Fig.1). The gradients of the rotation are related to the curvatures, which are associated 

with the couple stresses. The presence of the couple stresses gives rise to non-symmetry of the 

stress tensor and to a characteristic length.  

 

A brief summary of the micro-polar hypoplatic constitutive law for plane strain is given in the 

Appendix (see also Tejchman et al. 2007, Tejchman 2008, Tejchman and Górski 2008, 

Tejchman and Wu 2009). The constitutive relationship requires the following ten material 

parameters: ei0, ed0, ec0, φc, hs, β, n ,α, ac and d50. The calibration method for the first eight material 

parameters can be found in Bauer (1996) and Herle and Gudehus (1999). The parameters hs and n 

are estimated from a single oedometric compression test with an initially loose specimen (hs reflects 
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the slope of the curve in a semi-logarithmic representation, and n its curvature). The constants α and 

β are found from a triaxial or plane strain test with a dense specimen and trigger the magnitude and 

position of the peak friction angle. The angle φc is determined from the angle of repose or measured 

in a triaxial test with a loose specimen. The values of ei0, ed0, ec0 and d50 are obtained with 

conventional index tests (ec0≈emax, ed0≈emin, ei0≈(1.1-1.5)emax). In turn, a micro-polar parameter ac 

(Eq.20) can be correlated with the grain roughness. This correlation can be established by 

studying the shearing of a narrow granular strip between two rough boundaries (Tejchman and 

Gudehus 2001) . It can be represented by a constant, e.g. ac=1-5, or connected to the parameter 

a1
-1, e.g. ac=(0.5-1.5)×a1

-1. The parameter a1
-1 lies in the range of 3.0-4.3 for usual critical 

friction angles between 25o and 35o. The FE-analyses were carried out with the material constants 

for the so-called Karlsruhe sand (Bauer 1996, Tejchman and Gudehus 2001): ei0=1.30, ed0=0.51, 

ec0=0.82, φc=30o, hs=190 MPa, β=1, n=0.50, α=0.30, ac=a1
-1 and d50=0.5 mm. 

 

3. FE-input data 
 

The calculations of plane strain compression were performed with the specimen size of 

bo×ho=40×140 mm2 (bo – initial width, ho – initial height). The specimen depth was equal to 

l=1.0 m with plane strain condition. The width and height of the specimen were similar as in the 

experiments by Vardoulakis (1980) with the same sand. In all calculations, 896 quadrilateral 

elements divided into 3584 triangular elements were used. To properly capture shear localization 

inside of the specimen, the size of the finite elements was smaller than five times of the mean 

grain diameter d50 (Tejchman and Gudehus 2001). The quadrilateral elements composed of four 

diagonally crossed triangles were used to avoid volumetric locking due to volume changes. 

Linear shape functions were used for displacements and for the Cosserat rotations. The 

integration was performed with one sampling point placed in the middle of each triangular 

element.  

 

Quasi-static deformation in the specimen was imposed through a constant vertical displacement 

increment Δu prescribed at nodes along the upper edge of the specimen. Two sets of boundary 

conditions were assumed. First, the top and bottom boundaries were assumed to be ideally smooth, 

i.e. there is no shear stress along these boundaries. To preserve the stability of the specimen against 

horizontal sliding, the node in the middle of the top edge was kept fixed. To simulate a movable 

roller bearing in the experiment (Vardoulakis 1980), the horizontal displacements along the 

specimen bottom were constrained to move by the same amount from the beginning of 
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compression. Second, comparative calculations were performed with a very rough top and 

bottom boundary. In this case, the horizontal displacement and Cosserat rotation along both 

horizontal boundaries were assumed to be equal to zero. The vertical displacement increments 

were chosen to be Δu/ho=2.5×10-6. Some 6000 steps were needed to reach a vertical strain of about 

25%. 

 

As an initial stress state, a K0-state with σ22=γdx2 and σ11=K0γdx2 was assumed in the specimen; σ11 - 

horizontal normal stress, σ22 - vertical normal stress; x2 is the vertical coordinate measured from the 

top of the specimen, γd denotes the unit weight and K0 is the earth pressure coefficient at rest. The 

calculations were carried out for three different initial densities, i.e. dense, medium dense and loose. 

The corresponding parameters are as follows: γd=17.0 kN/m3 and K0=0.45 for eo=0.55, γd=16.0 

kN/m3 and K0=0.50 for eo=0.70, γd=14.5 kN/m3 and K0=0.55 for eo=0.90. A uniform confining 

pressure of σc=200 kPa was prescribed.  

 

For the solution of the non-linear equation system, a modified Newton-Raphson scheme with 

line search was used. The global stiffness matrix was calculated with only the linear terms of the 

constitutive equations (Eqs.12 and 13). The stiffness matrix was updated every 100 steps. In 

order to accelerate the convergence in the softening regime, the initial increments of 

displacements and Cosserat rotations in each calculation step were assumed to be equal to the 

final increments in the previous step. The procedure was found to yield sufficiently accurate 

solutions with  fast convergence. The magnitude of the maximum out-of-balance force at the end 

of each calculation step was found to be less than 1-2% of the calculated total vertical force. Due 

to the non-linear terms in deformation rate and the strain softening, this procedure turned out to 

be more efficient than the full Newton-Raphson method. The iteration steps were performed 

using translational and rotational convergence criteria. For the time integration of stress 

increments in finite elements, a one-step Euler forward scheme was applied. To obtain more 

accurate results, a sub-stepping algorithm was used; the deformation and curvature increments were 

further divided into 100 substeps. The calculations were carried out with large deformations and 

curvatures using a so-called “Updated Lagrangian” formulation by taking into account the 

Jaumann stress rate, the Jaumann couple stress rate and the actual shape and area of the finite 

elements. Compressive stress and shortening strain were taken as negative. The calculations 

were carried out with true strains. 

 

The internal mobilized friction angle was calculated by the following formula 
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                                                                        sin t
s

φ = ,                                                               (1) 

 

with the mean stress s and the shear stress t defined by 

 

                                 1 30.5( )s σ σ= +               and                      1 30.5( )t σ σ= − ,                       (2) 

 

where σ1 and σ3 are the principal stresses 

 

                                                 2 211 22 11 22 12 21
1,3 ( ) ( )

2 2 2
σ σ σ σ σ σσ + − +

= ± + .                            (3) 

 

The mobilized dilatancy angle was defined by 

 

                                                              sin νψ
γ

•

•= ,                                                                      (4) 

 

wherein the volumetric strain rate ν
•

 and shear strain rate γ
•

 are 

 

                        1 3d dν
•

= +                                 and                                 1 3d dγ
•

= − ,               (5) 

 

respectively, with 1d and 3d  as the principal strain rates. Note that elastic and plastic 

deformations are not distinguished in hypoplasticity. 

 

                                                 2 211 22 11 22 12 21
1,3 ( ) ( )

2 2 2
d d d d d dd + − +

= ± + .                             (6) 

 

Non-coaxiality refers to the symmetric part of the stress and the strain rate tensor. Since the 

stress and strain rate tensor are in general non-symmetric in a micro-polar continuum (σ12≠σ21 

and 12 21d d≠ ), non-coaxiality is expressed as the deviation angle between the direction of the 

principal stress α and the direction of the principal strain rate β as follows  
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                                                                 ξ α β= − ,                                                                   (7) 

 

using the symmetric part of the stress tensor 0.5(σ12+σ21) and the symmetric part of the strain 

rate tensor 0.5(d12+d21). The angle α is the orientation of the major principal stress σ1  

 

                                                          12 21

11 22

tan 2 σ σα
σ σ

+
=

−
,                                                              (8) 

 

and β is the orientation of the major principal rate of deformation 1d  

 

                                                          12 21

11 22

tan 2 d d
d d

β +
=

−
.                                                              (9) 

 

Note that the stress and strain rate in the above expressions depend on coordinates and are 

therefore local variables. As a consequence, the non-coaxiality defined above is local, too.  

 

The relation between the mobilized friction angle and dilatancy angle is known as the stress-

dilatancy rule, which is important in studying the mechanical behavior of dilatant granular 

materials. In this paper comparison is made between the numerical results and the following 

three stress-dilatancy rules of soil plasticity from the literature.  

 

(1) the stress-dilatancy rule by Gutierrez and Vardoulakis (2007)  

 

                                                           sin (cos 2 ) sin sin cxψ ξ φ φ= × − .                                      (10) 

 

(2) the stress-dilatancy rule by Vardoulakis and Georgopoulos (2005) as a modified Taylor’s 

stress-dilatancy rule: 

 

                                                           tan (cos 2 ) tan tan cxψ ξ φ φ= × − .                                     (11) 

 

(3) the stress-dilatancy rule by Wan and Guo (2004):  

 

                                                           (sin sin )4sin
3 (1 sin sin )

cx

cx

φ φψ
φ φ
−

=
−

.                                               (12) 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

8 
 
 
 

 
 

 

 

with φ as the mobilized friction angle and φcx as the friction angle at the transition from initial 

contractancy to dilatancy. Eq.10 was derived from the consideration of the dissipation energy of 

granular material written in terms of the stress and plastic strain rate invariants and by taking into 

account a difference between the orientation of the major principal stress and the major principal 

plastic strain rate. Eq.11 is the same as Eq.10 with the function sin replaced by the function tan). 

Eq. 11 was derived from the incremental work done by stresses during a direct shear test. In turn, 

Eq.12 is an improvement of the classical Rowe’s stress dilatancy equation, where an additional 

factor 4/3 was introduced and the critical friction angle was replaced by the angle φcx. 

 

The stress-dilatancy rules in Eqs.10-12 show the following tendency. Starting from Ko stress 

state, the dilatancy angle is initially negative, i.e. material undergoes contractancy, then the 

material experiences significant dilatancy with its maximum at the peak friction angle. Beyond 

the peak the dilatancy angle decreases and approach gradually zero to reach the critical (residual) 

state. 

 

The global angle of non-coaxiality ξ can be also calculated from Eq.10 as 

 

                                                           sin sincos 2
sin
cxφ ψξ

φ
−

= .                                                    (13) 

 

4. Numerical FE-results 

Deformed meshes  

 

Figure 2 shows the deformed meshes together with the distribution of void ratio e (increase of e 

is indicated by darker shadow). In the case of smooth walls, only one shear zone inside the 

specimen was observed For very rough boundaries, two shear zones were formed (two 

intersecting shear zones or two branching shear zones).  

 

The thickness of the shear zone measured at the mid-point of the specimen is about 15×d50 

(eo=0.55), 20×d50 (eo=0.70) and 30×d50 (eo=0.90) for smooth and very rough walls (on the basis 

of shear deformation). Its inclination against the horizontal is about θ ≈52o (eo=0.55), θ ≈48o 

(eo=0.70) and θ ≈46o (eo=0.90) for smooth walls and θ ≈47o (eo=0.55), θ ≈46o (eo=0.70) and θ 

≈45o (eo=0.90) for very rough walls.  
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The calculated thickness of the shear zone 15×d50 (eo=0.55) for smooth boundaries and  initially 

dense sand is in agreement with the experimental value of 13×d50 (Vardoulakis 1980, 

Vardoulakis and Georgopoulos 2005). In turn, the calculated inclination of the shear zone of 52o 

against the horizontal is slightly smaller as compared to the inclination of 57o in experiment 

(Vardoulakis and Georgopoulos 2005). 

 

Internal friction angle 

 

Fig.3A and Fig.4 show the evolution of the mobilized friction angle φ calculated with global and 

local principal stresses (Eq.1). The global principal stresses were calculated according to σ1=P/bl 

(P – resultant vertical force, b – actual specimen width) and σ3=σc. The local stresses were 

calculated by Eq.3 at the different mid-points of shear zones (at x1=bo/4, bo/2 and 3bo/4, 

respectively).  

 

For smooth walls, the mobilized global friction angle increases to reach a pronounced peak and 

drops gradually at large deformation (the residual state has not been reached at u2
t/ho=25%). The 

global peak friction angles are: φp=51.5o at u2
t/ho=0.022 (eo=0.55), φp=37.7o at u2

t/ho=0.029 

(eo=0.70) and φp=30.3o at u2
t/ho=0.08 (eo=0.90), respectively. For comparison, the global friction 

angles at large deformation of u2
t/ho=25% are about: φres=29.0o (eo=0.55), φres=27.0o (eo=0.70) 

and φres=23.0o (eo=0.90), respectively.  

 

As compared to very smooth boundaries, the evolution of the mobilized global friction angle is 

different with very rough boundaries. Along with deformation, the global friction angle increases 

to a pronounced peak, drops gradually to reach a residual state. The global peak friction angles 

are: φp=51.7o at u2
t/ho=0.021 (eo=0.55), φp=38.2o at u2

t/ho=0.029 (eo=0.70) and φp=30.9o at 

u2
t/ho=0.06 (eo=0.90), respectively. The global residual friction angles at large deformation of 

u2
t/ho=25% are about: φres=43o (eo=0.55), φres=38o (eo=0.70) and φres=30o (eo=0.90), respectively. 

Thus, the peak friction angles are only slightly higher (by 0.2o-0.7o) and the friction angles at 

large deformation of u2
t/ho=25% are significantly higher (by 7o-14o) than for smooth walls. 

 

Usually, the local friction angles in shear zones reach their asymptotic values (except of points 

where two shear zones intersect each other, i.e. in the cases with very rough boundaries and 

eo=0.55 and eo=0.70). The local peak friction angles are similar as the global values 
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independently of the wall roughness. For smooth walls, the mean local residual friction angles 

are significantly higher than the global ones (by 5o-7o). In the case of very rough walls, the mean 

local residual friction angles are significantly lower than the global ones for eo=0.55 and eo=0.70 

(by 4o-12o) or higher for eo=0.90 (by 4o). 

 

The evolution of the calculated global internal friction angle with smooth walls (eo=0.55 and 

eo=0.70) is similar as in the experiment (Vardoulakis 1980) although the calculated residual 

friction angle is somewhat lower by about 4o. 

 

Contractancy/dilatancy angle 

 

The evolution of the mobilized global and local (in the mid-point of the shear zone) 

dilatancy/contractancy angle ψ is demonstrated in Figs.3B and 5. The dilatancy/contractancy 

angle was calculated according to Eqs.4 and 5. All global dilatancy/contractancy curves are seen 

to be smooth. They show (independently of eo) initial contractancy (up to u2
t/ho=0.025-0.10) 

followed by dilatancy for initially dense and medium dense sand or further contractancy for 

initially loose sand. The peak dilatancy angles are about: 22o-24° for eo=0.55 and 5° for eo=0.70. 

At large deformation for smooth boundaries, the dilatancy angle for initially dense sand 

(eo=0.55) decreases gradually to approach the zero value in the residual state. In the case of 

eo=0.70, the dilatancy also decreases gradually reaching again the region contractancy. When the 

specimen is initially loose (eo=0.90), contractancy slightly continuously increases.  

 

In the case of very rough walls, the dilatancy angle for eo=0.55 and eo=0.70 decreases gradually 

and increases next again with increasing deformation. When the specimen is initially loose, 

contractancy continuously decreases reaching the asymptote at +5o. 

 

Usually, the local dilatancy angles in the shear zones reach their asymptotic values except the 

cases with very rough boundaries (initially dense and medium dense sand). The local peak 

dilatancy angles are similar as the global values independently of the wall roughness. For smooth 

walls, the mean local residual dilatancy angles are higher than the global ones at large 

deformation u2
t/ho=0.25 (by 10o-35o). In the case of very rough walls, the mean local residual 

dilatancy angles can be in some points of shear zones significantly higher than the global ones 

(by 5o-35o). An abrupt change of contractancy to dilatancy during shear zone occurrence close to 

the peak (observed in experiments with initially dense sand by Vardoulakis 1980) was only 

observed with initially loose sand. In contrast to global dilatancy curves, the local dilatancy 
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curves indicate pronounced oscillations in the shear zone for 3 cases: in initially loose sand with 

smooth boundaries at peak (u2
t/ho=0.03-0.08) and in some points of initially dense and medium 

dense sand with very rough boundaries for large vertical deformation (u2
t/ho=0.15-0.25). 

Oscillations of volume changes at the residual state were observed in experiments by 

Vardoulakis (1980) with initially dense specimens. Approximately, the evolution of local 

dilatancy/contractancy is similar to the evolution of local friction. 

 

The shape of the calculated global dilatancy curves (smooth boundaries, eo=0.55 and eo=0.70) is 

similar as in the experiment (Vardoulakis and Georgopoulos 2005, Vardoulakis 1980). The 

calculated peak and residual values show similar trend. 

 

Non-coaxiality 

 

Finally, the evolutions of the local angle of non-coaxiality ξ (Eq.7) in the mid-point of the shear 

zone at x1=bo/4, x1=bo/2 and x1=3bo/4 for different initial void ratios are depicted in Fig.6 

(smooth and very rough walls). As can be seen from Fig.6, the deviation angle between the 

principal stress and the principal strain-rate directions is insignificant with ξ≈1-4o at the peak 

(smooth boundaries) independently of eo, except of the case with initially loose sand where 

strong oscillations occur (ξ=±250). At smooth boundaries with large vertical deformation of 

u2
t/ho=0.25, the deviation angle ξ in the mid-point of the shear zone increases with increasing eo 

and is only about 2o (eo=0.55-0.90).  

 

In the case of very rough boundaries, at large vertical deformation of u2
t/ho=0.25, the deviation 

angle ξ in some mid-points of the shear zones increases significantly with decreasing eo and can 

be about 1o (eo=0.90), 30o (eo=0.70 and eo=0.55). It is to note that large deviations angles ξ 

appear only in some points of the shear zones (point ‘b’ at eo=0.70, and points ‘b’ and ‘e’ at 

eo=0.70). This angle can significantly oscillate with initially dense and medium dense sand.  

 

The local oscillations of non-coaxiality are connected to the local oscillations of dilatancy angle. 

They merit further investigations. 

 

The global angle of non-coaxiality ξ can be calculated with Eq.7 or Eq.12. For initially dense 

and medium dense sand the friction angles are: φcx=40o and φcx=36o, respectively (independently 

of eo). The mobilized global angles are: ψ=20o and φ=52o (eo=0.55), and ψ=5o and φ=38o 
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(eo=0.70) at peak and ψ=-10o-0o and φ=28o-30o (smooth walls), ψ=15o-20o and φ=38o-43o (very 

rough walls) at large deformation (Fig.3A and Fig.3B), respectively. The global deviation angles 

ξ are ξ=20o-30o (peak and large deformation) and are far from the calculated ones in the shear 

zones. Since sin sin sincxφ ψ φ− >  in Eq.12, the dilatancy angle cannot be determined for some 

cases (e.g. very rough walls with eo=0.55 and eo=0.70). 

 

The values of calculated mean local dilatancy angles at peak for initially dense and medium 

dense sand (smooth and very rough walls) were compared with those given by Eq.10-12. It can 

be seen from Tab.1 that Eqs.11 and 12 provide the most realistic results at peak.  

 

As compared to experiments (smooth walls, initially dense and medium dense sand), the 

calculated angle ξ shows similar behaviour as the global one on the same sand (Vardolulakis and 

Geporgopoulos 2005). Our numerical results collaborate well also with the experimental finding 

by Arthur and Assadi (1977), where similar non-coaxiality of 6-12° was observed in the shear 

zone. However, this calculated effect of non-coaxiality is found to be much smaller at the 

residual state than e.g. in the experiments on Nevada sand (ξ=30o) (Gutierrez and Vardoulakis 

2007), which is in turn similar as the numerical results with very rough walls.  

 

Moreover, the calculated evolution of the deviation angle between the principal stress and the 

principal strain rate directions (smooth boundaries, dense sand) is similar as reported by 

Tordesillas (2009) using a micromechanical model (about 6o at peak and 0o at residual state). 

However, it is significantly smaller at the peak than the numerical result from discrete element 

simulations, i.e. 40o, but similar at the residual state (about ξ≅0) (Thornton and Zhang 2006).  

 

5. Conclusions 
 

Our numerical results suggest that the boundary conditions have considerable effect beyond the 

peak, where a shear zone is fully developed. This can be ascertained with respect to mobilized 

friction, dilatancy and non-coaxiality (i.e. the global quantities can significantly differ from the 

local ones in the shear zones). The pattern of shear zones seems to depend on the boundary 

conditions, too, in particular on the roughness of top and bottom-plates. The numerical 

calculations with smooth plates show one single shear zone, whereas rough plates give rise to 

two intersecting shear zones. The thickness of the shear zone is found to increase with increasing 
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initial void ratio and remains fairly independent of the wall roughness. The shear zone 

inclination increases with decreasing void ratio and decreasing wall roughness. 

 

Both the global and local internal friction angles at the peak increase with decreasing void ratio 

and remain fairly independent of the boundary roughness. However, the residual friction angle, 

both global and local, is found to depend on both void ratio and boundary roughness. Similar 

observations can also be made on the dilatancy angles. 

 

Non-coaxiality is found to be very small prior to the peak and remains moderate (less than 5°) up 

to fairly large deformation of about 25%. For large deformation, non-coaxiality seems to 

increase with increasing boundary roughness. Pronounced local non-coaxiality of about 30o can 

be observed inside the shear band for initially dense sand. Inside the shear zones, the stress-

dilatancy rules in the literature (Eqs.10-12) can be confirmed up to the peak. It seems that no of 

the existing stress-dilatancy rules remain valid in shear zones for large deformation, in 

particularly in points where shear zones intersect.  

 

Appendix 
 

The constitutive relationship between the rate of stress, the rate of couple stress, the strain rate and 

the curvature rate can be generally expressed by the following two equations (Tejchman and Górski 

2008, Tejchman 2008): 

 

                                                                  
o

c
ij ij kl i kl i 50F ( e, ,m ,d ,k ,d )σ σ= ,                                       (14) 

                                                                   
o

c
i i kl i kl i 50m G ( e, ,m ,d ,k ,d )σ= .                                       (15) 

 

The Jaumann stress rate and Jaumann couple stress rate therein are defined by 

 

                                                                   
o

ijij ik kj ik kjw wσ σ σ σ
•

= − +                                           (16) 

and 

                                                              
o

i i ik k k kim m 0.5w m 0.5m w
•

= − + .                                      (17) 
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The functions Fij and Gi in Eqs.14 and 15 represent isotropic tensor-valued functions of their 

arguments; σij is the Cauchy stress tensor, mi is the couple stress vector, e denotes the current void 

ratio, dkl
c is the polar strain rate and ki denotes the rate of curvature vector: 

 

                                                   c c
ij ij ij ijd d w w ,= + −            and            c

i ,ik w= .                          (18) 

 

The strain rate tensor dij and the spin tensor wij are related to the velocity vi as follows: 

 

                        , ,( ) / 2,ij i j j id v v= +          , ,( ) / 2,ij i j j iw v v= −          ,() () / .i ix∂ ∂=                           (19) 

 

The rate of Cosserat rotation wc is defined by  

 

                                         c c c
21 12w w w= − =                 and                     c

kkw 0= .                          (20) 

 

For moderate pressures, the grains can be assumed to be isochoric. In this case, the change of void 

ratio depends only on the strain rate via 

 

                                                                    kke (1 e )d .
•

= +                                                           (21) 

 

For the numerical calculations, the following micro-polar hypoplastic constitutive equation are 

employed:  

 

                                 
o ^ ^

c
ij kl ks ij kl k 50f [ L ( ,m ,d ,k d )σ σ= +

^
c c 2

ijd ij kl kl k k 50f N ( ) d d k k d ]σ +                 (22) 

and 

                                
o ^ ^

c c
i kl k50 s i kl k 50m / d f [ L ( ,m ,d ,k d )σ= +

^
c c c 2

id i kl kl k k 50f N ( m ) d d k k d ]+ ,           (23) 

 

wherein the normalized stress tensor 
^

ijσ  is defined by 

 

                                                                             
^

ij
ij

kk

σ
σ

σ
=                                                         (24) 

 

and the normalized couple stress vector 
^

im  is defined by 
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                                                                          i
i

kk 50

mm
dσ

∧

= ,                                                      (25) 

 

wherein d50 is the mean grain diameter. The scalar factors fs=fs (e, σkk) and fd=fd (e, σkk) in Eqs.22 

and 23 describe the influence of density and stress level on the incremental stiffness. The factor fs 

depends on the granulate hardness hs, the mean stress σkk, the maximum void ratio ei and the current 

void ratio e by: 

 

                                                             1 ns i i kk
s

i i s

h 1 e ef ( )( ) ( )
nh e e h

β σ −+
= −                                    (26) 

with 

                                                                i0 d 0
i 2

1 c0 d 0 1

e e1 1 1h ( ) .
c 3 e e c 3

α−
= + −

−
                                 (27) 

 

In the above equations, the granulate hardness hs represents a reference pressure, the coefficients α 

and β express the dependence on density and pressure respectively, and n denotes the compression 

coefficient. The multiplier fd represents the dependence on a relative void ratio via: 

 

                                                                            d
d

c d

e ef ( )
e e

α−
=

−
.                                              (28) 

 

The relative void ratio in the above expression involves the void ratio in critical state ec, the 

minimum void ratio ed (the densest packing) and the maximum void ratio ei (the loosest packing). In 

a critical state, a granular material experiences continuous deformation while the void ratio remains 

unchanged. The current void ratio e is bounded by the two extreme void ratios ei and ed. Based on 

experimental observations, the void ratios ei, ed and ec are assumed to depend on the pressure σkk: 

 

                                                               n
i i0 kk se e exp[ ( / h ) ],σ= − −                                          (29) 

                                                               n
d d 0 kk se e exp[ ( / h ) ],σ= − −                                         (30) 

                                                                n
c c0 kk se e exp[ ( / h ) ],σ= − −                                         (31) 

 

wherein ei0, ed0 and ec0 are the values of ei, ed and ec at σkk=0, respectively. For the functions Lij, Nij, 

Li
c and Ni

c, the following specific expressions are used: 
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^ ^ ^

2 c c
kl kij 1 ij ij kl k 50L a d ( d m k d ),σ σ= + +                                     (32) 

                                                       
^ ^ ^

c 2 2 c
kl ki 1 i 50 1 i kl k 50L a k d a m ( d m k d )σ= + + ,                              (33) 

                                                                      
^^
*

ijij 1 ijN a ( ),σ σ= +                                                  (34) 

                                                                      
^

c 2
ii 1 cN a a m ,=                                                         (35) 

where 

                                                                
^ ^

1 * *
1 1 2 kl lka c c [1 cos( 3 )],σ σ θ− = + +                             (36) 

                                                                   
^ ^ ^
* * *
kl lm mk^ ^

* * 1.5
pq pq

6cos( 3 ) ( )
[ ]

θ σ σ σ
σ σ

= −                    (37) 

with 

 

                                                c
1

c

( 3 sin )3c ,
8 sin

φ
φ

−
=            c

2
c

( 3 sin )3c
8 sin

φ
φ

+
= .                         (38) 

 

The parameter a1 is the deviatoric part of the normalized stress in critical states (Bauer 1996), φc 

is the friction angle in critical states, and the parameter θ denotes the Lode angle in the deviatoric 

plane at iiσ
∧

=1, and *
ijσ
∧

 denotes the deviatoric part of ijσ
∧

.  
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Fig.1: Plane strain static Cosserat continuum: a) degrees of freedom (u1 - horizontal displacement, 

u2 -vertical displacement, ωc - Cosserat rotation), b) stresses σij and couple stresses mi at an element 

 

Fig.2: Deformed FE-meshes with the distribution of void ratio e at residual state: a) smooth 

boundaries, eo=0.55, u2
t/ho=0.071, b) smooth boundaries, eo=0.70, u2

t/ho=0.071, c) smooth 

boundaries, eo=0.90, u2
t/ho=0.014, d) very rough boundaries, eo=0.55, u2

t/ho=0.071, e) very rough 

boundaries, eo=0.70, u2
t/ho=0.071, f) very rough boundaries, eo=0.90, u2

t/ho=0.014 

 

Fig.3: Evolution of mobilized global friction angle φ versus normalized vertical displacement of 

the upper edge u2
t/ho, B) evolution of mobilized global dilatancy angle ψ versus normalized 

vertical displacement of the upper edge u2
t/ho: a) smooth boundaries, eo=0.55, b) smooth 

boundaries, eo=0.70, c) smooth boundaries, eo=0.90, d) very rough boundaries, eo=0.55, e) very 

rough boundaries, eo=0.70, f) very rough boundaries, eo=0.90 

 

Fig.4: Evolution of mobilized local friction angle φ in the mid-points of shear zones versus 

normalized vertical displacement of the upper edge u2
t/ho: a) smooth boundaries, eo=0.55, b) 

smooth boundaries, eo=0.70, c) smooth boundaries, eo=0.90, d) very rough boundaries, eo=0.55, 

e) very rough boundaries, eo=0.70, f) very rough boundaries, eo=0.90 

 

Fig.5: Evolution of mobilized dilatancy angle ψ in the mid-points of shear zones versus 

normalized vertical displacement of the upper edge u2
t/ho: a) smooth boundaries, eo=0.55, b) 

smooth boundaries, eo=0.70, c) smooth boundaries, eo=0.90, d) very rough boundaries, eo=0.55, 

e) very rough boundaries, eo=0.70, f) very rough boundaries, eo=0.90 

 

Fig.6: Evolution of local non-coaxiality angles ξ=α-β versus normalized vertical displacement 

of the upper edge u2
t/ho: a) smooth boundaries, eo=0.55, b) smooth boundaries, eo=0.70, c) 

smooth boundaries, eo=0.90, d) very rough boundaries, eo=0.55, e) very rough boundaries, 

eo=0.70, f) very rough boundaries, eo=0.90 
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Tab.1: Peak dilatancy angles calculated with Eqs.8-10 compared to local values from FE analysis 

(initially dense and medium dense sand) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

21 
 
 
 

 
 

 

 

 

 

 
 

a) 
 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

FIGURE 1 
 

 

σ33σ33



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

22 
 
 
 

 
 

 

 

         
                              a)                                  b)                                     c) 

     
                          d)                                  e)                                         f) 

 

FIGURE 2 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

23 
 
 
 

 
 

 

 

A) 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60
smooth boundaries

c

b

a

u2
t /ho

φ 
[o ]

 
 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60
very rough boundaries

f

e

d

u2
t /ho

φ 
[o ]

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

24 
 
 
 

 
 

 

 

B) 

-100

-50

0

20

40

0 0.05 0.10 0.15 0.20 0.25
-100

-50

0

smooth boundaries

c

b

a

u2
t /ho

ψ
 [o ]

 
 

-50

0

50

0 0.05 0.10 0.15 0.20 0.25

-50

0

50

25

very rough boundaries

f

e

d

u2
t /ho

ψ
 [o ]

 

FIGURE 3



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

25 
 
 
 

 
 

 

 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

cb

a

u2
t /ho

φ 
[o ]

a) 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

a, b, c

u2
t /ho

φ 
[o ]

b) 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

c
b

a

u2
t /ho

φ 
[o ]

c) 

 

a)

b)
c)

a)

b)

c)

a)

b)

c)

a)

b)

c)

a)

b)

c)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

26 
 
 
 

 
 

 

 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

a,b, d, e

c

u2
t /ho

φ 
[o ]

 d)                          

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

e d
b

a
c

u2
t /ho

φ 
[o ]

e)                               

 

0

20

40

60

0 0.05 0.10 0.15 0.20 0.25
0

20

40

60

a, b, c, d, e, f

u2
t /ho

φ 
[o ]

f) 

a)

b)

c)

d)

e)

f)

a)

b)

c)

d)

e)

f)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

27 
 
 
 

 
 

 

FIGURE 4 

-100

-50

0

50

0 0.05 0.10 0.15 0.20 0.25
-100

-50

0

50

c
b

a 

u2
t /ho

ψ
 [o ]

a) 

-100

-50

0

50

0 0.05 0.10 0.15 0.20 0.25
-100

-50

0

50

a, b, c

u2
t /ho

ψ
 [o ]

b) 

-100

-50

0

50

0 0.05 0.10 0.15 0.20 0.25
-100

-50

0

50

c

b

a

u2
t /ho

ψ
 [o ]

c) 

a)

b)
c)

a)

b)

c)

a)

b)

c)

a)

b)

c)

a)

b)

c)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

28 
 
 
 

 
 

 

-50

-25

0

25

50

0 0.05 0.10 0.15 0.20 0.25
-50

-25

0

25

50

e

d c

b

a

u2
t /ho

ψ
 [o ]

d)               

-50

-25

0

25

50

0 0.05 0.10 0.15 0.20 0.25
-50

-25

0

25

50

b
a, d, e

c

u2
t /ho

ψ
 [o ]

e)                   

-100

-50

0

50

0 0.05 0.10 0.15 0.20 0.25
-100

-50

0

50

a, b, c, d, e, f

u2
t /ho

ψ
 [o ]

f) 

FIGURE 5 

a)

b)

c)

d)

e)

f)

a)

b)

c)

d)

e)

f)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

29 
 
 
 

 
 

 

-10

-5

0

5

10

0 0.05 0.10 0.15 0.20 0.25
-10

-5

0

5

10

a, b, c

u2
t /ho

ξ 
[o ]

a) 

-10

-5

0

5

10

0 0.05 0.10 0.15 0.20 0.25
-10

-5

0

5

10

a, b , c

u2
t /ho

ξ 
[o ]

b) 

-50

-25

0

25

50

0 0.05 0.10 0.15 0.20 0.25
-50

-25

0

25

50

c

b

a

u2
t /ho

ξ 
[o ]

c) 

a)

b)
c)

a)

b)

c)

a)

b)

c)

a)

b)

c)

a)

b)

c)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

30 
 
 
 

 
 

 

-50

-25

0

25

50

0 0.05 0.10 0.15 0.20 0.25
-50

-25

0

25

50

ca

e

d
b

u2
t /ho

ξ 
[o ]

d)                     

-50

-25

0

25

50

0 0.05 0.10 0.15 0.20 0.25
-50

-25

0

25

50

a, c, d, e

b

u2
t /ho

ξ 
[o ]

e)                          

-10

-5

0

5

10

0 0.05 0.10 0.15 0.20 0.25
-10

-5

0

5

10

b, d, f

a, c, e

u2
t /ho

ξ 
[o ]

f) 

FIGURE 6 

a)

b)

c)

d)

e)

f)

a)

b)

c)

d)

e)

f)



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

31 
 
 
 

 
 

 

 

 

 

Tab.1 
 

 

Sand type ψ (Eq.10) 

 

ψ (Eq.11) 

 

ψ (Eq.12) 

 

ψ  

(FE analysis) 

initially dense sand 

(eo=0.55) 

(φcx=40o, φ=51.5o, ξ=1o) 

 

initially medium dense sand 

(eo=0.70) 

(φcx=36o, φ=38o, ξ=1o) 
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