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A B S T R A C T 

Recursive matrix relations in kinematics and dynamics analysis of a 1-DOF compound planetary gear train are established 

in the paper. The mechanism of the Minuteman cover drive is a system with four moving links and three gear pairs 

controlled by one electric motor. Knowing the rotation motion of the output link, the inverse dynamic problem is solved 

using an approach based on the principle of virtual work, but it has been verified the results in the framework of the 

Lagrange equations. Finally, some simulation graphs for the input and output angles of rotation, the torque and the power of 

the actuator are obtained. 

 
Keywords: Dynamics modelling; Gear mechanism; Kinematics; Lagrange equations; Virtual work 
 
 

1. Introduction 

The epicyclical gear trains are incorporated in the structure of industrial robots and have one, two or three output 

rotations. Including in their architecture conical and cylindrical teethed elements, the input axes of these mechanisms are 

parallel while the output axes can be nonparallel. 

The industrial robots with orienting gear trains can perform several operations such as: welding, flame cutting, spray 

painting, milling or assembling. Being comparatively simple and compact in size, the bevel-gear wrist mechanisms can be 

sealed in a metallic box that keeps the device of contamination. Furthermore, using bevel gear trains for power 

transmission, the actuators can be mounted remotely on the forearm, thereby reducing the weight and inertia of a robot 

manipulator. 

Numerous methods for kinematics analysis of epicyclical gear trains have been proposed by several researchers. 

Planetary gear trains with three degrees of freedom are adopted as the design concept for robotic wrist (Hsieh and Sheu, 
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1995; Paul and Stevenson, 1983; Willis, 1982; Ma and Gupta, 1989; White, 1988). The gear drives are commonly used for 

speed reduction and torque amplification in mechanical systems. 

2. Inverse kinematics model 

Recursive relations for kinematics and dynamics of a 1-DOF orienting gear train are developed in this paper. The 

mechanism topology of the Minuteman cover drive consists of four moving links, four turning pairs and three gear pairs 

(Fig. 1). 

First, we wish to find the overall speed reduction ratio of this mechanism. A matrix methodology for the kinematics 

analysis based on the concept of fundamental circuit of an open-loop chain is presented. This method involves the 

identification of all open-loop chains and the derivation of the geometric relationships between the orientation of the output 

link and the joint angles of the chains, including the input actuator displacements (Tsai, 1999, 1988, 1987). 

 

 

 

 

 

 

 

 

 

 

                                                                            Fig. 1 The Minuteman cover drive 
  

Let )( 00000 TzyxO  be a fixed Cartesian orthogonal frame, about which the mechanism moves. In the Minuteman cover 

drive, the first ring gear 0 is fixed to the ground, the sun gar a1 of radius 1r , mass 1m and tensor of inertia 1Ĵ is the input link 

connected to link 0 , while the moving ring gear b1 of mass 4m and tensor of inertia 4Ĵ serves as output member. The 

compound planet gear cba 233 == meshes with sun gear a1 as well as the two ring gears and is supported with a revolute 

joint by the carrier cba 122 == as a connected coupling shaft of h  in height, mass 2m  and tensor of inertia 2Ĵ . The 

central body a3 , of mass 3m and tensor of inertia 3Ĵ is adjacent to carrier a2 and consists of two cylindrical gears of 
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radius 32 , rr , respectively. Otherwise, the reduced bi-coupled transmission becomes a simply one-DOF compounding 

planetary gear train. 

In the followings, we apply the method of successive displacements to geometric analysis of closed-loop chains and we 

note that a joint variable is the displacement required to move a link from the initial location to the actual position. If every 

link is connected to least two other links, the chain forms one or more independent closed-loops. The variable angles 

1, −kkϕ of rotation about the joint axes kz are the parameters needed to bring the next link from a reference configuration to 

the next configuration. We call the matrix ϕ
1, −kka , for example, the orthogonal transformation 33×  matrix of relative 

rotation with the angle A
kk 1, −ϕ of link A

kT around A
kz axis. 

In the study of the kinematics of constrained systems, we are interested in deriving a matrix equation relating the location 

of an arbitrary kT body to the joint variables. When the change of coordinates is successively considered, the corresponding 

matrices are multiplied.  

 

 

 

 

 

 

   

                                                                                      Fig. 2 Gear fundamental circuit 

 

In what follows, we introduce a matrix approach which utilizes the theory of fundamental circuits developed by Tsai 

(1999). There exists a real or fictitious carrier for every gear pair in a planetary gear train and consequently a fundamental 

matrix equation for each loop can be written: 

,, ,11,11,1,,11,1 kkkkkkkkkkkk nqqq +−+−−+−+ == ϕϕϕϕ                                                                                                                    (1) 

where 1, −kkϕ and kk ,1+ϕ denote two successive relative angles of rotation of the carrier kT  and the planet gear 1+kT , 

respectively. The gear ratios of a gear pair is defined as 

11111,1 // −+−+−+ == kkkkkk zzrrn                                                                                                                                            (2) 
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where 11, +− kk rr and 11, +− kk zz are the radius and the number of teeth of two gears, respectively (Fig. 2). 

 

 

 

 

 

 

 

 

                                                                        Fig. 3 Kinematical scheme of the mechanism 
 

We consider the rotation angles A
10ϕ  of the actuator 1A  as single variable giving the instantaneous position of the 

mechanism (Fig. 3). Pursuing three kinematical chains aaa 3210 −−− , bbb 3210 −−− , cc 210 −− , we obtain 

following successive matrices of transformation (Staicu, Liu and Wang, 2007; Staicu and Zhang, 2008):              

ϕϕϕ θθ 32322212111010 ,, aaaaaa === , 23232212111010 ,, θθ ϕϕϕ bbbbbb === , 2212111010 , θθ ϕϕ cccc == .           (3) 

where one denoted 
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,10 , ),,( cbaq = , ),,( CBAi = . 

Let us suppose that the absolute motion of the end-effector attached at the output link b1 is a rotation of angle expressed 

by the analytical function                   

)]
6

cos(1[010 tB πφφϕ −== .                                                                                                                                                      (5) 

The value 02φ is a parameter characterizing the final position of the end-effector. 

The rotation conditions for the central planet gear cba 233 == are given by the following identities 

203030 cba == .                                                                                                                                                                     (6) 
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On the other hand, some constraint geometric conditions established along above three kinematical chains will be 

expressed by matrix equations 

CTBTAT rcrbra 212032303220 == ,                                                                                                                                                        (7) 

where, for example, one denoted 
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3321 uuuu
, 211213232 , rrhuhrrr CBA +==−=−= .                                              (8) 

From the equations (6), (7), we obtain easily the real-time evolution of all characteristic joint angles, as follows  

φϕ =B
10 , 

23
213232 nn
CBA

−
===

φϕϕϕ , CA nn 213110 )( ϕϕ += , CA n 21121 ϕϕ = , CB n 21221 ϕϕ = , CC n 21310 ϕϕ =                       (9) 

1

2
1 r

rn = , 
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2
2 2rr
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+

= , 
321

3
3 rrr

rn
++

= . 

In the design of power transmission mechanisms such as speed reducers or automotive transmissions, it is necessary to 

analyze the speed ratios between their input and output members and, sometimes, angular velocities or angular accelerations 

of all intermediate members. 

The analysis of the kinematics of bevel-gear wrist mechanisms of gyroscopic structure, for example, is very complex due 

to the fact that the carriers and planet gears may possess simultaneous angular velocities about nonparallel axes. The 

conventional tabular or analytical method, which concentrates on planar epicyclical gear trains, is no longer applicable. To 

overcome this difficulty, Freudenstein, Longman and Chen (1984) applied the dual relative velocity and dual matrix of 

transformation for the analysis of epicyclical bevel-gear trains. The most straightforward approaches make use of the theory 

of fundamental circuits introduced by Freudenstein and Yang (1972), Tsai, Chen and Lin (1998), Chang and Tsai (1989) 

and Hedman (1993) and show that the kinematical analysis of geared robotic mechanisms can be accomplished by applying 

this systematic method. 

Since a kinematical chain is an assemblage of links and joints, these can be symbolized in a more abstract form known as 

equivalent graph representation (Fig. 4). So, we use the associated graph to represent the topology of the mechanism. From 

this equivalent graph the fundamental circuits can be easily identified. 

 In the kinematical graph representation we denote the links by vertices and the joints by edges (Yan and Hsieh, 1991, 

1994). Two small concentric circles label the vertex denoting the fixed link 0 . To distinguish the difference between the 

pairs connections, the gear pairs a1 - a3 , b1 - b3 , 0 - c2 are designed by thick edges and the revolute joints 0 - a1 , a1 -
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a2 , a2 - a3 , a1 - b1 by thin edges. Four edged paths, which start from the base link 0 and end at the central link 

cba 233 == consist of following vertices aaa 3,2,1 , bbb 3,2,1 and cc 2,1 . There are three independent loops, three 

fundamental circuits )3,2,1( aaa , )3,2,1( bbb , )2,1,0( cc  and we identify one real and two fictitious carriers. 

 

 

 

 

 

 

    

 

 

                                                                        Fig. 4 Associated graph of the mechanism 
 

The kinematics of an element for each circuit is characterized by skew-symmetric matrices given by the recursive 

relations (Staicu, 2009): 

i
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T
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i
k qq 1,1,0,11,0

~~~
−−−− += ωωω , 31,1,

~~ ui
kk

i
kk −− = ϕω ,                                                                                                            (10) 

where 3
~u is a skew-symmetric matrix associated with the unit vector 3u . These matrices are associated to the angular 

velocities 

31,1,1,0,11,0 , uq i
kk

i
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i
kk

i
kkk

i
k −−−−− =+= ϕωωωω .                                                                                                                 (11) 

Knowing the rotation motion of the output link b1 by the relations (5), one develops the inverse kinematical problem and 

determines the velocities i
k

i
kv 00 ,ω and the accelerations i

k
i
k 00 ,εγ of each of the moving links. Based on the important remark 

kkkkkk n ,11,11, +−+− = ωω ,                                                                                                                                                      (12) 

the derivatives with respect to time of the relations (9) lead to the relative angular velocities of all links as function of the 

angular velocity φϕ =B
10 of the output gear: 

φω =B
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These kinematical expressions will be further required in the computation of virtual velocity distribution of the elements 

of the mechanism. Starting from these results, a complete expression of the Jacobian of the mechanism is easily written in 

an invariant form. This square invertible matrix is an essential element for the analysis of singularity loci into mechanism 

workspace. 

Let us assume now that the mechanism has a virtual motion. Characteristic virtual velocities expressed as function of 

robot’s position are given by the above relations (13):  

110 =A
vω , 

31
213232

1
nn

C
v

B
v

A
v +

=== ωωω , C
v

A
v n 21121 ωω = , C

v
B

v nn 212310 )( ωω −= , C
v

B
v n 21221 ωω = , C

v
C

v n 21310 ωω = .                 (14) 

These virtual velocities are required into the computation of the virtual work of the forces applied to the component 

elements of the gear train. 

Concerning the relative angular accelerations of the compounding elements of the mechanism, these are immediately 

given by deriving the relations on the above velocities: i
kk

i
kk 1,1, −− = ωε . 

The angular accelerations i
k 0ε and the useful square matrices i

k
i
k

i
k 000

~~~ εωω + are calculated with the following recursive 

formulae (Staicu, 2008): 

31,0,11,1,31,0,11,0
~ uqquq T
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k −−−−−−− ++= ωωεεε                                                                                                   (15) 
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31,0,11,1,31,331,1, uqquuu T
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i
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i
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i
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i
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i
kk −−−−−−− +++ ωωεωω  

Knowing the rotation motion of the output link b1 by the relations (5), one determines also the absolute velocity i
kv 0 and 

the absolute acceleration i
k 0γ of each of the moving links: 

0,~
1,31,1,0,11,0,11,0 =++= −−−−−−−

i
kk

i
kk

i
kk

i
kkk

i
kkk

i
k vuvrqvqv ω ,                                                                                                  (16) 

.0,~2}~~~{ 1,31,31,0,11,1,1,0,10.10,11,0,11,0 =++++= −−−−−−−−−−−−−
i
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i
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T
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i
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i
kk

i
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i
k

i
k

i
kkk

i
kkk

i
k uuqqvrqq γγωεωωγγ         

The velocity Ci
kv and the acceleration Ci

kγ of mass centre of i
kT  rigid body are calculated from two basic matrix relations 

Ci
k

i
k

i
k

Ci
k rvv 00

~ω+= , Ci
k

i
k

i
k

i
k

i
k

Ci
k r}~~~{ 0000 εωωγγ ++= .                                                                                                   (17)                       

The matrix relations (10), (11), (15), (16) and (17) will be further used for the computation of the wrench of the inertia 

forces for every rigid component of the mechanism. 

The dynamic model would only be established in regard with the complete geometrical analysis and kinematics of the 

mechanical system. 
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3. Equations of motion 

In the context of the real-time control, neglecting the friction forces and considering the gravitational effects, the relevant 

objective of the dynamics is to determine the input torques and powers, which must be exerted by the actuators in order to 

produce a given trajectory of the end-effector. 

3.1. Principle of virtual work  

The torque of moment 31010 umm AA =  can control by intermediate of an electric motor the motion of the geared 

mechanism. The derivation of a dynamic model has a very important effect in the determination of the actuator torque (Tsai, 

2001; Muller, Mannhardt and Glover, 1982; Castillo, 2002). 

In the inverse dynamic problem, in the present paper one applies first the principle of virtual work in order to establish 

recursive matrix relations for the torque and the power of the active system. The mechanism of the gear train can artificially 

be transformed in a set of three open serial chains ),,( CBAjC j =  subject to the constraints. This is possible by cutting 

successively several joints for the central link a3 and taking their effects into account by introducing the corresponding 

constraint conditions. 

Considering that the motion of the output link b1 is given, the position, angular velocity, angular acceleration as well as 

the velocity and acceleration of the centre of mass are known of each element. The force of inertia of an arbitrary rigid 

body A
kT , for example 

( )[ ]CA
k

A
k

A
k

A
k

A
k

A
k

inA
k rmf 00000

~~~ εωωγ ++−=                                                                                                                                 (18)      

and the resulting moment of the forces of inertia 

]ˆ~ˆ~[ 00000
A
k

A
k

A
k

A
k

A
k

A
k

CA
k

A
k

inA
k JJrmm ωωεγ ++−=                                                                                                                       (19) 

are determined with respect to the centre of the joint kA . The wrench of two vectors A
kf ∗ and A

km∗ evaluates the influence of 

the action of the external and internal forces applied to the same element A
kT or of its weight gm A

k , for example: 

30
* 81.9 uamf k

A
k

A
k = , 30

* ~81.9 uarmm k
CA

k
A
k

A
k =  )3,2,1( =k .                                                                                            (20) 

Finally, two significant recursive relations generate the vectors 

,~, 1,1,11,101,10
A

k
T

kk
A

kk
A
k

T
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A
k

A
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A
k

T
kk

A
k

A
k FarMaMMFaFF +++++++ ++=+=                                                                                 (21) 

where one denote 

A
k

inA
k

A
k ffF ∗−−= 00 , A

k
inA
k

A
k mmM ∗−−= 00 .                                                                                                                          (22) 
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The fundamental principle states that a mechanism is under dynamic equilibrium if and only if the virtual work 

developed by all external, internal and inertia forces vanish during any general virtual displacement, which is compatible 

with the constraints imposed on the mechanism. Applying the fundamental equations of parallel robots dynamics obtained 

in a compact form by Stefan Staicu (2005, 2009), the following little matrix relation results 

}{ 221110110110310
CC

v
CC

v
BB

v
AA

v
TA MMMMum ωωωω +++= .                                                                                                   (23) 

for the torque of the actuator. 

The relations (21) and (23) represent the inverse dynamic model of the Minuteman cover drive. The procedure leads to 

very good estimates of the actuator torque for given displacement of end-effector, provided that the inertial properties of the 

gears are known with sufficient accuracy and that friction is not significant. This new dynamic approach developed here can 

be extended to any gyroscopic bevel-gear train with revolute actuators. 

In that follows we can apply the Newton-Euler procedure to establish the set of analytical equations for each 

compounding rigid body of a prototype gear train in a real application. These equations give all connecting forces in the 

external and internal joints. Several relations from the general system of equations could eventually constitute verification 

for the input forces or active torques obtained by the method based on the principle of virtual work. Now, we can calculate 

the friction forces and the friction torques in the joints, based on the friction coefficients and the maximum of the 

connecting forces in the joints. We apply again the explicit equations (21) and (23), where the contribution of the virtual 

work of friction forces in joints it is added. The new active torque is compared to the value obtained in the first calculus. 

3.2. Equations of Lagrange  

A solution of the dynamics problem of the Minuteman cover drive can be developed based on the Lagrange equations of 

second kind. The single generalized coordinate of the robot are represented by the rotation angle of the actuator: αϕ =A
10 . 

The Lagrange’s equation will be expressed by one differential relation  

ααα
QEE

dt
d

=
∂
∂

−
∂
∂ }{ ,                                                                                                                                                         (24) 

which contain following generalized force  

)sin()
2
1(

31

3

31

3
32

31

23
10 αα nn

n
nn

nghmmM
nn
nnmQ r

A

++
++

+
−

−= .                                                                              (25)                       

The components of the general expression of the kinetic energy BA EEE 1

3

1

+=∑
=υ

υ are expressed as analytical function of 

first derivative with respect to time of the generalized coordinate: 
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AATA JE 101101
ˆ

2
1 ωω= , AATA JE 202202

ˆ
2
1 ωω= , AATAATA JvvmE 30330303033

ˆ
2
1

2
1 ωω+= , BBTB JE 104101

ˆ
2
1 ωω= ,                              (26) 

where the absolute angular velocities have the expressions:  

310 uA αω = , 3
31

3
20 u

nn
nA

+
= αω , 3

31

3
30

1 u
nn

nA

+
−

= αω , 2
31

3
30 u
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nhv A

+
−= α , 3

31

23
10 u

nn
nnB

+
−

= αω .                       (27) 

In the inverse dynamics problem, a calculus of the derivatives with respect to time }{
α∂
∂E

dt
d

of all above functions leads 

quickly to same expression (23) for the input torque Am10 required by the actuator, now given as analytical solution: 

+
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−
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+= α}
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)1()(
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{ 42

31

2
13

32
31
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32

322
31

2
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110 zzzz
A J

nn
nnJ

nn
nhmJ

nn
nJm −

+
−

rM
nn
nn

31

23  

   )sin()
2
1(

31

3

31

3
32 α

nn
n

nn
nghmm

++
+− .                                                                                                                   (28) 

4. Simulation procedure 

The procedure for solving the inverse dynamics of the Minuteman cover drive by using the principle of virtual work can 

be summarised in several basic steps. 

1º. For a period of 6=Δt second, it is assumed that the time-history of the moving output link is specified from equation 

(5). The relations (9) give the evolution of joint variables i
10ϕ , i

21ϕ , i
32ϕ ),,( CBAi = . 

2º. Using the relations (3), (4) and (6) we compute the transformation matrices of three legs CBA ,, : iq10 , iq21 , iq32 , 

iii qqq 102120 = , iii qqq 203230 = . 

3º. Determine the velocities and accelerations of all links by performing the inverse kinematics analysis in terms of 

prescribed angular velocityφ and angular accelerationφ of the output link b1 . Specifically, for each kinematical chain, from 

the relations (13), we compute the relative angular velocities i
kk 1, −ω and the relative angular accelerations i

kk
i

kk 1,1, −− = ωε . 

4º. Starting from same equations (13), where we introduce 110 =A
vω , we compute the virtual characteristic velocities (14) of 

all moving elements.  

5º. We compute the velocity and the acceleration of the centre of mass as well as the angular velocity and the angular 

acceleration of each link using the equations (11), (15), (16) and (17). 

6º. Decompose artificially the gear mechanism in three independent open-loop kinematical chains a1 , b1 and cc 21 − . 
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7º. We determine the inertia force (18), the moment of inertia forces (19), the resulting force and the resulting moment 

(excluding the actuator torque) exerted to the rigid body kT , from recursive equations (20). 

8º. Finally, we find the input torque Am10 and the power AAA mp 101010 ω=  from the equations (23) or (28).  

For simulation purposes let us consider a geared mechanism which has the following characteristics  

 03.01 =r m, 02.02 =r m, 04.03 =r m, 3.01 =m kg, 25.02 =m kg , 6.03 =m kg, 85.04 =m kg   

05.0== dh m, 75.1−=rM Nm, πφ =0 , 6=Δt s. 

                                           

                                                                    Fig. 5 Input and output rotation angles A
10ϕ , B

10ϕ  

A program which implements the suggested algorithm is developed in MATLAB to solve first the inverse kinematics of 

the gear train. For illustration, it is assumed that the end-effector starts at rest from its initial position and is moving in a 

known rotation motion. A numerical study of the kinematics is carried out by computation of the input and output angles of 

rotation ,10
Aϕ ,10

Bϕ  for example (Fig. 5). 

Based on the algorithm derived from the above recursive relations, a computer program solve the inverse dynamics 

modelling of the mechanism, using the MATLAB software. Assuming that a resistant torque of constant moment 

75.1−=rM Nm applied at the end-effector and the weights gm A
k of compounding rigid bodies constitute the external forces 

acting on the mechanism during its evolution, a numerical computation in the dynamics is developed, based on the 

determination of the input torque Am10  (Fig. 6) and its active power Ap10  (Fig.7). The time-history evolution of the torque 

and power required by the active system is shown for a period of six second of motion. 
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5. Conclusions 

Within the inverse kinematics analysis, some exact matrix relations giving the position, velocity and acceleration of each 

link for a 1-DOF epicyclical gear train have been established. 

Knowing the rotation motion of the output link, the inverse dynamic problem is solved using an approach based on the 

principle of virtual work, but it has been verified the results in the framework of the Lagrange equations. The new approach 

described above is very efficient and establishes a direct recursive determination of the variation in real-time of torque and 

power of the actuator. The matrix relations, given by this dynamic simulation, can be transformed in a model for automatic 

command of the gear mechanism.  

                                             

                                                                               Fig, 6 Input torque Am10 of the actuator 

                                             

                                                                               Fig, 7 Input power Ap10  of the actuator 
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