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We investigate how Viro's integral calculus applies for the study of the topology of stable maps. We also discuss several applications to Morin maps and complex maps.

Introduction

It is well known that there is a deep relation between the topology of a manifold and the topology of the critical locus of maps. The best example of this fact is Morse Theory which gives the homotopy type of a compact manifold in terms of the Morse indices of the critical points of a Morse function. Let us mention other examples. R. Thom [START_REF] Thom | Les singularités des applications différentiables[END_REF] proved that the Euler characteristic of a compact manifold M of dimension at least 2 had the same parity as the number of cusps of a generic map f : M → R 2 . Latter H. I. Levine [START_REF] Levine | Mappings of manifolds into the plane[END_REF] improved this result giving an equality relating χ(M ) and the critical set of f . In [START_REF] Fukuda | Topology of folds, cusps and Morin singularities. A fête of topology[END_REF], T. Fukuda generalized Thom's result to Morin maps f : M → R p when dim M ≥ p. He proved that:

(1.1)

χ(M ) + p k=1 χ(A k (f )) = 0 mod 2,
where A k (f ) is the set of points x in M such that f has a singularity of type A k at x (see Section 4 for the definition of A k ). Furthermore if f has only fold points (i.e., singularities of type A 1 ), then T. Fukuda gave an equality relating χ(M ) to the critical set of f . T. Fukuda's formulas were extended to the case of a Morin mapping f : M → N , where dim M ≥ dim N , by O. Saeki [START_REF] Saeki | Studying the topology of Morin singularities from a global viewpoint[END_REF]. When dim M = dim N , similar formulas were obtained by J. R. Quine [START_REF] Quine | A global theorem for singularities of maps between oriented 2-Manifolds[END_REF] and I. Nakai [START_REF] Nakai | Charateristic classes and fiber products of smooth mappings[END_REF]. On the other hand, Y. Yomdin [START_REF] Yomdin | The structure of strata µ = const in a critical set of a complete intersection singularity[END_REF] showed the equality among Euler characteristics of singular sets of holomorphic maps. As Y. Yomdin and I. Nakai showed in this context, the integral calculus due to O. Viro [START_REF] Viro | Plane real algebraic curves: constructions with controlled topology[END_REF] is useful to find relations like (1.1) for stable maps. In this paper, we investigate how Viro's integral calculus applies in enough wide setup. To do this we introduce the notion of local triviality at infinity and give some examples to illustrate this notion in section 3. T. Ohmoto showed that Yomdin-Nakai's formula is generalized to the statement in terms of characteristic class and discuss a relation with Thom polynomial in his lecture of the conference on the occasion of 70th birthday of T. Fukuda held on 20 July 2010. We consider a stable map f : M → N between two smooth manifolds M and N . We assume that dim M ≥ dim N , that N is connected and that M and N have finite topological types. We also assume that f is locally trivial at infinity (see Definition 3.1) and has finitely many singularity types. Then the singular set Σ(f ) of f is decomposed into a finite union ⊔ ν ν(f ), where ν(f ) is the set of singular points of f of type ν. In Theorems 5.1, 5.6, 5.7 and 5.11, we establish several formulas between the Euler characteristics with compact support of M , N and the ν(f )'s. We apply them to maps having singularities of type A k or D k in Corollaries 5.4, 5.5, 5.9, 5.10, 5.12 and 5. [START_REF] Quine | A global theorem for singularities of maps between oriented 2-Manifolds[END_REF].

In Section 6 of this paper, we apply the results of Section 5 to Morin maps and we use the link between the Euler characteristic with compact support and the topological Euler characteristic

• For A ∈ S(X), B ∈ S(Y ) with f (A) = B, if f | A : A → B is a locally trivial fibration with fiber F , then: µ X (A) = µ X (F )µ Y (B). • For A ∈ S(X), there is a filtration

∅ = B -1 ⊂ B 0 ⊂ B 1 ⊂ • • • ⊂ B l = Y with B i ∈ S(Y )
such that:

f | f -1 (B i \B i-1 )∩A : f -1 (B i \ B i-1 ) ∩ A → B i \ B i-1 (i = 0, 1, . . . , l)
is a locally trivial fibration.

Lemma 2.2 (Fubini's theorem). For ϕ ∈ Cons(X) and f : X → Y such that (S(X), S(Y )) fits to f , we have:

X ϕ(x)dµ X = Y f * ϕ(y)dµ Y where f * ϕ(y) = f -1 (y) ϕ(x)dµ X .
Proof. It is enough to show the case when ϕ X = 1 A for A ∈ S(X). So let us show that:

µ X (A) = Y µ X (A ∩ f -1 (y))dµ Y .
We take a filtration

∅ ⊂ B -1 ⊂ B 0 ⊂ B 1 ⊂ • • • ⊂ B l (B i ∈ S(Y )
) so that:

f | f -1 (B i \B i-1 )∩A : f -1 (B i \ B i-1 ) ∩ A → B i \ B i-1 (i = 0, 2, . . . , l)
is a locally trivial fibration with a fiber F i . Then we have:

µ X (A) = l i=0 µ X (f -1 (B i \ B i-1 ) ∩ A) (additivity of µ) = l i=0 µ X (F i )µ Y (B i \ B i-1 ) (triviality of f | A on B i \ B i-1 ) = l i=0 µ X (F i ) B i \B i-1 dµ Y (definition of ) = l i=0 B i \B i-1 µ X (F i )dµ Y = l i=0 B i \B i-1 µ X (A ∩ f -1 (y))dµ Y (F i = A ∩ f -1 (y) for y ∈ B i \ B i-1 ) = Y µ X (A ∩ f -1 (y))dµ Y (additivity of ).
Corollary 2.3. Set X i = {x ∈ X | ϕ(x) = i}, and Y j = {y ∈ Y | f * ϕ(y) = j}. Then we have:

i i µ X (X i ) = j j µ Y (Y j ).
Proof. This is clear, since:

X ϕ(x)dµ X = i X i ϕ(x)dµ X = i X i idµ X = i iµ X (X i ), Y f * ϕ(y)dµ Y = j Y j f * ϕ(y)dµ Y = j Y j jdµ Y = j jµ Y (Y j ).
Corollary 2.4. If f * ϕ is a constant d on y ∈ Y , we have:

i i µ X (X i ) = d µ Y (Y ).
In the sequel, we will apply O. Viro's integral calculus to investigate topology of stable maps (see [START_REF] Nakai | Charateristic classes and fiber products of smooth mappings[END_REF] and [START_REF] Nakai | Elementary topology of stratified mappings, Singularities-Sapporo[END_REF] for a similar strategy).

Local triviality at infinity

In this section, we define the notion of local triviality at infinity for a smooth map.

Definition 3.1. Let f : M → N be a smooth map between two smooth manifolds. We say f is locally trivial at infinity at y ∈ N if there are a compact set K in M and an open neighborhood D of y such that f : (M \ K) ∩ f -1 (D) → D is a trivial fibration. We say f is locally trivial at infinity if it is locally trivial at infinity at any y ∈ N .

Here are some examples of functions not locally trivial at infinity.

Example 3.2 (Broughton [2]). Consider f (x, y) = x(xy + 1). The critical set Σ(f ) of f is empty. For t = 0, f -1 (t) = {y = (t -x)/x 2 }. We have f -1 (t) = R * , f -1 (0) = R ∪ R * and χ c (f -1 (t)) = -2, χ c (f -1 (0)) = -3.
So this example is not locally trivial at infinity on t = 0. The level curves of f with level -1/2, 0, 1/2 are shown in the figure. The thick line shows the level 0.

A map f : R 2 → R with Σ(f ) = ∅ may not be surjective. M. Shiota remarked that the map R 2 → R, (x, y) → (x(xy + 1) + 1) 2 + x 2 , has empty critical set, and is not surjective.

Example 3.3 (Tibȃr-Zaharia [START_REF] Tibar | Asymptotic behaviour of families of real curves[END_REF]Example 3.2]). Consider f (x, y) = x 2 y 2 + 2xy + (y 2 -1) 2 . Then Σ(f ) = {(0, 0), (1, -1), (-1, 1)} and f (0, 0) = 1, f (1, -1) = f (-1, 1) = -1. Since f -1 (t) is two lines (resp. circles) if 0 ≤ t < 1 (resp. -1 < t < 0), we have:

χ c (f -1 (t)) = -2 (0 ≤ t < 1) 0 (-1 < t < 0).
So this example is not locally trivial at infinity on t = 0. The level curves of f with level -1, -1/2, 0, 1/2, 1, 3/2 are shown in the figure. The thick line shows the level 0.

Euler characteristics of local generic fibers

In this section, we present a general method for the computations of the Euler characteristic of the Milnor fibers of a stable map-germ. We start with a lemma.

Lemma 4.1. Let Y be a manifold and let X be a set defined by:

X = {(x, y) ∈ R p × Y : x 1 2 + • • • + x p 2 = g(y)}
where g(y) is a smooth positive function. Then X is a smooth manifold and:

χ c (X) = χ(S p-1 )χ c (Y ) = (1 -(-1) p )χ c (Y ).
Proof. It is easy to check that X is a manifold. To obtain the equality, consider the map:

X → Y, (x, y) → y.
This is a locally trivial fibration whose fiber is S p-1 .

Example 4.2. Let X be the set defined by:

X = {(x, y) ∈ R p × R q : x 1 2 + • • • + x p 2 = y 1 2 + • • • + y q 2 + 1}.
Since X → R q , (x, y) → y, is a locally trivial fibration whose fiber is S p-1 , we have:

χ c (X) = χ c (S p-1 )χ c (R q ) = (1 -(-1) p )(-1) q = (-1) q -(-1) p+q .
Example 4.3. Let X be the set defined by:

X = {(x, y) ∈ R p × R q : x 1 2 + • • • + x p 2 = y 1 2 + • • • + y q 2 }.
Since X \ {0} → R q \ {0}, (x, y) → y, is a locally trivial fibration whose fiber is S p-1 , we have:

χ c (X) =χ c ({0}) + χ c (S p-1 )χ c (R q \ {0}) =1 + (1 -(-1) p )((-1) q -1) =(-1) p + (-1) q -(-1) p+q .
Next we will apply this lemma and these examples to the computation of Euler characteristics of local nearby fibers of stable map-germs. The general setting is the following. Let B be a small open ball in R n centered at 0 and let B ′ be a small open ball in R a+b centered at 0. We consider a map f defined by: (4.1)

f : B × B ′ × R h → R × R j × R h , (x, z, c) → (g(x; c) + Q(z), g ′ (x; c), c)
where

Q(z) = z 1 2 + • • • + z a 2 -z a+1 2 -• • • -z a+b 2 .
Remember that stable-germs are versal unfoldings, deleting constant terms, of a map-germ x → (g(x; 0), g ′ (x; 0)), called the genotype, and can be written in this form. (See [START_REF] Arnol'd | I. The classification of critical points, caustics and wave fronts[END_REF]Part I,[START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF])

We want to compute the Euler characteristic of a local generic fiber around the point (0, 0, 0), namely the fiber f -1 (ε, ε ′ , c) for small ε and ε ′ . First we remark that f

-1 (ε, ε ′ , c) is diffeomorphic to: F = {(x, z) ∈ B × B ′ : g(x; c) + Q(z) = ε},
where B is the nonsingular subset of B defined by

g ′ (x; c) = ε ′ . Note that dim F = n-j+a+b-1 and dim B = n -j.
Lemma 4.4. We have:

χ c (F ) =          χ c (B 0 ) a even, b even χ c (B) + χ c (B + ) -χ c (B -) a even, b odd χ c (B) -χ c (B + ) + χ c (B -) a odd, b even -2χ c (B) -χ c (B 0 )
a odd, b odd where:

B + ={x ∈ B | g(x; c) > ε}, B 0 ={x ∈ B | g(x; c) = ε}, B -={x ∈ B | g(x; c) < ε}.
Remark that B, B + , B -and B 0 depend on ε, ε ′ , c and it would be better to denote them by

B(ε, ε ′ , c), B + (ε, ε ′ , c), B -(ε, ε ′ , c
) and B 0 (ε, ε ′ , c) respectively. But we keep the notation in the lemma for shortness.

Proof. Consider the map: ϕ : F → B, (y, z) → y. The singular set of ϕ is described by: rank

g y i Q z k 1 0 < m + 1 (i.e., Q z 1 = • • • = Q z a+b = 0),
where m = nj and (y 1 , . . . , y m ) denotes a local coordinates system for B. Note that, with the standard notation, Σ(ϕ) = Σ a+b (ϕ). Now we consider the singular set of ϕ| Σ(ϕ) , which is defined by: rank

  g y i Q z k 1 0 0 Q z i z j   < m + a + b.
Since Q is quadratic, we have Σ a+b,1 (ϕ) = ∅ which means that ϕ is a fold map. Moreover Σ(ϕ) is included in ϕ -1 (B 0 ). Hence ϕ |ϕ -1 (B + ) and ϕ |ϕ -1 (B -) are locally trivial. Furthermore the decomposition ϕ -1 (B 0 ) = Σ(ϕ) ⊔ (ϕ -1 (B 0 ) \ Σ(ϕ)) gives a Whitney stratification of ϕ -1 (B 0 ) and ϕ |Σ(ϕ) and ϕ |ϕ -1 (B 0 )\Σ(ϕ) have no critical point so ϕ |ϕ -1 (B 0 ) is also trivial by the Thom-Mather lemma.

Using Examples 4.2 and 4.3, we remark the following:

χ c (ϕ -1 (x)) =      (-1) b -(-1) a+b x ∈ B - (-1) a -(-1) a+b x ∈ B + (-1) a + (-1) b -(-1) a+b x ∈ B 0
In other words, χ c (ϕ -1 (x)) is given by the following table:

x ∈ B + x ∈ B -x ∈ B 0 a even, b even 0 0 1 a even, b odd 2 0 1 a odd, b even 0 2 1 a odd, b odd -2 -2 -3
Therefore, using the local trivialities mentioned above, we conclude as follows:

χ c (F ) =          χ c (B 0 ) a even, b even 2χ c (B + ) + χ c (B 0 ) = χ c (B) + χ c (B + ) -χ c (B -) a even, b odd 2χ c (B -) + χ c (B 0 ) = χ c (B) -χ c (B + ) + χ c (B -) a odd, b even -2χ c (B + ) -2χ c (B -) -3χ c (B 0 ) = -2χ c (B) -χ c (B 0 ) a odd, b odd Here we use the fact χ c (B + ) + χ c (B -) + χ c (B 0 ) = χ c (B).
If B is an open m-ball, then χ c (B) = (-1) m and we conclude that:

1 + (-1) m+a+b χ c (F ) =          (-1) m ((-1) m + χ c (B 0 )) a even, b even -(-1) m (χ c (B + ) -χ c (B -)) a even, b odd (-1) m (χ c (B + ) -χ c (B -)) a odd, b even -(-1) m ((-1) m + χ c (B 0 )) a odd, b odd
If f is an unfolding of a function-germ (i.e., m = n, j = 0), then B is an open m-ball.

Definition 4.5. We consider an unfolding of a function-germ (x, z) → g(x; 0) + Q(z). Let σ denote the singularity type of the map x → g(x, 0). When m + a + b is even, define s σ by:

s σ = 1 + χ c (F ) = -χ c (B + ) + χ c (B -) if m is odd and a + b is odd 1 + χ c (B 0 )
if m is even and a + b is even When m + a + b is odd, define s max σ , s min σ by:

s max σ = 1 -max{χ c (F )} = -max{-1 + χ c (B 0 )} if m is odd and a + b is even min{χ c (B + ) -χ c (B -)} if m is even and a + b is odd s min σ = 1 -min{χ c (F )} = -min{-1 + χ c (B 0 )} if m is odd and a + b is even max{χ c (B + ) -χ c (B -)} if m is even and a + b is odd
Now let us apply this machinery to A k and D k singularities. 4.1. A k singularities. We set n = m = 1, j = 0 and:

g c (x) = g(x; c) = x k+1 + c 1 x k-1 + • • • + c k-2 x 2 + c k-1 x.
Then we have χ c (B 0 ) = #{x : g c (x) = ε} and:

χ c (B + ) -χ c (B -) = 0 k even, -1 k odd.
If k is even, then we obtain:

1 -(-1) a+b χ c (F ) =          1 -#{x ∈ B : g c (x) = ε} a even, b even 0 a even, b odd 0 a odd, b even #{x ∈ B : g c (x) = ε} -1 a odd, b odd If k is odd, then we obtain: 1 -(-1) a+b χ c (F ) =          1 -#{x ∈ B : g c (x) = ε} a even, b even -1 a even, b odd 1 a odd, b even #{x ∈ B : g c (x) = ε} -1 a odd, b odd 4.2. Unfoldings of functions (x 1 , x 2 , z) → g(x, 0) + Q(z).
We set n = m = 2 and j = 0. We consider the map defined by:

(4.2) (R 2+a+b+h , 0) → (R 1+h , 0), (x 1 , x 2 , z 1 , . . . , z a+b , c 1 , . . . , c h ) → (g(x 1 , x 2 , c 1 , . . . , c h ) + z 1 2 + • • • + z a 2 -z a+1 2 -• • • -z a+b 2 , c 1 , . . . , c h ).
Let r denote the number of branches of the curve defined by g(x; 0) = 0. Since χ c (B 0 ) = -r, we obtain that:

1 + (-1) a+b χ c (F ) =          1 -r a even, b even χ c (B -) -χ c (B + ) a even, b odd χ c (B + ) -χ c (B -) a odd, b even r -1 a odd, b odd O.
Viro [START_REF] Viro | Plane real algebraic curves: constructions with controlled topology[END_REF] described the list of possible smoothings of D k (k ≥ 4), E 6 , E 7 , E 8 , J 10 and nondegenerate r-fold points. In next subsection, we use this list to compute χ c (B + )χ c (B -) for D k singularities. We leave to the reader the computation in the other cases.

4.3. D k singularities. We denote by D ± k the singularity defined by (4.2) with:

g(x; c) = x 1 (x 1 k-2 ± x 2 2 ) + c 1 x 1 + • • • + c k-2 x 1 k-2 + c k-1 x 2 .
First case: k is even and {x ∈ R 2 : g(x, 0) = 0} has 3 branches. The zero set of g(x, 0) looks like the following:

D - 4 D - k (k > 4 
even) First consider the smoothing described by the following picture:

For such a smoothing, it is easy to see

χ c (B + ) -χ c (B -) = 0.
Next we consider the smoothings described by the following pictures:

α 0 ≤ α ≤ k-1 2 α 0 ≤ α ≤ k-1 2 α β 0 ≤ α + β ≤ k-4 2
Here α represents a group of α ovals without nests. For such smoothings, we see that:

χ c (B + )- χ c (B -) = 2(1 + α), -2(1 + α), 2(α -β) respectively.
Then we obtain:

χ c (B + ) -χ c (B -) = -k, -k + 2, . . . , k -2, k.
Second case: k is even and {x ∈ R 2 : g(x, 0) = 0} has 1 branch. The smoothings are described by the figure on the right-hand side.

D + k (k even) α β 0 ≤ α + β ≤ k-2 2
For such smoothings, we see that

χ c (B + ) -χ c (B -) = 2(α -β).
Thus we have:

χ c (B + ) -χ c (B -) = 2 -k, 4 -k, . . . , k -4, k -2.
Third case: k is odd.

D k (k odd) α 0 ≤ α ≤ k-3 2 α β 0 ≤ α + β ≤ k-3 2 
For such smoothings, we see that:

χ c (B + ) -χ c (B -) = -1 -2α, 1 -2(α -β)
, respectively. Thus we have:

χ c (B + ) -χ c (B -) = 2 -k, 4 -k, . . . , k -4, k -2.

Study of stable maps

f : M → N with dim M ≥ dim N
Let f : M → N be a stable map between two smooth manifolds M and N . Let m = dim M and n = dim N . We assume that m ≥ n, that N is connected and that M and N have finite topological types. Let σ denote the singularity type given by the genotype : x → (g(x; 0), g ′ (x; 0)) in the notation of (4.1). Then the genotype σ gives rise to two singularity types of f : we say that f is of type σ + (resp. σ -) if, in the expression of given (4.1), b is even (resp. odd). The definition of σ + and σ -is ad hoc, since it depends on the normal form (4.1). It seems to be no natural way to define the sign in general. We set:

σ ± (f ) = {x ∈ M : f x has singularity of type σ ± },
where

f x : (M, x) → (N, f (x)) is the germ of f at x. Let Σ(f ) denote the critical set of f . Since f is stable, Σ(f ) ∩ f -1 (y) is a finite set for each y ∈ N .
Then f defines a multi-germ:

f y : (M, Σ(f ) ∩ f -1 (y)) → (N, y).
Let τ denote a type of singularities of stable multi-germs and:

N τ (f ) = {y ∈ N : f y has singularities of type τ }. 5.1. Case m-n is odd. If m-n is odd, then χ c (f -1 (y ′ )∩B ε (x))
does not depend on the choice of regular value y ′ nearby f (x), where B ε (x) denotes the open ball of small radius ε centered at

x in M . Indeed, f -1 (y ′ ) ∩ B ε (x)
is a compact odd-dimensional manifold with boundary and so:

χ c (f -1 (y ′ ) ∩ B ε (x)) = χ(f -1 (y ′ ) ∩ B ε (x)) = 1 2 χ(f -1 (y ′ ) ∩ ∂B ε (x)). But the last Euler characteristic is equal to χ(f -1 (f (x)) ∩ ∂B ε (x)). If x is of type ν then we denote by c ν the Euler characteristic χ c (f -1 (y ′ ) ∩ B ε (x)).
Replacing the ball of small radius with a ball with big radius and assuming that f is locally trivial at infinity, we may establish in a similar way that χ c (f -1 (y)) does not depend on the choice of the regular value y of f . We denote this Euler characteristic by χ f . Theorem 5.1. Assume that f : M → N is locally trivial at infinity and has finitely many singularity types (this is the case when (m, n) is a pair of nice dimensions in Mather's sense). Then we have:

(5.1) ν c ν χ c (ν(f )) = χ f χ c (N ),
provided that the χ c (ν(f ))'s and χ f are finite. Moreover, if all singularities of f are versal unfoldings of function-germs then we have:

(5.2) χ c (M ) -χ f χ c (N ) = σ s σ χ c (σ + (f )) -χ c (σ -(f )) ,
where σ denotes the singularity type of the genotype and s σ is defined as in Definition 4.5.

Proof. We consider the stratification of f defined by the types of singularities (see Nakai's paper [12, §1]) and we define S(M ), S(N ) as the subset algebras generated by the strata and fibers of f . Then (S(X), S(Y )) fits to the map f . Set µ X = χ c , µ Y = χ c and:

ϕ(x) = χ c (f -1 (y ′ ) ∩ B ε (x)),
where y ′ is a regular value nearby f (x). Applying Corollary 2.3 for ϕ, Lemma 5.2 and Remark 5.3 below, we obtain:

(5.3) ν c ν χ c (ν(f )) = χ f χ c (N ).
By the additivity of the Euler characteristic with compact support, we get:

χ c (M ) -χ f χ c (N ) = ν (1 -c ν )χ c (ν(f )).
If all the singularities are versal unfoldings of function-germs then each genotype gives rise to two singularity types σ + (f ) and σ -(f ) and 1c σ -= -(1c σ + ) = -s σ by Remark 5.3 below and the computations made in Section 4.

Lemma 5.2. Let f : M → N be a smooth map such that:

• dim M -dim N is odd, • f | Σ(f ) is finite,
• f is locally trivial at infinity. Then for each y ∈ N , we have:

f * ϕ(y) = f -1 (y) ϕ(x)dχ c = χ c (f -1 (y ′ )),
where y ′ is a regular value of f close to y.

Proof. Set {x 1 , . . . , x s } = f -1 (y) ∩ Σ(f ). Take a regular value y ′ of f near y. Then:

χ c (f -1 (y ′ )) =χ c (f -1 (y ′ ) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) =χ c (f -1 (y) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) =χ c (f -1 (y) \ {x 1 , . . . , x s }) + i ϕ(x i ) = f -1 (y)\{x 1 ,...,xs} ϕ(x)dχ c + {x 1 ,...,xs} ϕ(x)dχ c = f -1 (y) ϕ(x)dχ c . Remark 5.3. Set φ(x) = χ c (f -1 (y ′ ) ∩ B ε (x))
where y ′ is a regular value nearby f (x). Then:

ϕ(x) = φ(x) + χ c (f -1 (y ′ ) ∩ S ε (x)),
where S ε (x) is the sphere of radius ε centered at x. If f -1 (y ′ ) ∩ B ε (x) is an odd dimensional manifold with boundary f -1 (y ′ ) ∩ S ε (x), then we obtain φ(x) = -ϕ(x), since:

2ϕ(x) = χ c (f -1 (y ′ ) ∩ S ε (x)) = -2φ(x). Similarly if f -1 (y ′ ) ∩ B ε (x) is an even dimensional manifold with boundary f -1 (y ′ ) ∩ S ε (x), we obtain that φ(x) = ϕ(x).
Corollary 5.4. Assume that the map f satisfies the assumptions of Theorem 5.1 and has at worst A n singularities. Then, we have:

χ c (M ) -χ f χ c (N ) = k:odd χ c (A + k (f )) -χ c (A - k (f )) .
Proof. Using the computations in Section 4, we see that

s A k = 0 is k is even and s A k = 1 if k is odd.
Corollary 5.5. Assume that the map f satisfies the assumptions of Theorem 5.1 and has only stable singularities locally defined by (4.2). We denote σ r the union of singularities types so that the number of branches of g(x 1 , x 2 ; 0) = 0 near 0 is r. We denote by σ + r (resp. σ - r ) the union of such singularities types with even (resp. odd) b. Then, we have:

χ c (M ) -χ f χ c (N ) = r (1 -r) χ c (σ + r (f )) -χ c (σ - r (f )) .
Proof. Using the computations in Section 4, we see that s σr = 1r .

5.2.

Case m-n is even and m-n > 0. If m-n is even and non-zero then χ c (f -1 (y ′ )∩B ε (x)) depends on the choice of the regular value y ′ nearby f (x). But its parity does not depend on y ′ . Indeed, f -1 (y ′ ) ∩ B ε (x) is a compact even-dimensional manifold with boundary and so:

χ c (f -1 (y ′ ) ∩ B ε (x)) ≡χ(f -1 (y ′ ) ∩ B ε (x)) ≡ψ(f -1 (y ′ ) ∩ S ε (x)) ≡ψ(f -1 (f (x)) ∩ S ε (x)) (mod 2),
where ψ denotes the semi-characteristic, i.e., half the sum of the mod 2 Betti numbers (see [START_REF] Wall | Topological invariance of the Milnor number mod 2[END_REF]). If a point x in M is of singular type ν then we denote by c ν the mod 2 Euler characteristic χ c (f -1 (y ′ ) ∩ B ε (x)). We will denote by χ f the mod 2 Euler characteristic χ c (f -1 (y)) where y is a regular value of f . The following theorem is proved in the same way as Theorem 5.1.

Theorem 5.6. Assume that f : M → N is locally trivial at infinity and has finitely many singularity types (this is the case when (m, n) is a pair of nice dimensions in Mather's sense). Then we have:

(5.4) ν c ν χ c (ν(f )) ≡ χ f χ c (N ) (mod 2),
provided that the χ c (ν(f ))'s and χ f are finite. Moreover, if all singularities of f are versal unfoldings of function-germs then we have:

(5.5) χ c (M ) -χ f χ c (N ) ≡ σ s σ χ c (σ + (f )) -χ c (σ -(f )) (mod 2),
where σ denotes the singularity type of the genotype and s σ is defined as in Definition 4.5.

This theorem gives a mod 2 equality. Nevertheless, it is still possible to find integral relations between the topology of the source, the target and the singular set.

Let ν denote a singularity type of a map-germ. Let c max ν (resp. c min ν ) denote the maximal (resp. minimum) of all possible Euler characteristics of local regular fibers nearby the singular fiber. Set also: Theorem 5.7. If a smooth map f : M → N is locally trivial at infinity and has finitely many singularity types (this is the case if (m, n) is a pair of nice dimensions in Mather's sense), then:

N max j = y ∈ N : j = max{χ c (f -1 (y ′
ν c max ν • χ c (ν(f )) ≥ j jχ c (N max j ), ν c min ν • χ c (ν(f )) ≤ j jχ c (N min j ), provided the χ c (ν(f ))'s, the χ c (N max j
)'s and the χ c (N min j )'s are finite. If f is stable, we have the equalities. Moreover, if all singularities are versal unfoldings of function-germs then:

χ c (M ) - j jχ c (N max j ) = σ s max σ χ c (σ + (f )) -s min σ χ c (σ -(f )) , χ c (M ) - j jχ c (N min j ) = σ s min σ χ c (σ + (f )) -s max σ χ c (σ -(f )) ,
where σ denotes the singularity type of the genotype and s max Proof. To get the first inequalities, we apply the same method as we did in the proof of Theorem 5.1 with the two following constructible functions ϕ max and ϕ min :

ϕ max (x) = max{χ c (f -1 (y ′ ) ∩ B ε (x)) : y ′ is regular value nearby f (x)}, ϕ min (x) = min{χ c (f -1 (y ′ ) ∩ B ε (x)) : y ′ is regular value nearby f (x)}.
We also use Lemma 5.8 below.

When f is stable, by the additivity of the Euler characteristic with compact support, we get:

χ c (M ) - j χ c (N max j ) = ν (1 -c max ν )χ c (ν(f )), χ c (M ) - j χ c (N min j ) = ν (1 -c min ν )χ c (ν(f )).
If all the singularities are versal unfoldings of function-germs then each genotype gives rise to two singularity types σ + (f ) and σ -(f ). Using the computations done in Section 4, we see that:

1 -c max σ + (f ) = s max σ , 1 -c max σ -(f ) = -s min σ , 1 -c min σ + (f ) = s min σ , and 1 -c min σ -(f ) = -s max σ .
Lemma 5.8. Let f : M → N be a smooth map such that:

• dim M -dim N is even, • f | Σ(f ) is finite,
• f is locally trivial at infinity.

Then we have:

f * ϕ max (y) ≥ max{χ c (f -1 (y ′ )) : y ′ a regular value nearby y}, f * ϕ min (y) ≤ min{χ c (f -1 (y ′ )) : y ′ a regular value nearby y}.
We have the equalities when f is stable.

Proof. Set {x 1 , . . . , x s } = f -1 (y) ∩ Σ(f ). Take a regular value y ′ of f near y. Then:

χ c (f -1 (y ′ )) =χ c (f -1 (y ′ ) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) =χ c (f -1 (y) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) ≤χ c (f -1 (y) \ {x 1 , . . . , x s }) + i ϕ max (x i ) = f -1 (y)\{x 1 ,...,xs} ϕ max (x)dχ c + {x 1 ,...,xs} ϕ max (x)dχ c = f -1 (y) ϕ max (x)dχ c = f * ϕ max (y).
When f is stable, we see that the equality is attained by some y ′ using the fact (i)⇐⇒(iii) of [START_REF] Wall | Transversality in families of mappings[END_REF]Lemma 1.5].

Similarly we obtain:

χ c (f -1 (y ′ )) =χ c (f -1 (y ′ ) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) =χ c (f -1 (y) \ ∪ i B ε (x i )) + i χ c (f -1 (y ′ ) ∩ B ε (x i )) ≥χ c (f -1 (y) \ {x 1 , . . . , x s }) + i ϕ min (x i ) = f -1 (y)\{x 1 ,...,xs} ϕ min (x)dχ c + {x 1 ,...,xs} ϕ min (x)dχ c = f -1 (y) ϕ min (x)dχ c = f * ϕ min (y).
When f is stable, we see that the equality is attained by some y ′ using the fact (i)⇐⇒(iii) of [START_REF] Wall | Transversality in families of mappings[END_REF]Lemma 1.5]. Now let us apply this theorem to the case of a map having at worst D n singularities. Using the computations in Section 4, we see that:

1 -c max ν =                    -k if x ∈ A + k (f ), -1 if x ∈ A - k (f ), k odd, 0 if x ∈ A - k (f ), k even, k if x ∈ D - k (f ), k even, k -2 if x ∈ D + k (f ), k even, k -2 if x ∈ D k (f ), k odd, 1 -c min ν =                    k if x ∈ A - k (f ) 1 if x ∈ A + k (f ), k odd, 0 if x ∈ A + k (f ), k even, -k if x ∈ D - k (f ), k even, 2 -k if x ∈ D + k (f ), k even, 2 -k if x ∈ D k (f ), k odd.
Corollary 5.9. If the map f satisfies the assumptions of Theorem 5.7 and has at worst D n singularities then:

χc(M ) - j jχc(N max j ) = - k>0 kχc(A + k (f )) - k:odd χc(A - k (f )) + k (k -2)χc(D k (f )) + 2 k:even χc(D - k (f )) χc(M ) - j jχc(N min j ) = k>0 kχc(A - k (f )) + k:odd χc(A + k (f )) + k (2 -k)χc(D k (f )) -2 k:even χc(D - k (f ))
Proof. Combine the previous theorem with the above expressions of ϕ max and ϕ min .

Corollary 5.10. Assume that a map f satisfies the assumptions of Theorem 5.7 and has at worst A n singularities. When dim N = 1, we have:

j jχ c (N max j ) = χ c (M ) + χ c (A 1 (f )), j jχ c (N min j ) = χ c (M ) -χ c (A 1 (f )),
and thus:

j j 2 [χ c (N max j ) + χ c (N min j )] = χ c (M ), j j 2 [χ c (N max j ) -χ c (N min j )] = χ c (A 1 (f )) = χ c (Σ(f )).
When dim N = 2, we have:

j jχ c (N max j ) =χ c (M ) + χ c (A 1 (f )) + 2#(A + 2 (f )), j jχ c (N min j ) =χ c (M ) -χ c (A 1 (f )) -2#(A - 2 (f )),
and thus:

j j 2 [χ c (N max j ) + χ c (N min j )] = χ c (M ) + #(A + 2 (f )) -#(A - 2 (f )), j j 2 [χ c (N max j ) -χ c (N min j )] = χ c (A 1 (f )) + #(A 2 (f )) = χ c (Σ(f )).
When dim N = 3, we have:

j jχ c (N max j ) =χ c (M ) + χ c (A 1 (f )) + 2χ c (A + 2 (f )) + #(A 3 (f )) + 2#(A + 3 (f )), j jχ c (N min j ) =χ c (M ) -χ c (A 1 (f )) -2χ c (A - 2 (f )) -#(A 3 (f )) -2#(A - 3 (f )),
and thus:

j j 2 [χ c (N max j ) + χ c (N min j )] = χ c (M ) + χ c (A + 2 (f )) -χ c (A - 2 (f )) + #(A + 3 (f )) -#(A - 3 (f )), j j 2 [χ c (N max j ) -χ c (N min j )] = χ c (A 1 (f )) + χ c (A 2 (f )) + 2#(A 3 (f )) = χ c (Σ(f )) + #(A 3 (f )).

5.3.

Case mn = 0. Here we assume that M and N are oriented and have the same dimension n. If a point x in M is of type ν, we denote by d ν the local topological degree of the map-germ f : (M, x) → (N, f (x)). We assume that f is finite-to-one and that f is locally trivial at infinity. In this situation, it is possible to define the mapping degree of f as follows:

deg f = x∈f -1 (y) deg (f : (M, x) → (N, f (x))) ,
where y is a regular value of f . Theorem 5.11. Assume that a map f : M → N is finite-to-one, locally trivial at infinity and has finitely many singularity types. We also assume that M and N are oriented and that N is connected. Then:

ν d σ χ c (ν(f )) = (deg f )χ c (N ),
provided that the χ c (ν(f ))'s are finite.

Proof. We consider the stratification of f defined by the types of singularities (see Nakai's paper [12, §1]) and we define S(M ), S(N ) as the subset algebras generated by the strata and fibers of f . Then (S(X), S(Y )) fits to the map f . Set µ X = χ c , µ Y = χ c and:

ϕ(x) = deg (f : (M, x) → (N, f (x))) .
Applying Corollary 2.3 for ϕ and remarking that f * ϕ(y) = deg f , we obtain the result.

If x is a point of type A k with k even, we say that x belongs to

A + k (f ) (resp. A - k (f )) if deg{f : (M, x) → (N, f (x))} = 1 (resp. -1).
Corollary 5.12. Assume that f satisfies the assumptions of Theorem 5.11 and has at worst A n singularities. Then we have:

k:even χ c (A + k (f )) -χ c (A - k (f )) = (deg f )χ c (N ).
Proof. Apply the previous theorem and the fact that deg{f :

(M, x) → (N, f (x))} = 0 if x ∈ A k (f ), k odd.
The map f : (R 4 , 0) → (R 4 , 0) is an I ± 2,2 singularity if f is defined by: (x, y, a, b) → (x 2 ± y 2 + ax + by, xy, a, b). This is the only singularity of stable-germs which is not a Morin singularity from R 4 to R 4 . We can state: Corollary 5.13. Assume that f satisfies the assumptions of Theroem 5.11 and that n = 4. Then we have:

k:even χ c (A + k (f )) -χ c (A - k (f )) + 2#(I - 2,2 (f )) = (deg f )χ c (N ).
Proof. Remark that the mapping degree of f x is 2 (resp. 0) when x is an I - 2,2 (I + 2,2 ) point. A similar discussion shows the following: Theorem 5.14. Assume that a map f : M → N is finite-to-one, locally trivial at infinity and has finitely many singularity types. We assume that M or N may not be orientable and that N is connected. Then:

σ d σ χ c (M σ (f )) ≡ (deg f )χ c (N ) (mod 2).

Applications to Morin maps

In this section, we apply the results of the previous section to Morin maps. We will consider three different settings : Morin maps from a compact manifold M to a connected manifold N such that dim Mdim N is odd, Morin maps from a compact manifold M to a connected manifold N with dim M = dim N , Morin perturbations of smooth map-germs. 6.1. Morin maps from M m to N n , mn odd. Let f : M m → N n be a Morin mapping from a compact m-dimensional manifold M to a connected n-dimensional manifold N .

Let us recall that a point p in M is of type A k if its genotype is x k+1 . This means that there exist a local coordinate sytem (x 1 , . . . , x m ) centered at p and a local coordinate system (y 1 , . . . , y n ) centered at f (p) such that f has the following normal form:

y i • f = x i for i ≤ n -1, y n • f = x k+1 n + k-1 i=1 x i x k-i n + x 2 n+1 + • • • + x 2 n+λ-1 -x 2 n+λ -• • • -x 2 m . Note that x belongs to A + k (f ) (resp. A - k (f )) if and only if m -n -λ + 1 is even (resp. odd). We should remark also that if k is odd then x ∈ A + k (f ) (resp. A - k (f )) if and only if χ c (f -1 (y ′ ) ∩ B ε (x)) = χ(f -1 (y ′ ) ∩ B ε (x)) = 0 (resp.
2) where y ′ is a regular value of f close to f (x). It is well known that for k ≥ 1, the A k (f )'s are smooth manifolds of dimension nk, that the A k (f )'s are smooth manifolds with boundary and that:

A k (f ) = ∪ i≥k A i (f ), ∂A k (f ) = ∪ i>k A i (f ).
We will describe more precisely the structure of the

A ± k (f )'s. Proposition 6.1. If k is odd then A + k (f ) and A - k (f ) are compact manifolds with boundary of dimension n -k. Furthermore ∂A + k (f ) = ∂A - k (f ) = A k+1 (f ). Proof.
Let p be a point in A k (f ), k odd. There exist local coordinates around p and f (p) such that f has the form:

y i • f = x i for i ≤ n -1, y n • f = x k+1 n + k-1 i=1 x i x k-i n + x 2 n+1 + • • • + x 2 n+λ-1 -x 2 n+λ -• • • -x 2 m .
Let us write g = y n • f . Around p, A k (f ) is defined by

∂g ∂xn = • • • = ∂ k g ∂x k n = 0 and x n+1 = • • • = x m = 0. It is easy to see that this is equivalent to x 1 = • • • = x k-1 = 0 and x n = • • • = x m = 0.
This proves that A k (f ) is a manifold of dimension nk. Let q = (q 1 , . . . , q m ) ∈ A k (f ) be a point close to p. We have q 1 = . . . = q k-1 = 0 and q n = . . . = q m = 0. For i ∈ {k, . . . , n -1}, let us put z i = x iq i and w i = y iq i . For i / ∈ {k, . . . , n -1}, let us put z i = x i and w i = y i . Then (z 1 , . . . , z m ) and (w 1 , . . . , w n ) are local coordinate systems centered at q and f (q). In these systems, f has the form:

w i • f = z i for i ≤ n -1, w n • f = z k+1 n + k-1 i=1 z i z k-i n + z 2 n+1 + • • • + z 2 n+λ-1 -z 2 n+λ -• • • -z 2 m . We conclude that q belongs to A + k (f ) (resp. A - k (f )) if and only if p belongs to A + k (f ) (resp. A - k (f ))
. This proves that the sets

A + k (f ) and A - k (f ) are open subsets of A k (f ), hence manifolds of dimension n -k.
We know that A k (f ) = ∪ l≥k A l (f ). Let l > k and let p ∈ A l (f ). There are local coordinates systems around p and f (p) such that f has the form:

y i • f = x i for i ≤ n -1, y n • f = x l+1 n + l-1 i=1 x i x l-i n + x 2 n+1 + • • • + x 2 n+λ-1 -x 2 n+λ -• • • -x 2 m .
Let us denote by g the function y n • f . We have:

A k (f ) = ∂g ∂x n = • • • = ∂ k g ∂x k n = 0, x n+1 = • • • = x m = 0, ∂ k+1 g ∂x k+1 n = 0 , and 
A k+1 (f ) = ∂g ∂x n = • • • = ∂ k+1 g ∂x k+1 n = 0, x n+1 = • • • = x m = 0 .
Let q = (q 1 , . . . , q n , 0, . . . , 0) be a point in A k (f ) close to p. Let us find when q ∈ A + k (f ) or q ∈ A - k (f ). For this we have to compute ϕ(q) = χ(f -1 (y ′ ) ∩ B ε (q)) where y ′ is a regular value of f close to f (q). Since it does not depend on the choice of the regular value because mn is odd, let us compute χ(f -1 (ỹ) ∩ B ε (q)) where ỹ = (q 1 , . . . , q n-1 , q n + ǫ) and ǫ is a small real number. So we have to look for the zeros lying close to q of the following system:

y i • f (x) = q i for i ≤ n -1 g(x) = g(q) + ǫ.
This system is equivalent to:

x i = q i for i ≤ n -1 g(q 1 , . . . , q n-1 , q n + x ′
n , x n+1 , . . . , x m ) = g(q) + ǫ. But we have:

g(q 1 , . . . , q n-1 , q n + x ′ n , x n+1 , . . . , x m ) =g(q 1 , . . . , q n-1 , q n + x ′ n , 0, . . . , 0) + x 2 n+1 + • • • + x 2 n+λ-1 -x 2 n+λ -• • • -x 2 m =g(q) + i≥k+1 1 i! ∂ i g ∂x i n (q)x ′ n i + x 2 n+1 + • • • + x 2 n+λ-1 -x 2 n+λ -• • • -x 2 m =g(q) + g ′ (x ′ n , x n+1 , . . . , x m ).
Hence by Khimshiashvili's formula [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF], we have : ϕ(q) = 1deg 0 ∇g ′ , where deg 0 ∇g ′ is the topological degree of the map ∇g ′ ∇g ′ : S m-n ε → S m-n . Two cases are possible. If λ is even then:

q ∈ A + k (f ) ⇔ ∂ k+1 g ∂x k+1 n (q) > 0 and q ∈ A - k (f ) ⇔ ∂ k+1 g ∂x k+1 n (q) < 0.
If λ is odd then:

q ∈ A + k (f ) ⇔ ∂ k+1 g ∂x k+1 n (q) < 0 and q ∈ A - k (f ) ⇔ ∂ k+1 g ∂x k+1 n (q) > 0.
Finally we see that the sets A + k (f ) and A - k (f ) are in correspondence with the sets

A k (f ) ∩ { ∂ k+1 g ∂x k+1 n > 0} and A k (f ) ∩ { ∂ k+1 g ∂x k+1 n
< 0}, which enables us to conclude.

We can state our main theorem which is a slight improvement of a result of T. Fukuda [START_REF] Fukuda | Topology of folds, cusps and Morin singularities. A fête of topology[END_REF] for N = R n and O. Saeki [START_REF] Saeki | Studying the topology of Morin singularities from a global viewpoint[END_REF] for a general N . Theorem 6.2. Let f : M m → N n be a Morin mapping. Assume that M is compact, N is connected and mn is odd. Then we have:

χ(M ) = k:odd χ(A + k (f )) -χ(A - k (f )) .
Proof. Applying Corollary 5.4, we get:

χ c (M ) -χ f χ c (N ) = k:odd χ c (A + k (f )) -χ c (A - k (f )) ,
where χ f is the Euler characteristic of a regular fiber of f . In this situation, χ f = 0 because the regular fiber of f is a compact odd-dimensional manifold. Then we remark that χ c (M ) = χ(M ) because M is compact. Moreover by the additivity of the Euler-Poincaré with compact support, we have:

χ(A + k (f )) =χ c (A + k (f )) = χ c (A + k (f )) + χ c (∂(A + k (f ))) = χ c (A + k (f )) + χ c (A k+1 (f )), χ(A - k (f )) =χ c (A - k (f )) = χ c (A - k (f )) + χ c (∂(A - k (f ))) = χ c (A - k (f )) + χ c (A k+1 (f )). This implies that χ(A + k (f )) -χ(A - k (f )) = χ c (A + k (f )) -χ c (A - k (f )
). We end this subsection with two remarks:

(1) If m is odd then n is even and χ(M ) = 0. If k is odd, the dimension of A + k (f ) and A + k (f ) is odd. Furthermore, we have:

χ(A + k (f )) = 1 2 χ(∂A + k (f )) = 1 2 χ(A k+1 (f )) = 1 2 χ(∂A - k (f )) = χ(A - k (f )),
and

χ(A + k (f )) -χ(A - k (f )) = 0.
In this case, our theorem is trivial. (2) If m is even and n = 1, then we can apply our theorem. In this situation, there is only a finite number of singular points, which are the elements of

A + 1 (f ) and of A - 1 (f ). Theorem 6.2 gives that χ(M ) = #A + 1 (f ) -#A - 1 (f ).
We recover the well-known Morse equalities.

6.2.

Morin maps from M n to N n . Let f : M n → N n be a Morin mapping from a compact oriented manifold M of dimension n to a connected manifold N of the same dimension. For any p ∈ M , let ϕ(p) be the local topological degree of the map-germ f : (M, p)

→ (N, f (p)). Recall that ϕ(p) = 0 if p ∈ A k (f ) and k odd and that |ϕ(p)| = 1 if p ∈ A k (f ) and k even. Hence, if k is even, A k (f ) splits into two subsets A + k (f ) and A - k (f ) where A + k (f ) (resp. A - k (f )
) consists of the points p such that ϕ(p) = 1 (resp. ϕ(p) = -1). It is well known that the A k (f )'s are smooth manifolds of dimension nk, that the A k (f )'s are smooth manifolds with boundary and that:

A k (f ) = ∪ i≥k A i (f ), ∂A k (f ) = ∪ i>k A i (f ).
Remark that A 0 (f ) is the set of regular points of f . Let us describe more precisely the structure of the sets A ± k (f ).

Proposition 6.3. If k is even, then A + k (f ) and A - k (f ) are manifolds with boundary of dimension n -k and ∂A + k (f ) = ∂A - k (f ) = A k+1 (f ). Proof.
Let p be a point in A k (f ), k even. In local coordinates, f is given by:

y i • f = x i for i ≤ n -1, y n • f = x k+1 n + k-1 i=1 x i x k-i n .
If we suppose that (x 1 , . . . , x n ) and (y 1 , . . . , y n ) are coordinates in direct basis, then f has two possible forms:

y i • f = x i for i ≤ n -1, y n • f = x k+1 n + k-1 i=1 x i x k-i n , or y i • f = x i for i ≤ n -1, y n • f = -x k+1 n + k-1 i=1 (-1) k-i x i x k-i n .
In the first case, ϕ(p) = 1 and in the second case ϕ(p) = -1.

We can prove the fact that A + k (f ) and A - k (f ) are manifolds of dimension nk with the same method as in Proposition 6.1. Now let l > k and let p ∈ A l (f ). Locally f is given by:

y i • f = x i for i ≤ n -1, y n • f = ±x l+1 n + l-1 i=1 ±x i x l-i n .
Let us denote by g the function y n • f . We have:

A k (f ) = ∂g ∂x n = • • • = ∂ k g ∂x k n = 0, ∂ k+1 g ∂x k+1 n = 0 ,
and:

A k+1 (f ) = ∂g ∂x n = • • • = ∂ k+1 g ∂x k+1 n = 0 .
Let q = (q 1 , . . . , q n ) be a point in A k (f ) close to p. Let us find when q ∈ A + k (f ) or q ∈ A - k (f ). For this we have to compute ϕ(q). Let ǫ be a small real number and let us look for the zeros lying close to q of the following system:

y i • f (x) = q i for i ≤ n -1, g(x) = g(q) + ǫ.
This system is equivalent to:

x i = q i for i ≤ n -1, g(q 1 , . . . , q n-1 , q n + x ′ n ) = g(q) + ǫ. But: g(q 1 , . . . , q n-1 , q n + x ′ n ) = g(q) + i≥k+1 ∂ i g ∂x i n (q)x ′ n i .
Then we see that ϕ(q) = sign ∂ k+1 g ∂x k+1 n (q). We conclude as in Proposition 6.1.

Theorem 6.4. Let f : M n → N n be a Morin mapping. Assume that M is compact and oriented and that N is connected and oriented. We have:

k:even χ(A + k (f )) -χ(A - k (f )) = (deg f )χ(N ).
This is proved by I. R. Quine [START_REF] Quine | A global theorem for singularities of maps between oriented 2-Manifolds[END_REF] when n = 2. It appeared in a preprint of I. Nakai [START_REF] Nakai | Charateristic classes and fiber products of smooth mappings[END_REF] for any n.

Proof. By Corollary 5.12, we know that:

k:even χ c (A + k (f )) -χ c (A - k (f )) = (deg f )χ c (N ). If N is compact then χ c (N ) = χ(N ) and if N is not compact then deg f = 0. In both cases the equality (deg f )χ c (N ) = (deg f )χ(N ) is true.
With the same arguments as in Theorem 6.2, it is easy to prove that χ(

A + k (f )) -χ(A - k (f )) = χ c (A + k (f )) -χ c (A - k (f )
). Remark 6.5. When n is odd, A + k (f ) and A - k (f ) are odd-dimensional manifolds with the same boundary and so the left hand-side of the equality vanishes. But the right-hand side is also zero because χ(N ) = 0 if N is compact and deg f = 0 if N is not compact. Hence our theorem is trivial in this case.

Local versions. We give local versions of the global formulas of the previous subsections.

We work first with map-germs f : (R n , 0) → (R p , 0), n > p, which are generic in the sense of Theorem 1 ′ in [START_REF] Fukuda | Local topological properties of differentiable mappings II[END_REF]. There are two cases:

Case I) If the origin 0 is not isolated in f -1 (0), i.e 0 ∈ f -1 (0) \ {0}, then there exist a positive number ε 0 and a strictly increasing function δ : [0, ε 0 ] → [0, +∞) with δ(0) = 0 such that for every ε and δ with 0 < ε ≤ ε 0 and 0 < δ < δ(ε) the following properties hold:

(1)

f -1 (0) ∩ S n-1 ε is an (n -p -1)-dimensional manifold and it is diffeomorphic to f -1 (0) ∩ S n-1 ε 0 . (2) B n ε ∩ f -1 (S p-1 δ
) is a smooth manifold with boundary and it is diffeomorphic to

B n ε 0 ∩ f -1 (S p-1 δ(ε 0 ) ). (3) ∂(B n ε ∩ f -1 (B p δ )) is homeomorphic to S n-1 ε . (4) The restricted mapping f : B n ε ∩ f -1 (S p-1 δ ) → S p-1 δ
is topologically stable (C ∞ stable if (n, p) is a nice pair) and its topological type is independent of ε and δ. Here B n ε denotes the open ball of radius ε centered at 0 and S n-1 ε the sphere of radius ε centered at 0 in R n .

Case II) If the origin 0 is isolated in f -1 (0), i.e 0 / ∈ f -1 (0) \ {0}, then there exists a positive number ε 0 such that for every ε with 0 < ε ≤ ε 0 the following properties hold:

(1) f -1 (S p-1 ε ) is diffeomorphic to S n-1 ε . (2) The restricted mapping f : f -1 (S p-1 ε ) → S p-1 ε is topologically stable (C ∞ stable if (n, p)
is a nice pair) and its topological type is independent of ε.

We will focus first on Case I). Note that in this case, B n ε ∩ f -1 (B p δ ) is a manifold with corners whose topological boundary is the manifold with corners

B n ε ∩ f -1 (S p-1 δ ) ∪ S n-1 ε ∩ f -1 (B p δ
). We will use the following notations :

B ε,δ = f -1 (B p δ )∩B n ε , ∂B ε,δ = B n ε ∩f -1 (S p-1 δ )∪S n-1 ε ∩f -1 (B p δ ), C ε,δ = B n ε ∩ f -1 (S p-1 δ
) and I ε,δ is the topological interior of B ε,δ . Let us denote by ∂f the restricted mapping f |C ε,δ : C ε,δ → S p-1 δ and let us assume that it is a Morin mapping. Let us consider a perturbation f of f such that f|I ε,δ : I ε,δ → B p δ is a Morin mapping and f = f in a neighborhood of C ε,δ .

Our aim is to generalize Theorem 2 of [START_REF] Fukuda | Local topological properties of differentiable mappings II[END_REF] which deals with map-germs from R n to R, i.e to relate the topology of Lk(f ) = f -1 (0) ∩ S n-1 ε to the topology of the singular set of f and to the topology of the singular set of ∂f . As in the previous sections, we will denote by A k ( f ) (resp. A k (∂f )), the set of singular points of f (resp. f ) of type A k . The first result is a local version of Saeki's formula (Theorem 2.3 in [START_REF] Saeki | Studying the topology of Morin singularities from a global viewpoint[END_REF]). Theorem 6.6. We have:

ψ(Lk(f )) ≡ 1 + p-1 k=1 ψ(A k (∂f )) + #A p ( f ) mod 2,
where ψ denotes the semi-characteristic.

Proof. Note that for δ a sufficiently small regular value of f (| δ| ≤ δ), we have:

χ c ( f -1 ( δ) ∩ I ε,δ ) ≡ χ( f -1 ( δ) ∩ I ε,δ ) ≡ χ( f -1 ( δ) ∩ B ε,δ ) ≡ ψ( f -1 ( δ) ∩ S n-1 ε ) ≡ ψ(Lk(f )) mod 2.
The last equality comes from the fact that f has an isolated singularity, that f -1 ( δ) intersects S n-1 ε transversally and that f is close to f . On the one hand, applying Theorem 5.1, Theorem 5.6 and their corollaries to the restriction of f to I ε,δ , we obtain:

k:even χ c (A k ( f ) ∩ I ε,δ ) ≡ ψ(Lk(f )) mod 2.
On the other hand, by additivity, we have:

1 ≡ χ c (I ε,δ ) ≡ k χ c (I ε,δ ∩ A k ( f )) mod 2.
For each k ≥ 1, we have:

A k ( f ) ∩ I ε,δ = A k ( f ) ∩ I ε,δ ⊔ A k+1 ( f ) ∩ I ε,δ ⊔ A k ( f ) ∩ C ε,δ ,
because if ε and δ are small enough the singular set of f does not intersect f -1 (B p δ ) ∩ S n-1 ε .

Before carrying on with our computations, let us observe that for k ∈ {1, . . . , p -1},

A k ( f ) ∩ C ε,δ = A k (∂f )
. It is not difficult to see this with the characterization of the A k sets by the ranks of the iterate jacobians. Moreover, using the characterization of the A + k and A - k sets by the Euler characteristic of the nearby fiber, we can say that

A + k ( f ) ∩ C ε,δ = A + k (∂f ) and A - k ( f ) ∩ C ε,δ = A - k (∂f ). Hence: χ(A k ( f ) ∩ I ε,δ ) ≡χ c (A k ( f ) ∩ I ε,δ ) ≡χ c (A k ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ I ε,δ ) + χ c (A k ( f ) ∩ C ε,δ ) ≡χ c (A k ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ I ε,δ ) (mod 2), because A k ( f ) ∩ C ε,
δ is a compact boundary. Furthermore, we have:

χ(A k+1 ( f ) ∩ I ε,δ ) = χ c (A k+1 ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ C ε,δ ) = χ c (A k+1 ( f ) ∩ I ε,δ ). Finally, for each k, χ c (A k ( f ) ∩ I ε,δ ) = χ(A k ( f ) ∩ I ε,δ ) + χ(A k+1 ( f ) ∩ I ε,δ
), and so:

ψ(Lk(f )) ≡1 + p k=1 χ(A k ( f ) ∩ I ε,δ ) mod 2, ψ(Lk(f )) ≡1 + p-1 k=1 ψ(A k (∂f )) + #A p ( f ) mod 2.
Let us examine some special cases. When p = 1, we find:

ψ(Lk(f )) ≡ 1 + #A 1 ( f ) ≡ 1 + deg 0 ∇f (mod 2),
where deg 0 ∇f is the topological degree of the map ∇f ∇f : S n-1 ε → S n-1 . This due to the fact f is a Morse function and the points in A 1 ( f ) are exactly its critical points. When p = 2, we find:

ψ(Lk(f )) ≡ 1 + ψ(A 1 (∂f )) + #A 2 ( f ) mod 2.
If f is close to f then ψ(A 1 (∂f )) is equal to 1 2 b(C(f )) mod 2 where C(f ) denotes critical locus of f and b(C(f )) the number of branches of C(f ). Hence:

ψ(Lk(f )) ≡ 1 + 1 2 b(C(f )) + #A 2 ( f ) mod 2.
Since b(C(f )) is a topological invariant of f , we deduce that #A 2 ( f ) mod 2 is a topological invariant of f . Similarly if p = 3, this gives:

ψ(Lk(f )) ≡ 1 + ψ(C(f ) ∩ ∂B ε,δ ) + 1 2 b(C(f |C(f ) )) + #A 3 ( f ) mod 2.
In the sequel, we will improve Theorem 6.6 in some situations. Let us assume that np is odd.

Theorem 6.7. If np is odd, then we have:

χ(Lk(f )) = 2 -2 k:odd χ(A + k ( f ) ∩ I ε,δ ) -χ(A - k ( f ) ∩ I ε,δ ) .
Furthermore, when n is odd and p is even, we have:

χ(Lk(f )) = 2 - k:odd χ(A + k (∂f )) -χ(A - k (∂f )) .
Proof. With the same notations as in Theorem 6.6, we can write:

χ c ( f -1 ( δ) ∩ B ε,δ ) = χ c ( f -1 ( δ) ∩ I ε,δ ) + χ c ( f -1 ( δ) ∩ ∂B ε,δ ), thus: 1 2 χ(Lk(f )) = χ c ( f -1 ( δ) ∩ I ε,δ ) + χ(Lk(f )).
Therefore, we get:

χ c ( f -1 ( δ) ∩ I ε,δ ) = - 1 2 χ(Lk(f )).
Applying Corollary 5.4, we obtain:

χ c (I ε,δ ) + 1 2 χ(Lk(f ))χ c (B p δ ) = k:odd χ c (A + k ( f ) ∩ I ε,δ ) -χ c (A - k ( f ) ∩ I ε,δ ).
Let us compute χ c (I ε,δ ). We have:

χ(B ε,δ ) = χ c (B ε,δ ) = χ c (I ε,δ ) + χ c (B n ε ∩ f -1 (S p-1 δ )) + χ c (S n-1 ε ∩ f -1 (B p δ )).
If n is odd and p is even, we have:

χ(B ε,δ ) = 1 2 χ(S n-1 ε ∩ f -1 (B p δ )) + 1 2 χ(B n ε ∩ f -1 (S p-1 δ
)), and:

χ(B n ε ∩ f -1 (S p-1 δ )) =χ c (B n ε ∩ f -1 (S p-1 δ )) =χ c (B n ε ∩ f -1 (S p-1 δ )) + χ c (S n-1 ε ∩ f -1 (S p-1 δ )) =χ c (B n ε ∩ f -1 (S p-1 δ )) + χ(S n-1 ε ∩ f -1 (S p-1 δ )) =χ c (B n ε ∩ f -1 (S p-1 δ
)).

Thus we obtain:

χ c (I ε,δ ) = 1 2 χ(S n-1 ε ∩ f -1 (B p δ )) + 1 2 χ(B n ε ∩ f -1 (S p-1 δ )) -χ(B n ε ∩ f -1 (S p-1 δ )) -χ(S n-1 ε ∩ f -1 (B p δ )) = - 1 2 χ(B n ε ∩ f -1 (S p-1 δ )) - 1 2 χ(S n-1 ε ∩ f -1 (B p δ )) = -χ(B ε,δ ) = -1. Finally we get: 1 2 χ(Lk(f )) =1 + k:odd χ c (A + k ( f ) ∩ I ε,δ ) -χ c (A - k ( f ) ∩ I ε,δ ) ,
which means:

χ(Lk(f )) = 2 + 2 k:odd χ c (A + k ( f ) ∩ I ε,δ ) -χ c (A - k ( f ) ∩ I ε,δ ) . Since dim A + k ( f ) = dim A - k ( f ) = p -k is 
odd, we can establish using the same arguments as above that:

χ c (A + k ( f ) ∩ I ε,δ ) = -χ(A + k ( f ) ∩ I ε,δ ) = - 1 2 χ(A + k ( f ) ∩ C ε,δ ) - 1 2 χ(A k+1 ( f ) ∩ I ε,δ ), χ c (A - k ( f ) ∩ I ε,δ ) = -χ(A - k ( f ) ∩ I ε,δ ) = - 1 2 χ(A - k ( f ) ∩ C ε,δ ) - 1 2 χ(A k+1 ( f ) ∩ I ε,δ ).
Finally, we obtain:

χ(Lk(f )) = 2 -2 k:odd χ(A + k ( f ) ∩ I ε,δ ) -χ(A - k ( f ) ∩ I ε,δ ) = 2 - k:odd χ(A + k (∂f )) -χ(A - k (∂f )) .
If n is even and p is odd, then:

χ c (B n ε ∩ f -1 (S p-1 δ )) = -χ(B n ε ∩ f -1 (S p-1 δ )) = - 1 2 χ(S n-1 ε ∩ f -1 (S p-1 δ )), χ c (S n-1 ε ∩ f -1 (B p δ )) =χ(S n-1 ε ∩ f -1 (B p δ )) = 1 2 χ(S n-1 ε ∩ f -1 (S p-1 δ )). So χ c (I ε,δ ) = χ(B ε,δ ) = 1, and: 1 - k:odd χ c (A + k ( f ) ∩ I ε,δ ) + k:odd χ c (A - k ( f ) ∩ I ε,δ ) = 1 2 χ(Lk(f )),
and then:

χ(Lk(f )) = 2 -2 k:odd χ c (A + k ( f ) ∩ I ε,δ ) - k:odd χ c (A - k ( f ) ∩ I ε,δ ) . Here dim A + k ( f ) = dim A - k ( f ) = p -k is even when k is odd. We have: χ(A + k ( f ) ∩ I ε,δ ) =χ c (A + k ( f ) ∩ I ε,δ ) =χ c (A + k ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ I ε,δ ) + χ c (A + k ( f ) ∩ C ε,δ ) =χ c (A + k ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ I ε,δ ) + χ(A + k ( f ) ∩ C ε,δ ) =χ c (A + k ( f ) ∩ I ε,δ ) + χ c (A k+1 ( f ) ∩ I ε,δ ). Hence: χ(A + k ( f ) ∩ I ε,δ ) -χ(A - k ( f ) ∩ I ε,δ ) = χ c (A + k ( f ) ∩ I ε,δ ) -χ(A - k ( f ) ∩ I ε,δ ).
The same results hold in Case II) replacing

B n ε ∩ f -1 (S p-1 ε ) with f -1 (S p-1 ε ), which is diffeo- morphic to S n-1 ε , B ε,δ with f -1 (B p ε ), I ε,δ
with the topological interior of f -1 (B p ε ) and χ(Lk(f ))) with 0. Now we work with map-germs from (R n , 0) to (R n , 0). Let f : (R n , 0) → (R n , 0) be a mapgerm such that 0 is isolated in f -1 (0). We assume that f is generic in the sense of Theorem 3 in [START_REF] Fukuda | Local topological properties of differentiable mappings I[END_REF] : there exists a positive number ε 0 such that for any number ε with 0 < ε ≤ ε 0 , we have:

(1) Sn-1

ε = f -1 (S n-1 ε
) is a homotopy (n -1)-sphere which, if n = 4, 5, is diffeomorphic to the natural (n -1)-sphere S n-1 , (2) the restricted mapping ). This last manifold has the homotopy type of S n-1 .

f | Sn-1 ε : Sn-1 ε → S n-1 ε is topological stable (C ∞ stable if (n, p) is a nice pair), (3) letting Bn ε = f -1 (B n ε ), the restricted mapping f | Bn ε : Bn ε \{0} → B n ε \{0} is proper, topo- logically stable (C ∞ stable if (n, p) is nice
We will keep the notations of the previous sections. We denote by Bε the set f -1 (B n ε ), by Ĩε its topological interior and by ∂ Bε its boundary. We denote by ∂f the restricted mapping f |∂ Bε : ∂ Bε → S n-1 ε and we assume that it is a Morin mapping.

Let us consider a perturbation f of f such that f| Ĩε : Ĩε → B n ε is a Morin mapping and f = f in a neighborhood of ∂ Bε .

The main result is a local version of Corollary 5.12.

Theorem 6.8. We have:

deg 0 f = k:even χ(A + k ( f ) ∩ Ĩε ) -χ(A - k ( f ) ∩ Ĩε ) ,
where deg 0 f is the local topological degree of f at 0.

Proof. Using Corollary 5.12, we obtain:

(deg 0 f )(-1) n = k:even χ c (A + k ( f ) ∩ Ĩε ) -χ c (A - k ( f ) ∩ Ĩε ).
It remains to relate the Euler characteristics with compact support to the topological Euler characteristics. But, as in Theorem 6.7, we have:

χ c (A + k ( f ) ∩ Ĩε ) -χ c (A - k ( f ) ∩ Ĩε ) = (-1) n-k χ(A + k ( f ) ∩ Ĩε ) -χ(A - k ( f ) ∩ Ĩε ) .
We should remark that this formula was firstly formulated by Y. Yomdin (see [START_REF] Yomdin | The structure of strata µ = const in a critical set of a complete intersection singularity[END_REF]). Note also that when m = n, then χ f is also the topological degree of f . Let f = (f 1 , f 2 ) : (C 2 , 0) → (C 2 , 0) be a holomorphic map-germ with c(f ) < ∞ where: ). Let f, g : (C 2 , 0) → (C 2 , 0) be holomorphic map-germs with c(f ) < ∞, c(g) < ∞. Let f t , g t denote stable perturbations of f , g. If f and g are topologically right-left equivalent, then #A 2 (f t ) = #A 2 (g t ).

c(f ) = dim C O 2 I
Proof. Since the critical set can be characterized topologically, (C 2 , Σ(f ), 0) and (C 2 , Σ(g), 0) are topologically equivalent, and they have the same Milnor number. Thus their smoothings have the same Euler characteristic and χ(A 1 (f t )) = χ(A 1 (g t )). By Corollary 7.2, we have:

1 + χ c (A 1 (f t )) + #A 2 (f t ) = deg 0 f, 1 + χ c (A 1 (g t )) + #A 2 (g t ) = deg 0 g,
and, since deg 0 f = deg 0 g, we conclude the result.

Remark 7.4. Consider the map germ f = (f 1 , f 2 ) : (C n , 0) → (C 2 , 0), n > 2. Take a stable perturbation f t of f . We have: (7.1) χ c (A 1 (f t )) + #A 2 (f t ) = (-1) n (χ f -1).

Consider the map F : (C n , 0) × (C, 0) → (C 2 , 0) × (C, 0) defined by F (x, t) = (f t (x), t). Since A 1 (F ) is determinantal, it is Cohen-Macaulay. So the map A 1 (F ) → (C, 0), (x, t) → t, is flat. So A 1 (f t ) is a smoothing of A 1 (f ) and its Euler characteristic is described by the Milnor number of A 1 (f ): χ c (A 1 (f t )) = 1µ(A 1 (f )), and we conclude that µ(A 1 (f )) and χ f determine #(A 2 (f t )). Now we assume that f is A-finite. Then, we have:

1 -µ(A 1 (f )) = χ c (A 1 (f t )) =χ c (f t (A 1 (f t ))) + d(f t ) =1 -µ(f (A 1 (f ))) + 2#(A 2 (f t )) + 2d(f t ),
where d(f t ) denotes the number of double fold (A 1,1 ) points of f t nearby 0. Combining this with (7.1), we obtain:

3#A 2 (f t ) + 2d(f t ) = µ(f (A 1 (f ))) -1 + (-1) n (χ f -1).

We conclude that 3#A 2 (f t ) + 2d(f t ) (and thus #A 2 (f t ) mod 2) is a topological invariant of f . Remark 7.5. Consider a map germ f : (C 3 , 0) → (C 3 , 0), x → y = f (x). Take a stable perturbation f t of f . Then we obtain:

1 + χ c (A 1 (f t )) + χ c (A 2 (f t )) + #A 3 (f t ) = deg f.
Consider the map F : (C 3 , 0) × (C, 0) → (C 3 , 0) × (C, 0) defined by F (x, t) = (f t (x), t). Since A 2 (F ) is determinantal, it is Cohen-Macaulay. We obtain that the map A 2 (F ) → (C, 0), (x, t) → t, is flat. So A 2 (f t ) is a smoothing of A 2 (f ) and its Euler characteristic χ c (A 2 (f t )) is described by Milnor number of A 2 (f ) when A 2 (f ) has an isolated singularity at 0. This means #(A 3 (f t )) is determined by µ(A 1 (f )), µ(A 2 (f )) and deg f :

#(A 3 (f t )) = deg f -µ(A 1 (f )) + µ(A 2 (f )) -3,
when A 1 (f ) and A 2 (f ) have isolated singularities at 0.

  )) : y ′ a regular value nearby y} , N min j = y ∈ N : j = min{χ c (f -1 (y ′ )) : y ′ a regular value nearby y} .

1 ε)

 1 ) and topologically equivalent (C ∞ equivalent if (n, p) is nice) to the product mapping:(f | Sn-1 ε ) × Id (0,ε) : Sn-1 ε × (0, ε) → S n-1 ε × (0, ε), defined by (x, t) → (f (x), t), (4) consequently, f | Bn ε : Bn ε → B n ε is topologically equivalent to the cone: C(f | Sn-, t) = (f (x), t).Note that in this case Bε = f -1 (B n ε ) is a smooth manifold with boundary f -1 (S n-1 ε
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Corollary 6.9. If n is odd, we have:

Corollary 6. [START_REF] Levine | Mappings of manifolds into the plane[END_REF].

Proof. We have:

Similarly, if k is even and dim A k > 0, then:

Thus we obtain that:

If n = 2, this gives:

and we recover Theorem 2.1 of T. Fukuda and G. Ishikawa [START_REF] Fukuda | On the number of cusps of stable perturbations of a plane-to-plane singularity[END_REF].

If n = 3, this gives:

Complex maps

We end with some remarks in the complex case. Let f : M → N be a holomorphic map between complex manifolds M and N . We assume that N is connected. We assume that f is locally infinitesimally stable in J. Mather's sense. Let c σ denote the Euler characteristic of the local generic fiber of the map-germ of singular type σ. Let χ f denote the Euler characteristics of the generic fibers of f . Theorem 7.1. If a locally infinitesimally stable map f : M → N does not have singularities at infinity, then

Proof. Apply Corollary 2.4. 

where m denotes the complex dimension of M and n denotes the complex dimension of N . Remark 7.6. Consider a map germ f : (C n , 0) → (C 3 , 0), n > 3. Take a stable perturbation f t of f . Then we obtain:

Consider the map F : (C n , 0) × (C, 0) → (C 3 , 0) × (C, 0) defined by F (x, t) = (f t (x), t). Since A 1 (F ) is determinantal, it is Cohen-Macaulay. We obtain that the map A 1 (F ) → (C, 0), (x, t) → t, is flat, and A 1 (f t ) is a smoothing, which is determinantal. So the topology of A 1 (f t ) is determined by A 1 (f ) when A 1 (f ) has isolated singularity at 0. By Theorem 2.9 in [START_REF] Fukui | Cohen-Macaulay properties of Thom-Boardman strata. II. The defining ideals of Σ i,j[END_REF], A 2 (F ) is Cohen-Macaulay if and only if n = 4, 5. We thus obtain that the map A 2 (F ) → (C, 0), (x, t) → t, is flat, if only if n = 4, 5. Assume that n = 4, 5. Then A 2 (f t ) is a smoothing of A 2 (f ) and its Euler characteristic χ c (A 2 (f t )) is described by the Milnor number of A 2 (f ):

The following example also shows that the reduced structure of singularities locus may not fit the context of deformation of maps.

Example 7.7. Let us consider the image of the map g : C → C defined by s → (s 3 , s 4 , s 5 ), which Milnor number µ is 4. The defining ideal is:

We know it defines a Cohen-Macaulay space. Consider the map:

Remark that g 0 (s) = g(s) where G(s, t) = (g t (s), t). The image of g t , t = 0, is nonsingular, and its Euler characteristic is 1, which is not 1µ. Let us see what happens in this example. Eliminating s from the ideal generated by:

xsts 3 , ys 4 , zs 5 , we obtain the ideal:

of C{x, y, z, t}. We remark that the variety X defined by the ideal I is not Cohen-Macaulay. We also remark that this defines a reduced space, but the fiber π -1 (0), where π : X → C is the projection π(x, y, z, t) = t, is not reduced, since C{x, y, z, t}/I ⊗ C C{t}/ t ≃ C{x, y, z}/I 0 ∩ x, y 3 , y 2 z, z 2 .