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Abstract. We consider an inverse transmission scattering problem. This
problem consists in determining an interface between two-layered media by far-
field measurements. We prove that the interface is uniquely determined by the
measurements of the far field pattern associated to incoming plane waves at a fixed
frequency. For the reconstruction of the interface we solve a non linear integral equation
using a truncated Newton-CG algorithm.
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1. Introduction

Inverse transmission problems of the Helmholtz equation are of fundamental interest due

to the large range of applications: geophysical exploration, medical imaging, underwater

acoustics, non-destructive testing. We are interested in the inverse problem to recover

one-dimensional interface Γ separating two dielectric (or acoustic) media Ω+ and Ω−

with different wave numbers k±. We assume that Γ is a graph of a smooth function f

with compact support , which means that Γ = Γ′ ∪ γ with γ a local perturbation of

the flat interface {x2 = 0} (see figure 1). More precisely our direct problem consists in

finding two functions u = (u+, u−) that solve the Helmholtz equation

4u± + (k±)2u± = 0 in Ω±.

We assume that the scattered waves u± satisfy the Sommerfeld radiation condition in

the domain Ω± and that for a given incident plane wave uinc the total field utot = u0 +u,

u0 = (uinc + ur, ut), satisfies the transmission conditions

u+ − u− = −[u0],
∂

∂n
(u+ − u−) = −

[
∂u0

∂n

]
on Γ,

here [u0] = uinc + ur − ut where ur and ut denotes the reflected and transmitted waves

by a flat interface according to the geometrical optic.

The inverse problem we are concerned, is to recover γ (local perturbation) from the

knowledge of wave numbers (k+, k−) and the far field pattern u+
∞ of u+ for one incoming

plane wave uinc = eik
+x·d, |d| = 1. Introducing an operator F+ : f → u+

∞ that maps an

admissible parametrization f of γ onto the far field pattern u+
∞ of scattered field u+,

this problem can formulated as an operator equation:

F+(f) = u+
∞. (1.1)

Since inverse problem such as (1.1) is ill-posed, a regularization method has to be applied

in order to obtain stable solution, especially if noisy data are used. We use a regularized

Gauss-Newton method to find an approximation of γ given some noisy data u+,δ
∞ , a bound

δ of the error ‖u∞ − u+,δ
∞ ‖ and an initial guess γ0. Regularized Gauss-Newton method

have been used for the approximate solution of inverse obstacle scattering problems

for time harmonic waves in the case of smooth obstacles (see [17, 16, 19]) and crack

detection [18].

In [2], the inverse scattering problem to recover the one-dimensional profile of a dielectric

rough interface has been considered. The proposed method in [2] yields satisfactory

reconstructions of interfaces having a perturbation less than one half of the wavelength.

The level of roughness is small. The reconstruction is achieved via a single illumination

by a plane wave at a fixed frequency and the reflected field measurements are performed

on a line parallel to the surface. The data we use for our inverse problem are not

the same (like in [2]) but our inversion algorithm can be applied to a wide range of

frequencies, depending on the size of the roughness.

Our paper is organized as follow. In section 2, we set the direct problem, give a

representation of the solution and deduce the far field pattern. In section 3, we perform
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an asymptotic analysis of the Green function of the perturbed problem far away and near

the interface. In section 4, we set our inverse problem, prove the uniqueness theorem

and propose an iterative method to reconstruct the interface. In section 5, we present

some numerical experiments which illustrate our algorithm.

Notations. We introduce the following notations. Let Ω+ and Ω− be two

regions of R2 defined by: Ω+ = {x = (x1, x2) ∈ R2 : x2 > f(x1)} and Ω− =

{x = (x1, x2) ∈ R2 : x2 < f(x1)} where f : R → R is a continuous function

such that f ∈ C2([−a, a]) and f(x) = 0 if |x| > a, for some a > 0. Denote

Γ = {(x1, f(x1)), x1 ∈ R} the boundary of Ω± and γ = {(x1, f(x1)) ∈ R2; −a < x1 < a}
is an open arc with n(x) = (−f ′(x1),

1√
1 + (f ′(x1))2

) the outgoing normal. The two

unbounded domains Ω+ and Ω− are acoustic media with wave numbers k+ and k−.

We set k(x) =

{
k+ if x ∈ Ω+,

k− if x ∈ Ω−.
. Denote R2

+ = {x = (x1, x2) ∈ R2; x2 > 0} and

R2
− = {x = (x1, x2) ∈ R2; x2 < 0}.

Figure 1. Geometry of the problem

2. The transmission problem

Let us give a precise definition of the direct problem. Let uinc be an incident plane wave

given by

uinc(x) = exp(−ik+(x1 cos θ + x2 sin θ)), θ ∈ (0, π).

If the interface is flat i.e. f = 0, the reflected wave ur and transmitted wave ut are given

by Fresnel formula (see for example [10]):

ur(x) = R(θ) exp(ik+(−x1 cos θ + x2 sin θ)) for x2 > 0,

ut(x) = T (θ) exp(−i(k+x1 cos θ + k−x2 sinχ)) for x2 < 0,
(2.2)

with sinχ =
√

1− ν2 cos2 θ, ν = k+

k−
, and the reflection and transmission coefficients

are given by

R(θ) =
k+ sin θ − k− sinχ

k+ sin θ + k− sinχ
, T (θ) =

2k+ sin θ

k+ sin θ + k− sinχ
. (2.3)
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If Γ is the perturbed interface (f 6= 0), we introduce the function

u0(x) =

{
uinc(x) + ur(x) in Ω+,

ut(x) in Ω−.

Here we used the analytic continuation of uinc, ur and ut to the whole plane R2.

Our scattering problem is the following: find u such that the total field utot = u0 + u

satisfies the Helmholtz equation in R2:{
∆utot + k(x)utot = 0 in H1

loc(R2) ,

u satisfies Sommerfeld radiation condition when |x| → +∞.
(2.4)

If we denote u± = u|Ω± , the problem (2.4) is equivalent to the transmission problem:

find u± ∈ C2(Ω±) ∩ C1(Ω
±

) such that

∆u+ + (k+)2u+ = 0 in Ω+ ,

∆u− + (k−)2u− = 0 in Ω− ,

u+ − u− = −uinc − ur + ut on γ,
∂u
∂n

(u+ − u−) = − ∂
∂n

(uinc + ur − ut) on γ,

u+ − u− = 0, ∂u
∂n

(u+ − u−) = 0 on Γ \ γ,
∂u±

∂r
− ik±u± = o( 1√

r
), as r = |x| → +∞ and x ∈ Ω±.

(2.5)

Remark 2.1 • The critical angle θc ∈ (0, π) is defined by cos θc =
k−

k+
if k+ ≥ k−

and θc = 0 if k+ < k−. We can consider different cases:

1- If θc < |θ| < π− θc, then sinχ =
√

1− (k
+

k−
)2 cos2 θ ∈ R and ut is a plane wave.

2- If 0 < |θ| < θc or π − θc < θ < π then sinχ = i
√

1− (k
+

k−
)2 cos2 θ ∈ iR and ut

is a guided wave by the interface {x2 = 0}.
3- If θ = θc or θ = π − θc then χ = 0 and ut a grazing ray.

• If uinc(x) = exp(−ik−(x1 cos θ + x2 sin θ)) with θ ∈ (−π, 0), then interchanging k+

and k−, we obtain formula similar to (2.2)-(2.3).

2.1. Representation of the scattered field

For the resolution of (2.5) we use the integral method related with the Green’s function

G(x, y) of the two-layered medium, i.e. fundamental solution of the unperturbed

problem (f = 0). The function G(x, y) is represented as the inverse Fourier transform

of it’s spectral image (see [14, 9]). Indeed, for an observation point x = (x1, x2) and a

source point y = (y1, y2) ∈ R2
+, the Green’s function is given by

G(x, y) =

{
G0(x, y) +Gr(x, y) if x ∈ R2

+,

Gt(x, y) if x ∈ R2
−,

with

G0(x, y) =
i

4
H

(1)
0 (k+|x− y|),



Reconstruction of the interface between two layered media 5

Gt(x, y) =
i

2π

∫ +∞

−∞

ei(−βx2+αy2)

α + β
eiξ(x1−y1)dξ

and

Gr(x, y) =
i

4π

∫ +∞

−∞

α− β
α(α + β)

eiα(x2+y2)eiξ(x1−y1)dξ,

where α =
√

(k+)2 − ξ2 and β =
√

(k−)2 − ξ2 (if |ξ| > k± we choose the determination√
(k±)2 − ξ2 = i

√
ξ2 − (k±)2). If y2 < 0 similar formula are available. The following

result holds:

Theorem 2.2 The problem (2.5) has an unique solution represented by the combined

simple and double-layer potentials:

u(x) =

∫
γ

(
G(x, y)

[
∂u0

∂n

]
+
∂G(x, y)

∂n(y)
[u0]

)
ds(y), x ∈ R2 \ γ. (2.6)

If we write this solution in the form u = D[u0] + S
[
∂u0

∂n

]
, then the operator

(g, h) 7→ Dg + Sh

is bounded from H̃
1
2 (γ)× H̃− 1

2 (γ) to H1
loc(R2).

Sketch of the proof: For the representation (2.6) we refer to the report [3] where

the author generalizes the trace formulas, well known for the classical potentials, to the

potentials S and D ([7]). Indeed, the singularity of G(x, y) looks like those of G0(x, y)

(see Appendix A1). This solution is unique by a Rellich type theorem (see Theorem 2.5).

Recall the definitions of Sobolev spaces H̃
1
2 (γ) = {v ∈ H

1
2 (Γ); supp v ⊂ γ̄} and

H̃−
1
2 (γ) := (H̃

1
2 (γ))′ the dual space, then the continuity of the operators S et D between

theses spaces and H1
loc(R2) can be established using the same arguments as in [4, 5] for

the crack problem.

2.2. Far Field Pattern

2.2.1. Asymptotic behavior at infinity The objective here is to provide the asymptotic

behavior of the solution u(x), obtained in Theorem 2.2, when r = |x| → +∞. For this

we need the asymptotic behavior of the Green function.

When the source point is in the upper half space (y2 > 0) and for observation points in

the lower half space (x2 < 0), we have the asymptotic formula for Gt(x, y) (see [14]):

Gt(x, y) =
ei(k

−r+π
4

)

2
√

2πk−r
St(φ)eix̃y +O(

1

r
), φ ∈ [−π, 0], (2.7)

with

St(φ) =
2k− sinφ

k− sinφ−
√

(k+)2 − (k−)2 cos2 φ
,

x = r(cosφ, sinφ), x̃ = (−k− cosφ,
√

(k+)2 − (k−)2cos2φ).



Reconstruction of the interface between two layered media 6

For x2 > 0 and y2 > 0 we have

G(x, y) =
ei(k

+r+π
4

)

2
√

2πk+r
e−ik

+x̂y+
ei(k

+r+π
4

)

2
√

2πk+r
Sr(φ)eik

+x̃y+O(
1

r
), φ ∈ [0, π],(2.8)

with

Sr(φ) =
αs − βs
αs + βs

, αs = k+ sinφ, βs =
√

(k−)2 − (k+)2cos2φ

and

x = r(cosφ, sinφ), x̂ = (cosφ, sinφ), x̃ = (− cosφ, sinφ).

These formula imply the asymptotic behavior:

u(x) =
ei(k

+r+π
4

)

2
√

2πk+r
A+(θ, φ) +

ei(k
−r+π

4
)

2
√

2πk−r
A−(θ, φ) +O(

1

r
). (2.9)

Definition 2.3 The pair u∞(θ, φ) = (A+(θ, φ), A−(θ, φ)) called the far field pattern is

defined by:

(i) For φ ∈ [0, π]

A+(θ, φ) =

∫
γ

([
∂u0

∂n

]
e−ik

+x̂y + [u0]
∂e−ik

+x̂y

∂n

)
ds(y)

+ Sr(φ)

∫
γ

([
∂u0

∂n

]
eik

+x̃y + [u0]
∂eik

+x̃y

∂n

)
ds(y),

A−(θ, φ) = 0,

where

Sr(φ) = αs−βs
αs+βs

, αs = k+ sinφ, βs =
√

(k−)2 − (k+)2cos2φ,

x̂ = (cosφ, sinφ) and x̃ = (− cosφ, sinφ).

(ii) For φ ∈ [π, 0]

A+(θ, φ) = 0,

A−(θ, φ) = St(φ)

∫
γ

([
∂u0

∂n

]
eix̃y + [u0]

∂eix̃y

∂n

)
ds(y),

where

St(φ) =
2k− sinφ

k− sinφ−
√

(k+)2 − (k−)2 cos2 φ
, x̃ = (−k− cosφ,

√
(k+)2 − (k−)2cos2φ).

Remark 2.4 All these formula are available even if the incident angle θ ∈ [−π, 0].

Theorem 2.5 Let u+ and u− satisfying

∆u+ + (k+)2u+ = 0 for x ∈ R2
+ and |x| > R0 ,

∆u− + (k−)2u− = 0 for x ∈ R2
− and |x| > R0 ,

u+ = u−;
∂u+

∂x2

=
∂u−

∂x2

, if x2 = 0 and |x1| > R0 ,

∂u±

∂r
− ik±u± = o(

1√
r

) as r = |x| → +∞ and x ∈ R2
±.
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Moreover, if we assume that

lim
R→+∞

∫
Σ±(R)

|u±|2ds = 0,

where Σ±(R) = {x ∈ R2
±, |x| = R}, then u±(x) = 0 for |x| > R0.

Proof:

This result is another version of the classical Rellich theorem. The proof follows from

the uniqueness theorem obtained by Kristensson [20], which is the generalization of the

result of Odeh [21].

Theorem 2.6 Let u = (u+, u−) be a solution of (2.5). We assume that the far field

pattern vanishes, that is A+(θ, φ) = A−(θ, φ) = 0, for all θ, φ ∈ [−π, π]. Then u(x) = 0

in R2.

Proof:

From (2.9), we have∫
ΣR

|u|2ds =
1

8πk+

∫ π

0

|A+(θ, φ)|2dφ+
1

8πk−

∫ 0

−π
|A−(θ, φ)|2dφ+O(

1√
R

).

If u∞(θ, φ) ≡ (0, 0), the result follows from Theorem 2.5 and from an unique continuation

principle. This principle is proved in [7] for smooth solution (in C2) but is actually

available for generalized solution (in H2
loc).

2.2.2. Operators F± Suppose that the incident angle θ ∈ (0, π) is fixed and consider

the amplitude A+(θ, φ) (resp. A−(θ, φ)) which is the far field pattern when the

observation point is in the upper half space Ω+ i.e φ ∈ [0, π] := s+ (resp. in the

lower half space Ω−, i.e φ ∈ [−π, 0] = s−), (see Definition 2.3). Note that in the

geophysical exploration it is more reasonable to consider the observation angle in s+. In

this section we explicit the dependence of A±(θ, φ) as a function of the parametrization

f of γ. Indeed we obtain a non linear mapping F± : f −→ g such that

g(φ) =

∫ a

−a
F±(φ, y1, f(y1), f ′(y1))dy1, φ ∈ s±.

Observation angle in (0, π)

Recall that for φ ∈]0, π[,

A+(θ, φ) =

∫
γ

([
∂u0

∂n

]
e−ik

+x̂y + [u0]
∂e−ik

+x̂y

∂n

)
ds(y) (2.10)

+ Sr(φ)

∫
γ

([
∂u0

∂n

]
eik

+x̃y + [u0]
∂eik

+x̃y

∂n

)
ds(y),
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where

Sr(φ) =
αs − βs
αs + βs

, αs = k+ sinφ, βs =
√

(k−)2 − (k+)2cos2φ,

x̂ = (cosφ, sinφ) and x̃ = (− cosφ, sinφ).

The jumps of u0 and ∂u0

∂n
are given by:

[u0] = uinc + ur − ut = exp[−ik+(y1 cos θ + y2 sin θ)] +R(θ) exp[−ik+(y1 cos θ − y2 sin θ)]

−T (θ) exp[−i(k+y1 cos θ + k−y2 sinχ)].

Using the rule:

∂g(y)

∂n
ds(y) = [

∂g(y)

∂y1

(−f ′(y1)) +
∂g(y)

∂y2

]dy1 where y2 = f(y1), −a < y1 < a,

we obtain[
∂u0

∂n

]
=
∂[u0]

∂n
= −f ′(y1)(

∂(ur + uinc)

∂y1

− ∂ut
∂y1

) + (
∂(uinc + ur)

∂y2

− ∂ut
∂y2

).

Then [
∂u0

∂n

]
= ik+f ′(y1) cos θ(uinc + ur − ut)− ik+ sin θ(uinc − ur) + ik− sinχut

∂e−ik
+x̂y

∂n
ds = ik+(f ′(y1) cosφ− sinφ)e−ik

+x̂ydy1,

and
∂eik

+x̃y

∂n
ds = ik+(f ′(y1) cosφ+ sinφ)eik

+x̃ydy1.

The equation (2.10) can be written:

A+(θ, φ) =

∫ a

−a

[
ik+(cos θf ′(y1) + cosφf ′(y1)− sinφ)(uinc + ur − ut)(2.11)

− ik+ sin θ(uinc − ur) + ik− sinχut

]
e−ik

+x̂ydy1

+ Sr(φ)

∫ a

−a

[
ik+(cos θf ′(y1) + cosφf ′(y1) + sinφ)(uinc + ur − ut)

− ik+ sin θ(uinc − ur) + ik− sinχut

]
eik

+x̃ydy1

which is of the form:

A+(θ, φ) =

∫ a

−a
F+(θ, φ, y1, f(y1), f ′(y1))dy1, (2.12)

with

F+(θ, φ, y1, f(y1), f ′(y1)) = e−b1y1
[(

(a1+b1)(uinc+ur−ut)f ′(y1)−a2(uinc−ur)+c1ut

)
(e−b2f(y1)
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+Sr(φ)eb2f(y1))− b2(uinc + ur − ut)(e−b2f(y1) − Sr(φ)eb2f(y1))

]
,

where

a1 = ik+ cos θ, a2 = ik+ sin θ, (2.13)

b1 = ik+ cosφ, b2 = ik+ sinφ, c1 = ik− sinχ.

More precisely we obtain the expression

F+(θ, φ, y1, f(y1), f ′(y1) = F+
1 (θ, φ, y1, f(y1), f ′(y1)) (2.14)

+ Sr(φ)F+
2 (θ, φ, y1, f(y1), f ′(y1))

where

F+
1 (θ, φ, y1, f(y1), f ′(y1)) = (A1f

′(y1) +B1) exp (−A1y1 −B1f(y1))

+ R(θ)(A1f
′(y1) +B2) exp (A1y1 +B2f(y1))

+ T (θ)(−A1f
′(y1) +B3) exp (−A1y1 −B3f(y1)),

F+
2 (θ, φ, y1, f(y1), f ′(y1)) = (A1f

′(y1)−B2) exp (A2y1 −B1f(y1))

+ R(θ)(A1f
′(y1) +B1) exp (A2y1 +B2f(y1))

+ T (θ)(−A1f
′(y1) +B4) exp (A1y1 −B3f(y1)),

A1 = a1 + b1 , A2 = −a1 + b1 , B1 = a2 + b2 , B2 = a2 − b2 , (2.15)

B3 = c1 + b2 , B4 = c1 − b2.

Observation angle in (−π, 0)

For φ ∈]− π, 0[ we have

A−(θ, φ) = St(φ)

∫
γ

([
∂u0

∂n

]
eix̃y + [u0]

∂eix̃y

∂n

)
ds(y), (2.16)

where

St(φ) =
2k− sinφ

k− sinφ−
√

(k+)2 − (k−)2 cos2 φ
, x̃ = (−k− cosφ,

√
(k+)2 − (k−)2cos2φ).

As in the previous case the integral equation (2.16) take the form:

u−∞(θ, φ) =

∫ a

−a
F−(θ, φ, y1, f(y1), f ′(y1))dy1

with

F−(θ, φ, y1, f(y1), f ′(y1)) = St(φ)
[(
f ′(y1)(a1 + a3) + i

√
(k+)2 + a2

3

)
(uinc + ur − ut)

−a2(uinc − ur) + c1ut

]
e−a3y1+i

√
(k+)2+a2

3f(y1).

Which can be written as

F−(θ, φ, y1, f(y1), f ′(y1)) = S(φ) [(C1f
′(y1) + C2)R(θ) exp(−C1y1 + C2f(y1))+

(−C1f
′(y1) + C4)T (θ) exp(−C1y1 − C4f(y1))+

(C1f
′(y1) + C3) exp(−C1y1 + C3f(y1))] ,
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with

a3 = ik− cosφ, C1 = a1 + a3, C2 = a2 +
√

(k+)2 + a2
3,

C3 = −a2 +
√

(k+)2 + a2
3, C4 = c1 −

√
(k+)2 + a2

3.

3. Perturbed Green function G(x, y)

In this section, we consider the Green function G(x, y) of the perturbed layered medium.

G(x, y) satisfies ∆G(x, y) + k2(x)G(x, y) = δ(x − y) in D′(R2) and the radiation

condition. We can write G(x, y) = G(x, y)+G(s)(x, y) where G(s) solves the transmission

problem (2.5) with u0(x) = G(x, y). Such a function exists, is unique, and is represented

by the potentials (see (2.6))

G(s)(x, y) =

∫
γ

(
G(x, z)

[
∂G(z, y)

∂n(z)

]
+
∂G(x, z)

∂n(z)
[G(z, y)]

)
ds(z), x ∈ R2\γ.(3.1)

We point out that G(z, y) is defined as follows, for y ∈ Ω±

G(z, y) =

{
G0(k±; z, y) +Gr(z, y) if z ∈ Ω±,

Gt(z, y) if z ∈ Ω±.

In this last definition we consider the analytic continuation of Gr and Gt in the whole

space R2 (see Appendix A1).

3.1. Far-field

Using the asymptotic formulas of Gr(x, y) and Gt(x, y)), when |y| → +∞, and the

representation (3.1) we obtain the asymptotic formulas

Proposition 3.1 Suppose that x2 > 0 and y = r(cos θ, sin θ). Then we have for

r → +∞:

1- if θ ∈ (0, π),

G(s)(x, y) = c
eik

+r

√
k+r

(u(x,−θ) + u(x, θ)) +O(
1

r
), (c =

eiπ/4

2
√

2π
),

2- if θ ∈ (−π, 0),

G(s)(x, y) = c
eik
−r

√
k−r

(u(x,−θ) + u(x, θ)) +O(
1

r
),

where u(x, θ) is the scattered wave corresponding to the incident wave uinc(θ) =

e−ik
+(x1 cos θ+x2 sin θ) for θ ∈ (0, π) (respectively uinc(θ) = e−ik

−(x1 cos θ+x2 sin θ) for

θ ∈ (−π, 0)).

Theses relations are similar to the mixed reciprocity relations well known in the obstacle

problem [7].
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3.2. Singularities

The aim in this section is to recover the singularities of G(s)(x, y) when x and y are close

to the interface γ. For this we begin with by the following lemma.

Lemma 3.2 Recall that G0(k, y, z) := i
4
H

(1)
0 (k|y−z|) is the fundamental solution of the

Helmholtz equation in R2. We have the following asymptotic expansions as |y− z| → 0:

(1) G0(k, y, z) = −1
2π

(log |y−z|+C)+O(|y−z|2 log |y−z|), C = CE+log k
2
−iπ

2
, CE '

0.5772,

(2)
∂G0(k, y, z)

∂zj
= − 1

2π

yj − zj
|y − z|2

+O(|y − z| log |y − z|),

(3) If γ ∈ C2 and z ∈ γ , then
∂G0(k, y, z)

∂n(z)
= − 1

2π|y − z|
+O(|y − z| log |y − z|).

Proof:

• Items (1) and (2) follow from the asymptotic expansion of Hankel functions ([1]):

H
(1)
0 (t) =

2i

π
(log t+CE) + 1 +O(t2 log t),

d

dt
H

(1)
0 (t) = −H(1)

1 (t) =
2i

πt
+O(t log t),

when t→ 0, where CE ' 0.5772 is the Euler’s constant.

• For z ∈ γ,
∂G0(k, y, z)

∂n(z)
= −〈y − z, n(z)〉

|y − z|2
+O(|y−z| log |y−z|). On the other hand,

if γ is C2, we can establish the behavior
〈y − z, n(z)〉
|y − z|

= 1 + O(z1), and item (3)

follows.

Assume that t ∈ γ, let B(t) = B(t, δ) be a small ball centered at the point t,

y = t + n(t)y2 with 0 < y2 < δ and x = y. We introduce a local coordinate system

(z1, z2) in B(t) with the origin at t and such that z2 = 0 is tangent to γ. In this system

x = y = (0, y2). We denote γδ = γ ∩ B(t, δ). We assume that γ is C3, then γδ has the

parametrization z2 = cz2
1 +O(z3

1), |z1| < δ1 ≤ δ.

Proposition 3.3 With the previous notations we have following asymptotic expansion

as y2 → 0:

G(s)(y, y) = − 1

2π2
log2(y2) +O(log(y2))

Proof:

Since Gr(x, y) and Gt(x, y) are regular (see Appendix A1), from (3.1) we have

G(s)(y, y) = 2

∫
γδ

G0(k+, y, z)
∂G0(k+, y, z)

∂n(z)
ds(z) +O(1),
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uniformly for 0 < y2 < δ. Using the asymptotic formulas of Lemma 3.2, it follows when

y2 → 0 that

G(s)(y, y) =
1

2π2

∫
γδ

(
C

|z − y|
+

log |z − y|
|z − y|

)
ds(z) +O(1).

If γ is C3, we have proved in the appendix A2 that∫
γδ

ds(z)

|z − y|
= O(log(y2)),

∫
γδ

log |z − y|
|z − y|

ds(z) = − log2(y2) +O(log(y2)).

which ends the proof.

4. Inverse Problem

The inverse problem we consider is the following:

Given the wave numbers k+ and k− (k+ 6= k−) and the far field pattern u∞(θ, φ) :=

(A+(θ, φ), A−(θ, φ)) for all θ, φ ∈ [−π, π], determine the interface γ.

4.1. Uniqueness theorem

We first introduce the following notations. For two functions fj ∈ C(R) ∩ C2([−a, a]),

with supp fj ⊂ [−a, a], j = 1, 2, let us consider the arcs γj := {(x1, fj(x1)), −a < x1 <

a} and the domains Ω+
j = {(x1, x2) ∈ R2 : x2 > fj(x1)} and Ω−j = {(x1, x2) ∈ R2 : x2 <

fj(x1)}.
We prove the following uniqueness result.

Theorem 4.1 If the far field pattern u
(1)
∞ (θ, φ) and u

(2)
∞ (θ, φ) corresponding to γ1 and

γ2 respectively, coincide for all θ, φ ∈ [−π, π], then γ1 = γ2.

Proof:

The proof will be done in three steps.

Step 1. Denote D = Ω+
1 ∩ Ω+

2 = {(x1, x2);x2 > max(f1(x1), f2(x1))}. For an incident

plane wave uinc (which depends on θ) the scattered waves u1 and u2 associated to γ1

and γ2 respectively coincide by Theorem 2.6.

Step 2. We now show that scattered waves u1(x, y) and u2(x, y) also coincide for an

incident wave of the form uinc(x, y) = G0(k+, x, y) with y ∈ D. In fact uj(x, y) =

G(s)
j (x, y) is the perturbed Green function corresponding to γj (see section 3.1), then we

conclude by combining step 1 with the reciprocity Theorem 3.1.

Step 3. Let us now assume that γ1 6= γ2. We can find a point t ∈ γ1 and δ > 0 such that

B(t, δ)∩Ω−2 = ∅. For p ≥ 1, we consider the sequence yp = t+ 1
p
n(t) which lies in D for

all p ≥ 1. Let up1 and up2 be the solutions of the scattering problem (2.5) corresponding

to γ1 and γ2 respectively, with the data gpj = −[G(., yp)]γj and hpj = −[
∂G(., yp)

∂n
]γj .

From step 2, up1(x) = up2(x) for x ∈ D. When p→ +∞ we have by Proposition 3.3

up1(yp) '
−1

2π2
log2(p)→ −∞.
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This is a contradiction with up1(yp) = up2(yp) for all p ≥ 1. Indeed the sequence up2
converges uniformly in H2(B(t, δ

2
)) to u2(t, t), since B(t, δ)∩Ω−2 = ∅ and the boundary

data (gp2, h
p
2) converge in H̃

1
2 (γ2)× H̃− 1

2 (γ2). Hence γ1 = γ2 and the proof is completed.

Remark 4.2 This method uses the fact that the scattered wave becomes singular at the

boundary as the source point approach a boundary point. It has been employed by Kirsch

and Kress for the transmission problem [15] and Hähner for isotropic medium (see [5, 8]

and references therein). Our proof is based on the blow up of the scattered part of the

Green function (Proposition 3.3) and the reciprocity relation (Proposition 3.1). So we

have generalized the technique of point source (already used for bounded obstacle) to

unbounded obstacle (namely Ω−).

4.2. Reconstruction algorithm

In this section, we use for simplicity the notation (F , u∞) instead of (F+, u+
∞).

4.2.1. Iterative method To reconstruct the profile γ from the far field measurement

u∞(θ, φ), φ ∈ (0, π), we solve the non-linear operator equation

F(f) = u∞, (4.2)

where F : D(F) ⊂ X → Y operates between the Hilbert spaces X and Y and is defined

by A+(θ, φ) for f ∈ D(F) (see (2.12)). In our application we choose D(F) = H2
0 (−a, a),

X = H1
0 (−a, a) and Y = L2(]0, π[).

To solve (4.2) we use a Newton-type algorithm: in each iteration step we solve the linear

equation

F(fn) + F ′(fn)hn = u∞ (4.3)

and then update fn by fn+1 = fn + hn with an initial guess f0 ∈ D(F).

Since Kn := F ′(fn), the Fréchet derivative of F , is a compact operator (see remark 4.4),

then (4.3) is ill-posed, the solution does not depend continuously on the given data. So,

if we have perturbed data uδ∞ instead of u∞ in (4.2) satisfying ‖uδ∞ − u∞‖ ≤ δ, then

we need to regularize the problem in order to compute approximate solutions f δ that

converge to some solution of (4.2) as δ → 0. Tikhonov regularization is certainly the

most well-known regularization method but in our case we propose a better method to

the linear system (4.3). As inner iteration we apply a few steps of the conjugate gradient

method (CG) to the normal equation associated with (4.3):

K∗nKnhn = K∗n(F(fn)− u∞). (4.4)

The Matlab function lsqr from the Regularization Tools program package by Hansen

(see [11]) implements the CG algorithm applied to normal equation (4.4). The outer

iteration (4.3) is terminated at the first index n(δ) for which the residual in less than

the noise level δ, that is,

‖F(fn(δ))− uδ∞)‖ ≤ τδ,
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with some parameter τ > 1.

Hanke (see [13]) has proved the convergence of the CG-method under the following

assumption on the nonlinearity of F :

‖F(f2)−F(f1)−F ′(f1)(f2 − f1)‖ ≤ C‖f2 − f1‖‖F(f2)−F(f1)‖.

Unfortunately, this condition is not yet verified in our situation.

4.2.2. Fréchet derivative From now, we assume that the incident angle θ is fixed and

the observation angle φ ∈ (0, π). The equation (2.12) can be written

F(f)(φ) = u∞(φ), φ ∈]0, π[,

where the non linear integral operator is given by:

F(f)(φ) =

∫ a

−a
F+(θ, φ, y1, f(y1), f ′(y1))dy1, φ ∈]0, π[,

with

F+(θ, φ, y1, f(y1), f ′(y1) = F+
1 (θ, φ, y1, f(y1), f ′(y1)) + Sr(φ)F+

2 (θ, φ, y1, f(y1), f ′(y1))

and

F+
1 (θ, φ, y1, f(y1), f ′(y1)) = (A1f

′(y1) +B1) exp (−A1y1 −B1f(y1))

+ R(θ)(A1f
′(y1) +B2) exp (A1y1 +B2f(y1))

+ T (θ)(−A1f
′(y1) +B3) exp (−A1y1 −B3f(y1)),

F+
2 (θ, φ, y1, f(y1), f ′(y1)) = (A1f

′(y1)−B2) exp (A2y1 −B1f(y1))

+ R(θ)(A1f
′(y1) +B1) exp (A2y1 +B2f(y1))

+ T (θ)(−A1f
′(y1) +B4) exp (A1y1 −B3f(y1)).

The coefficients are defined in (2.13) and (2.15).

Proposition 4.3 We assume that f0 ∈ H2
0 (−a, a). The Fréchet derivative K0 = F ′(f0)

is the linear integral operator K0 : H1
0 (−a, a)→ L2(]0, π[) defined by:

K0h(φ) =

∫ a

−a
k(φ, y1)h(y1)dy1

with the kernel

k(φ, y1) = Ff − Fy1f ′ − f ′0(y1)Fff ′ at the point (φ, y1, f0(y1), f ′0(y1))

Proof:

The mean value theorem gives

F (φ, y1, f0 + h, f ′0 + h′) = F (φ, y1, f0, f
′
0) + hFf + h′Ff ′ + o(|h|+ |h′|).
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This implies

F(f0 + h) = F(f0) +

∫ a

−a
(hFf + h′Ff ′)dy1 + o(‖h‖L2 + ‖h′‖L2)

= F(f0) +

∫ a

−a
(hFf − h

dFf ′

dy1

)dy1 + o(‖h‖H1)

= F(f0) +

∫ a

−a
(Ff − Fff ′f ′0 − Fy1f ′ − f ′′0Ff ′f ′)hdy1 + o(‖h‖H1)

= F(f0) +

∫ a

−a
(Ff − Fff ′f ′0 − Fy1f ′)hdy1 + o(‖h‖H1).

Note that Ff ′f ′ = 0 since the mapping f ′ → F is linear.

More precisely, the kernel k(φ, y1) is given by the following expression:

k(φ, y1) = k1(φ, y1) + Sr(φ)k2(φ, y1)

with

k1(φ, y1) = K1 exp(−A1y1 −B1f0(y1)) +R(θ)K2 exp(A1y1 +B2f0(y1))

+T (θ)K3 exp(−A1y1 −B3f0(y1)),

k2(φ, y1) = K4 exp(A2y1 −B1f0(y1)) + T (θ)K5 exp(A1y1 −B3f0(y1))

and

K1 = −B2
1 + A2

1 = −2(k+)2 cos(θ + φ)[cos(θ − φ) + 1],

K2 = B2
2 − A2

1 = 2(k+)2 cos(θ − φ)[cos(θ + φ) + 1],

K3 = −B2
3 − A2

1 = (k+)2 + (k−)2 + 2(k+)2 cos θ cosφ+ 2k+ sinφ
√

(k−)2 − (k+)2 cos2 θ,

K4 = −B1B2 − A1A2 = 2(k+)2 sin(θ − φ) sin(θ + φ),

K5 = −B3B4 + A2
1 = k+(sin θ + sinφ)(k− sinχ+ k+ sinφ)− (k+)2(cos θ + cosφ)2,

R(θ) =
a2 − c1

a2 + c1

, T (θ) =
2a2

a2 + c1

, Sr(φ) =
−ib2 −

√
(k−)2 + b2

1

−ib2 +
√

(k−)2 + b2
1

.

The coefficients Aj and Bj are defined in (2.13) and (2.15).

Remark 4.4

1) If f0 ∈ H2
0 (−a, a), K0 is in fact a bounded operator in L2(]0, π[) and is compact (the

kernel k(φ, y1) is a bounded function).

2) If f0 ∈ H1
0 (−a, a) then K0 : H1

0 (−a, a) → L2(]0, π[) is bounded (but not compact)

and given by:

K0h =

∫ a

−a
(h(y1)Ff (φ, y1, f0, f

′
0) + h′(y1)Ff ′(φ, y1, f0, f

′
0))dy1.
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5. Numerical Results

In this last section, we give some numerical tests of the proposed method. These nu-

merical results allow us to underline the effects of some parameters, such as the incident

angle, the geometry or the noise, on the reconstruction. The reconstruction is obtained

from the far field pattern for a single illumination by a plane wave at a fixed frequency.

In all the examples we determine the shape of a one-dimensional interface between two

half-spaces. The method converges rapidly and yields highly resolved reconstructions

after 20 iterations. In the figure 2 we present the reconstruction of rough interface be-

tween two dielectric half-spaces and in the figure 3-4-5 the reconstruction of different

underwater profiles. The examples are presented for incidence directions θ = π/2 and

θ = π/6 without noise. Note that the reconstruction is not sensitive to noise of about

5%. Obviously, the best reconstruction is obtained for the case of normal incidence. In

all examples we used N = 160 points in the discretization of the parametrization f .

The synthetic data for the far field u∞(θ, φ) were obtained via trapezoidal quadrature

rule with N collocation points φj = jπ
N

, j = 1 to N . The CG-algorithm is stopped after

three steps. We note that if we continue the process the precision is deteriorated. This

phenomena is pointed out in the literature concerning the regularization of the nonlin-

ear ill-posed problems ([13, 12]) and the stopping rule in the inner or outer iterations is

called the generalized discrepancy principle.

In conclusion, the numerical results show accurate reconstruction when the size of the

roughness H is less than 0.3λ where λ is the wavelength. The algorithm is stable with

respect to data with a noise of about 5%. For H ≥ 0.5λ the construction starts to

deteriorate (see figure 5). Indeed, for this range of frequencies, the nonlinear equation

if severely ill-posed in the sense that the linearized equation is ill-conditioned. The

performance of the conjugate gradient method can be improved by the use of adequate

pre-conditioner ([6]), hence further research is required to expect better reconstruction

for such a profile.
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(i) Reconstruction of dielectric profile with the parameters λ = 0.632, k+ = 2π
λ

,

k− = 1.5k+ for incidence angles θ = π
2

(left) and θ = π
6

(right). Here we have

an interface between air and glass with trapezoidal shape (depth H = 0.1µm , base

b = 4µm).

Figure 2

(ii) Reconstruction of underwater profiles with the parameters k+ = 4, k− = 1.5k+,

H = 0.3 and θ = π
2
. On the right, we plot the rate of the convergence.

Figure 3
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(iii) Reconstruction of underwater profiles with the parameters k+ = 4, k− = 1.5k+,

H = 0.3 and θ = π
6
. On the right, we show the scattering diagram.
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Figure 4

(iv) Reconstruction of underwater profiles with the parameters k+ = 4, k− = 1.5k+,

H = 0.5 and θ = π
2
. On the right, we plot the rate of the convergence.

Figure 5
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6. Appendix

A1. Green’s function G(x, y)

Let G(x, y) be the outgoing Green’s function of the unperturbed two-half-spaces, that

is, the solution of

(∆x + k±)G(x, y) = δ(x− y) in R2
± (y2 6= 0),

[G(x, y)] =
[
∂G(x,y)
∂x2

]
= 0 on x2 = 0,

with, in each domain, the Sommerfeld radiation condition as r = |x| → +∞

lim
r→+∞

√
r(
∂G

∂r
− ik±G) = 0.

We refer to [10] for the existence and the uniqueness of G. If y2 > 0, by construction, G

is decomposed into G(x, y) = G0(k+, x, y) + Gr(x, y) for x2 > 0 and G(x, y) = Gt(x, y)

for x2 < 0, where Gr and Gt solve Helmholtz equation in the whole space R2 and satisfy

the transmission conditions

Gr −Gt = − [G0] ,
∂

∂x2

(Gr −Gt)(x, y) = −
[
∂G0(x, y)

∂x2

]
on x2 = 0.

Then Gr and Gt are analytic functions in R2. However G is (globally) in C1(R2) by

elliptic regularity.

A2. Asymptotic expansion

We suppose that γ is C3 and put γδ = γ ∩ B(0, δ), then γδ = {(t, ct2 + O(t3)), |t| ≤ δ}.
Let y = (0, η), with η > 0. Our aim is to estimate the following integrals when η → 0

I1(η) =

∫
γ

ds(z)

|y − z|
, I2(η) =

∫
γ

log |y − z|
|y − z|

ds(z).

From |y − z|2 = η2 + (1− 2cη)t2 +O(t3) = ρ2(t, η) +O(t3), we deduce

1

|y − z|
=

1

ρ
+O(1), log |y − z| = log ρ+O(t) and

log |y − z|
|y − z|

=
log ρ

ρ
+O(log(t)).

Then

I1(η) = 2

∫ δ

0

dt

ρ(t, η)
+O(1) and I2(η) = 2

∫ δ

0

log ρ(t, η)

ρ(t, η)
dt+O(1).

If we set u =
√

1−2cη
η

t, we obtain∫ δ

0

dt

ρ(t, η)
=

1√
1− 2cη

∫ A(η)

0

du√
1 + u2

and ∫ δ

0

log ρ(t, η)

ρ(t, η)
dt =

log(η)√
1− 2cη

∫ A(η)

0

du√
1 + u2

+
1√

1− 2cη

∫ A(η)

0

log
√

1 + u2

√
1 + u2

du,
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where A(η) =
δ
√

1− 2cη

η
' δ

η
.

We obtain when η → 0 ∫ A(η)

0

du√
1 + u2

= − log η +O(1)

and ∫ A(η)

0

log
√

1 + u2

√
1 + u2

du =

∫ A(η)

1

log u

u
du+O(1) =

1

2
log2 η +O(1).

Finally we get I1(η) = −2 log η +O(1) and I2(η) = − log2 η +O(1).
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