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Reconstruction of the interface between two layered media using far field measurements
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We consider an inverse transmission scattering problem. This problem consists in determining an interface between two-layered media by farfield measurements. We prove that the interface is uniquely determined by the measurements of the far field pattern associated to incoming plane waves at a fixed frequency. For the reconstruction of the interface we solve a non linear integral equation using a truncated Newton-CG algorithm.

Introduction

Inverse transmission problems of the Helmholtz equation are of fundamental interest due to the large range of applications: geophysical exploration, medical imaging, underwater acoustics, non-destructive testing. We are interested in the inverse problem to recover one-dimensional interface Γ separating two dielectric (or acoustic) media Ω + and Ω - with different wave numbers k ± . We assume that Γ is a graph of a smooth function f with compact support , which means that Γ = Γ ∪ γ with γ a local perturbation of the flat interface {x 2 = 0} (see figure 1). More precisely our direct problem consists in finding two functions u = (u + , u -) that solve the Helmholtz equation

u ± + (k ± ) 2 u ± = 0 in Ω ± .
We assume that the scattered waves u ± satisfy the Sommerfeld radiation condition in the domain Ω ± and that for a given incident plane wave u inc the total field u tot = u 0 + u, u 0 = (u inc + u r , u t ), satisfies the transmission conditions

u + -u -= -[u 0 ], ∂ ∂n (u + -u -) = - ∂u 0 ∂n on Γ,
here [u 0 ] = u inc + u r -u t where u r and u t denotes the reflected and transmitted waves by a flat interface according to the geometrical optic.

The inverse problem we are concerned, is to recover γ (local perturbation) from the knowledge of wave numbers (k + , k -) and the far field pattern u + ∞ of u + for one incoming plane wave u inc = e ik + x•d , |d| = 1. Introducing an operator F + : f → u + ∞ that maps an admissible parametrization f of γ onto the far field pattern u + ∞ of scattered field u + , this problem can formulated as an operator equation:

F + (f ) = u + ∞ . (1.1) 
Since inverse problem such as (1.1) is ill-posed, a regularization method has to be applied in order to obtain stable solution, especially if noisy data are used. We use a regularized Gauss-Newton method to find an approximation of γ given some noisy data u +,δ ∞ , a bound δ of the error u ∞ -u +,δ ∞ and an initial guess γ 0 . Regularized Gauss-Newton method have been used for the approximate solution of inverse obstacle scattering problems for time harmonic waves in the case of smooth obstacles (see [START_REF] Kress | A quasi-Newton method in inverse scattering[END_REF][START_REF] Kress | Newton's method for inverse obstacle scattering meets the method of least squares[END_REF][START_REF] Kress | A second Newton method for sound soft inverse obstacle scattering[END_REF]) and crack detection [START_REF] Kress | A hybrid method for two-dimensional crack reconstruction[END_REF]. In [START_REF] Akduman | Iterative reconstruction of dielectric rough surface profiles at fixed frequency[END_REF], the inverse scattering problem to recover the one-dimensional profile of a dielectric rough interface has been considered. The proposed method in [START_REF] Akduman | Iterative reconstruction of dielectric rough surface profiles at fixed frequency[END_REF] yields satisfactory reconstructions of interfaces having a perturbation less than one half of the wavelength. The level of roughness is small. The reconstruction is achieved via a single illumination by a plane wave at a fixed frequency and the reflected field measurements are performed on a line parallel to the surface. The data we use for our inverse problem are not the same (like in [START_REF] Akduman | Iterative reconstruction of dielectric rough surface profiles at fixed frequency[END_REF]) but our inversion algorithm can be applied to a wide range of frequencies, depending on the size of the roughness.

Our paper is organized as follow. In section 2, we set the direct problem, give a representation of the solution and deduce the far field pattern. In section 3, we perform an asymptotic analysis of the Green function of the perturbed problem far away and near the interface. In section 4, we set our inverse problem, prove the uniqueness theorem and propose an iterative method to reconstruct the interface. In section 5, we present some numerical experiments which illustrate our algorithm.

Notations. We introduce the following notations. Let Ω + and Ω -be two regions of R 2 defined by: Ω

+ = {x = (x 1 , x 2 ) ∈ R 2 : x 2 > f (x 1 )} and Ω -= {x = (x 1 , x 2 ) ∈ R 2 : x 2 < f (x 1 )} where f : R → R is a continuous function such that f ∈ C 2 ([-a, a]) and f (x) = 0 if |x| > a, for some a > 0. Denote Γ = {(x 1 , f (x 1 )), x 1 ∈ R} the boundary of Ω ± and γ = {(x 1 , f (x 1 )) ∈ R 2 ; -a < x 1 < a} is an open arc with n(x) = (-f (x 1 ), 1 1 + (f (x 1 )) 2
) the outgoing normal. The two unbounded domains Ω + and Ω -are acoustic media with wave numbers k + and k -. 

We set k(x) = k + if x ∈ Ω + , k -if x ∈ Ω -. . Denote R 2 + = {x = (x 1 , x 2 ) ∈ R 2 ; x 2 > 0} and R 2 -= {x = (x 1 , x 2 ) ∈ R 2 ; x 2 < 0}.

The transmission problem

Let us give a precise definition of the direct problem. Let u inc be an incident plane wave given by

u inc (x) = exp(-ik + (x 1 cos θ + x 2 sin θ)), θ ∈ (0, π).
If the interface is flat i.e. f = 0, the reflected wave u r and transmitted wave u t are given by Fresnel formula (see for example [START_REF] Desanto | Scalar Wave Theory[END_REF]):

u r (x) = R(θ) exp(ik + (-x 1 cos θ + x 2 sin θ)) for x 2 > 0, u t (x) = T (θ) exp(-i(k + x 1 cos θ + k -x 2 sin χ)) for x 2 < 0, (2.2) 
with sin χ = √ 1 -ν 2 cos 2 θ, ν = k + k -, and the reflection and transmission coefficients are given by

R(θ) = k + sin θ -k -sin χ k + sin θ + k -sin χ , T (θ) = 2k + sin θ k + sin θ + k -sin χ . (2.3)
If Γ is the perturbed interface (f = 0), we introduce the function

u 0 (x) = u inc (x) + u r (x) in Ω + , u t (x) in Ω -.
Here we used the analytic continuation of u inc , u r and u t to the whole plane R 2 .

Our scattering problem is the following: find u such that the total field u tot = u 0 + u satisfies the Helmholtz equation in R 2 :

∆u tot + k(x)u tot = 0 in H 1 loc (R 2
) , u satisfies Sommerfeld radiation condition when |x| → +∞.

(2.4)

If we denote u ± = u| Ω ± , the problem (2.4) is equivalent to the transmission problem:

find u ± ∈ C 2 (Ω ± ) ∩ C 1 (Ω ± ) such that                  ∆u + + (k + ) 2 u + = 0 in Ω + , ∆u -+ (k -) 2 u -= 0 in Ω -, u + -u -= -u inc -u r + u t on γ, ∂u ∂n (u + -u -) = -∂ ∂n (u inc + u r -u t ) on γ, u + -u -= 0, ∂u ∂n (u + -u -) = 0 on Γ \ γ, ∂u ± ∂r -ik ± u ± = o( 1 √ r ), as r = |x| → +∞ and x ∈ Ω ± .
(2.5)

Remark 2.1 • The critical angle θ c ∈ (0, π) is defined by cos θ c = k - k + if k + ≥ k - and θ c = 0 if k + < k -. We can consider different cases: 1-If θ c < |θ| < π -θ c , then sin χ = 1 -( k + k -) 2 cos 2 θ ∈ R and u t is a plane wave. 2-If 0 < |θ| < θ c or π -θ c < θ < π then sin χ = i 1 -( k + k -) 2 cos 2 θ ∈ iR
and u t is a guided wave by the interface {x 2 = 0}. 3-If θ = θ c or θ = π -θ c then χ = 0 and u t a grazing ray.

• If u inc (x) = exp(-ik -(x 1 cos θ + x 2 sin θ)) with θ ∈ (-π, 0), then interchanging k +
and k -, we obtain formula similar to (2.2)-(2.3).

Representation of the scattered field

For the resolution of (2.5) we use the integral method related with the Green's function G(x, y) of the two-layered medium, i.e. fundamental solution of the unperturbed problem (f = 0). The function G(x, y) is represented as the inverse Fourier transform of it's spectral image (see [START_REF] Iakovliva | Inverse Scattering from Small Inhomogeneities[END_REF][START_REF] Coyle | Locating the support of object contained in a two layered background medium in two dimensions[END_REF]). Indeed, for an observation point x = (x 1 , x 2 ) and a source point y = (y 1 , y 2 ) ∈ R 2 + , the Green's function is given by

G(x, y) = G 0 (x, y) + G r (x, y) if x ∈ R 2 + , G t (x, y) if x ∈ R 2 -, with G 0 (x, y) = i 4 H (1) 0 (k + |x -y|), G t (x, y) = i 2π +∞ -∞ e i(-βx 2 +αy 2 ) α + β e iξ(x 1 -y 1 ) dξ and G r (x, y) = i 4π +∞ -∞ α -β α(α + β)
e iα(x 2 +y 2 ) e iξ(x 1 -y 1 ) dξ,

where α = (k + ) 2 -ξ 2 and β = (k -) 2 -ξ 2 (if |ξ| > k ± we choose the determination (k ± ) 2 -ξ 2 = i ξ 2 -(k ± ) 2
). If y 2 < 0 similar formula are available. The following result holds:

Theorem 2.2
The problem (2.5) has an unique solution represented by the combined simple and double-layer potentials:

u(x) = γ G(x, y) ∂u 0 ∂n + ∂G(x, y) ∂n(y) [u 0 ] ds(y), x ∈ R 2 \ γ. (2.6)
If we write this solution in the form u = D[u 0 ] + S ∂u 0 ∂n , then the operator

(g, h) → Dg + Sh is bounded from H 1 2 (γ) × H-1 2 (γ) to H 1 loc (R 2
). Sketch of the proof: For the representation (2.6) we refer to the report [START_REF] Ardjouni | Etude mathématique de la diffraction dans un dioptre perturbé[END_REF] where the author generalizes the trace formulas, well known for the classical potentials, to the potentials S and D ( [START_REF] Colton | Inverse acoustic and electromagnetric Scattering Theory[END_REF]). Indeed, the singularity of G(x, y) looks like those of G 0 (x, y) (see Appendix A1). This solution is unique by a Rellich type theorem (see Theorem 2.5). Recall the definitions of Sobolev spaces H 1 2 (γ) = {v ∈ H 1 2 (Γ); supp v ⊂ γ} and H-1 2 (γ) := ( H 1 2 (γ)) the dual space, then the continuity of the operators S et D between theses spaces and H 1 loc (R 2 ) can be established using the same arguments as in [START_REF] Cakoni | The linear sampling method for cracks[END_REF][START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF] for the crack problem.

Far Field Pattern

Asymptotic behavior at infinity

The objective here is to provide the asymptotic behavior of the solution u(x), obtained in Theorem 2.2, when r = |x| → +∞. For this we need the asymptotic behavior of the Green function. When the source point is in the upper half space (y 2 > 0) and for observation points in the lower half space (x 2 < 0), we have the asymptotic formula for G t (x, y) (see [START_REF] Iakovliva | Inverse Scattering from Small Inhomogeneities[END_REF]):

G t (x, y) = e i(k -r+ π 4 ) 2 √ 2πk -r S t (φ)e i xy + O( 1 r ), φ ∈ [-π, 0], (2.7) 
with

S t (φ) = 2k -sin φ k -sin φ -(k + ) 2 -(k -) 2 cos 2 φ , x = r(cos φ, sin φ), x = (-k -cos φ, (k + ) 2 -(k -) 2 cos 2 φ).
For x 2 > 0 and y 2 > 0 we have

G(x, y) = e i(k + r+ π 4 ) 2 √ 2πk + r e -ik + xy + e i(k + r+ π 4 ) 2 √ 2πk + r S r (φ)e ik + xy +O( 1 r ), φ ∈ [0, π],(2.8) with S r (φ) = α s -β s α s + β s , α s = k + sin φ, β s = (k -) 2 -(k + ) 2 cos 2 φ and x = r(cos φ, sin φ), x = (cos φ, sin φ), x = (-cos φ, sin φ).
These formula imply the asymptotic behavior:

u(x) = e i(k + r+ π 4 ) 2 √ 2πk + r A + (θ, φ) + e i(k -r+ π 4 ) 2 √ 2πk -r A -(θ, φ) + O( 1 r
).

(2.9)

Definition 2.3 The pair u ∞ (θ, φ) = (A + (θ, φ), A -(θ, φ)
) called the far field pattern is defined by:

(i) For φ ∈ [0, π] A + (θ, φ) = γ ∂u 0 ∂n e -ik + xy + [u 0 ] ∂e -ik + xy ∂n ds(y) + S r (φ) γ ∂u 0 ∂n e ik + xy + [u 0 ] ∂e ik + xy ∂n ds(y), A -(θ, φ) = 0, where S r (φ) = αs-βs αs+βs , α s = k + sin φ, β s = (k -) 2 -(k + ) 2 cos 2 φ, x = (cos φ, sin φ) and x = (-cos φ, sin φ). (ii) For φ ∈ [π, 0] A + (θ, φ) = 0, A -(θ, φ) = S t (φ) γ ∂u 0 ∂n e ixy + [u 0 ] ∂e ixy ∂n ds(y),
where

S t (φ) = 2k -sin φ k -sin φ -(k + ) 2 -(k -) 2 cos 2 φ , x = (-k -cos φ, (k + ) 2 -(k -) 2 cos 2 φ).
Remark 2.4 All these formula are available even if the incident angle θ ∈ [-π, 0].

Theorem 2.5 Let u + and u -satisfying                ∆u + + (k + ) 2 u + = 0 for x ∈ R 2 + and |x| > R 0 , ∆u -+ (k -) 2 u -= 0 for x ∈ R 2 -and |x| > R 0 , u + = u -; ∂u + ∂x 2 = ∂u - ∂x 2 , if x 2 = 0 and |x 1 | > R 0 , ∂u ± ∂r -ik ± u ± = o( 1 √ r ) as r = |x| → +∞ and x ∈ R 2 ± .
Moreover, if we assume that

lim R→+∞ Σ ± (R) |u ± | 2 ds = 0, where Σ ± (R) = {x ∈ R 2 ± , |x| = R}, then u ± (x) = 0 for |x| > R 0 . Proof:
This result is another version of the classical Rellich theorem. The proof follows from the uniqueness theorem obtained by Kristensson [START_REF] Kristensson | Uniqueness theorems for the Helmholtz equation: penetrable media with an infinite interface[END_REF], which is the generalization of the result of Odeh [START_REF] Odeh | Uniqueness theorems for the Helmholtz equation in domains with infinite boundaries[END_REF].

Theorem 2.6 Let u = (u + , u -) be a solution of (2.5). We assume that the far field pattern vanishes, that is

A + (θ, φ) = A -(θ, φ) = 0, for all θ, φ ∈ [-π, π]. Then u(x) = 0 in R 2 .
Proof: From (2.9), we have

Σ R |u| 2 ds = 1 8πk + π 0 |A + (θ, φ)| 2 dφ + 1 8πk - 0 -π |A -(θ, φ)| 2 dφ + O( 1 √ R ).
If u ∞ (θ, φ) ≡ (0, 0), the result follows from Theorem 2.5 and from an unique continuation principle. This principle is proved in [START_REF] Colton | Inverse acoustic and electromagnetric Scattering Theory[END_REF] for smooth solution (in C 2 ) but is actually available for generalized solution (in H 2 loc ).

2.2.2. Operators F ± Suppose that the incident angle θ ∈ (0, π) is fixed and consider the amplitude A + (θ, φ) (resp. A -(θ, φ)) which is the far field pattern when the observation point is in the upper half space Ω + i.e φ ∈ [0, π] := s + (resp. in the lower half space Ω -, i.e φ ∈ [-π, 0] = s -), (see Definition 2.3). Note that in the geophysical exploration it is more reasonable to consider the observation angle in s + . In this section we explicit the dependence of A ± (θ, φ) as a function of the parametrization f of γ. Indeed we obtain a non linear mapping

F ± : f -→ g such that g(φ) = a -a F ± (φ, y 1 , f (y 1 ), f (y 1 ))dy 1 , φ ∈ s ± .
Observation angle in (0, π)

Recall that for φ ∈]0, π[, A + (θ, φ) = γ ∂u 0 ∂n e -ik + xy + [u 0 ] ∂e -ik + xy ∂n ds(y) (2.10) + S r (φ) γ ∂u 0 ∂n e ik + xy + [u 0 ] ∂e ik + xy ∂n ds(y), where S r (φ) = α s -β s α s + β s , α s = k + sin φ, β s = (k -) 2 -(k + ) 2 cos 2 φ,
x = (cos φ, sin φ) and x = (-cos φ, sin φ).

The jumps of u 0 and ∂u 0 ∂n are given by:

[u 0 ] = u inc + u r -u t = exp[-ik + (y 1 cos θ + y 2 sin θ)] + R(θ) exp[-ik + (y 1 cos θ -y 2 sin θ)] -T (θ) exp[-i(k + y 1 cos θ + k -y 2 sin χ)].
Using the rule:

∂g(y) ∂n ds(y) = [ ∂g(y) ∂y 1 (-f (y 1 )) + ∂g(y) ∂y 2 ]dy 1 where y 2 = f (y 1 ), -a < y 1 < a,
we obtain

∂u 0 ∂n = ∂[u 0 ] ∂n = -f (y 1 )( ∂(u r + u inc ) ∂y 1 - ∂u t ∂y 1 ) + ( ∂(u inc + u r ) ∂y 2 - ∂u t ∂y 2 ).
Then The equation (2.10) can be written:

∂u 0 ∂n = ik + f (y 1 ) cos θ(u inc + u r -u t ) -ik + sin θ(u inc -u r ) + ik -sin
A + (θ, φ) = a -a ik + (cos θf (y 1 ) + cos φf (y 1 ) -sin φ)(u inc + u r -u t )(2.11) -ik + sin θ(u inc -u r ) + ik -sin χu t e -ik + xy dy 1 + S r (φ) a -a ik + (cos θf (y 1 ) + cos φf (y 1 ) + sin φ)(u inc + u r -u t ) -ik + sin θ(u inc -u r ) + ik -sin χu t e ik + xy dy 1
which is of the form:

A + (θ, φ) = a -a F + (θ, φ, y 1 , f (y 1 ), f (y 1 ))dy 1 , (2.12) 
with

F + (θ, φ, y 1 , f (y 1 ), f (y 1 )) = e -b 1 y 1 (a 1 +b 1 )(u inc +u r -u t )f (y 1 )-a 2 (u inc -u r )+c 1 u t (e -b 2 f (y 1 ) +S r (φ)e b 2 f (y 1 ) ) -b 2 (u inc + u r -u t )(e -b 2 f (y 1 ) -S r (φ)e b 2 f (y 1 ) ) ,
where

a 1 = ik + cos θ, a 2 = ik + sin θ, (2.13 
)

b 1 = ik + cos φ, b 2 = ik + sin φ, c 1 = ik -sin χ.
More precisely we obtain the expression

F + (θ, φ, y 1 , f (y 1 ), f (y 1 ) = F + 1 (θ, φ, y 1 , f (y 1 ), f (y 1 )) (2.14) + S r (φ)F + 2 (θ, φ, y 1 , f (y 1 ), f (y 1 )
) where

F + 1 (θ, φ, y 1 , f (y 1 ), f (y 1 )) = (A 1 f (y 1 ) + B 1 ) exp (-A 1 y 1 -B 1 f (y 1 )) + R(θ)(A 1 f (y 1 ) + B 2 ) exp (A 1 y 1 + B 2 f (y 1 )) + T (θ)(-A 1 f (y 1 ) + B 3 ) exp (-A 1 y 1 -B 3 f (y 1 )), F + 2 (θ, φ, y 1 , f (y 1 ), f (y 1 )) = (A 1 f (y 1 ) -B 2 ) exp (A 2 y 1 -B 1 f (y 1 )) + R(θ)(A 1 f (y 1 ) + B 1 ) exp (A 2 y 1 + B 2 f (y 1 )) + T (θ)(-A 1 f (y 1 ) + B 4 ) exp (A 1 y 1 -B 3 f (y 1 )), A 1 = a 1 + b 1 , A 2 = -a 1 + b 1 , B 1 = a 2 + b 2 , B 2 = a 2 -b 2 , (2.15) 
B 3 = c 1 + b 2 , B 4 = c 1 -b 2 .
Observation angle in (-π, 0)

For φ ∈] -π, 0[ we have

A -(θ, φ) = S t (φ) γ ∂u 0 ∂n e ixy + [u 0 ] ∂e ixy ∂n ds(y), (2.16) 
where

S t (φ) = 2k -sin φ k -sin φ -(k + ) 2 -(k -) 2 cos 2 φ , x = (-k -cos φ, (k + ) 2 -(k -) 2 cos 2 φ).
As in the previous case the integral equation (2.16) take the form:

u - ∞ (θ, φ) = a -a F -(θ, φ, y 1 , f (y 1 ), f (y 1 ))dy 1 with F -(θ, φ, y 1 , f (y 1 ), f (y 1 )) = S t (φ) f (y 1 )(a 1 + a 3 ) + i (k + ) 2 + a 2 3 (u inc + u r -u t ) -a 2 (u inc -u r ) + c 1 u t e -a 3 y 1 +i √ (k + ) 2 +a 2 3 f (y 1 ) .
Which can be written as

F -(θ, φ, y 1 , f (y 1 ), f (y 1 )) = S(φ) [(C 1 f (y 1 ) + C 2 )R(θ) exp(-C 1 y 1 + C 2 f (y 1 ))+ (-C 1 f (y 1 ) + C 4 )T (θ) exp(-C 1 y 1 -C 4 f (y 1 ))+ (C 1 f (y 1 ) + C 3 ) exp(-C 1 y 1 + C 3 f (y 1 ))] ,
with

a 3 = ik -cos φ, C 1 = a 1 + a 3 , C 2 = a 2 + (k + ) 2 + a 2 3 , C 3 = -a 2 + (k + ) 2 + a 2 3 , C 4 = c 1 -(k + ) 2 + a 2 3 .

Perturbed Green function G(x, y)

In this section, we consider the Green function G(x, y) of the perturbed layered medium. G(x, y) satisfies ∆G(x, y)

+ k 2 (x)G(x, y) = δ(x -y) in D (R 2
) and the radiation condition. We can write G(x, y) = G(x, y) + G (s) (x, y) where G (s) solves the transmission problem (2.5) with u 0 (x) = G(x, y). Such a function exists, is unique, and is represented by the potentials (see (2.6))

G (s) (x, y) = γ G(x, z) ∂G(z, y) ∂n(z) + ∂G(x, z) ∂n(z) [G(z, y)] ds(z), x ∈ R 2 \γ.(3.1)
We point out that G(z, y) is defined as follows, for

y ∈ Ω ± G(z, y) = G 0 (k ± ; z, y) + G r (z, y) if z ∈ Ω ± , G t (z, y) if z ∈ Ω ± .
In this last definition we consider the analytic continuation of G r and G t in the whole space R 2 (see Appendix A1).

Far-field

Using the asymptotic formulas of G r (x, y) and G t (x, y)), when |y| → +∞, and the representation (3.1) we obtain the asymptotic formulas Proposition 3.1 Suppose that x 2 > 0 and y = r(cos θ, sin θ). Then we have for r → +∞:

1-if θ ∈ (0, π), G (s) (x, y) = c e ik + r √ k + r (u(x, -θ) + u(x, θ)) + O( 1 r ), (c = e iπ/4 2 √ 2π ), 2-if θ ∈ (-π, 0), G (s) (x, y) = c e ik -r √ k -r (u(x, -θ) + u(x, θ)) + O( 1 r ),
where u(x, θ) is the scattered wave corresponding to the incident wave u inc (θ) = e -ik + (x 1 cos θ+x 2 sin θ) for θ ∈ (0, π) (respectively u inc (θ) = e -ik -(x 1 cos θ+x 2 sin θ) for θ ∈ (-π, 0)).

Theses relations are similar to the mixed reciprocity relations well known in the obstacle problem [START_REF] Colton | Inverse acoustic and electromagnetric Scattering Theory[END_REF].

Singularities

The aim in this section is to recover the singularities of G (s) (x, y) when x and y are close to the interface γ. For this we begin with by the following lemma.

Lemma 3.2 Recall that G 0 (k, y, z) := i 4 H

(1) 0 (k|y -z|) is the fundamental solution of the Helmholtz equation in R 2 . We have the following asymptotic expansions as |y -z| → 0:

(1) G 0 (k, y, z) = -1 2π (log |y-z|+C)+O(|y-z| 2 log |y-z|), C = C E +log k 2 -i π 2 , C E 0.5772, (2) 
∂G 0 (k, y, z) ∂z j = -1 2π Proof:

y j -z j |y -z| 2 + O(|y -z| log |y -z|), (3) 
• Items ( 1) and ( 2) follow from the asymptotic expansion of Hankel functions ( [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]): Assume that t ∈ γ, let B(t) = B(t, δ) be a small ball centered at the point t, y = t + n(t)y 2 with 0 < y 2 < δ and x = y. We introduce a local coordinate system (z 1 , z 2 ) in B(t) with the origin at t and such that z 2 = 0 is tangent to γ. In this system x = y = (0, y 2 ). We denote γ δ = γ ∩ B(t, δ). We assume that γ is C 3 , then γ δ has the parametrization

H (1) 0 (t) = 2i π (log t + C E ) + 1 + O(t 2 log t), d dt H (1) 0 (t) = -H (1) 1 (t) 
z 2 = cz 2 1 + O(z 3 1 ), |z 1 | < δ 1 ≤ δ. Proposition 3.
3 With the previous notations we have following asymptotic expansion as y 2 → 0:

G (s) (y, y) = - 1 2π 2 log 2 (y 2 ) + O(log(y 2 )) Proof:
Since G r (x, y) and G t (x, y) are regular (see Appendix A1), from (3.1) we have

G (s) (y, y) = 2 γ δ G 0 (k + , y, z) ∂G 0 (k + , y, z) ∂n(z) ds(z) + O(1),
uniformly for 0 < y 2 < δ. Using the asymptotic formulas of Lemma 3.2, it follows when y 2 → 0 that

G (s) (y, y) = 1 2π 2 γ δ C |z -y| + log |z -y| |z -y| ds(z) + O(1).
If γ is C 3 , we have proved in the appendix A2 that

γ δ ds(z) |z -y| = O(log(y 2 )), γ δ log |z -y| |z -y| ds(z) = -log 2 (y 2 ) + O(log(y 2 )).
which ends the proof.

Inverse Problem

The inverse problem we consider is the following: Given the wave numbers k + and k -(k + = k -) and the far field pattern u ∞ (θ, φ) := (A + (θ, φ), A -(θ, φ)) for all θ, φ ∈ [-π, π], determine the interface γ.

Uniqueness theorem

We first introduce the following notations. For two functions

f j ∈ C(R) ∩ C 2 ([-a, a]),
with supp f j ⊂ [-a, a], j = 1, 2, let us consider the arcs γ j := {(x 1 , f j (x 1 )), -a < x 1 < a} and the domains Ω

+ j = {(x 1 , x 2 ) ∈ R 2 : x 2 > f j (x 1 )} and Ω - j = {(x 1 , x 2 ) ∈ R 2 : x 2 < f j (x 1 )}.
We prove the following uniqueness result. ∞ (θ, φ) corresponding to γ 1 and γ 2 respectively, coincide for all θ, φ ∈ [-π, π], then γ 1 = γ 2 .

Proof:

The proof will be done in three steps.

Step 1.

Denote D = Ω + 1 ∩ Ω + 2 = {(x 1 , x 2 ); x 2 > max(f 1 (x 1 ), f 2 (x 1 ))}.
For an incident plane wave u inc (which depends on θ) the scattered waves u 1 and u 2 associated to γ 1 and γ 2 respectively coincide by Theorem 2.6.

Step 2. We now show that scattered waves u 1 (x, y) and u 2 (x, y) also coincide for an incident wave of the form u inc (x, y) = G 0 (k + , x, y) with y ∈ D. In fact u j (x, y) = G (s) j (x, y) is the perturbed Green function corresponding to γ j (see section 3.1), then we conclude by combining step 1 with the reciprocity Theorem 3.1.

Step 3. Let us now assume that γ 1 = γ 2 . We can find a point t ∈ γ 1 and δ > 0 such that B(t, δ) ∩ Ω - 2 = ∅. For p ≥ 1, we consider the sequence y p = t + 1 p n(t) which lies in D for all p ≥ 1. Let u p 1 and u p 2 be the solutions of the scattering problem (2.5) corresponding to γ 1 and γ 2 respectively, with the data g p j = -[G(., y p )] γ j and h p j = -[ ∂G(., y p ) ∂n ] γ j .

From step 2, u p 1 (x) = u p 2 (x) for x ∈ D. When p → +∞ we have by Proposition 3.3

u p 1 (y p ) -1 2π 2 log 2 (p) → -∞.
This is a contradiction with u p 1 (y p ) = u p 2 (y p ) for all p ≥ 1. Indeed the sequence u p 2 converges uniformly in H 2 (B(t, δ 2 )) to u 2 (t, t), since B(t, δ) ∩ Ω - 2 = ∅ and the boundary data (g p 2 , h p 2 ) converge in H 1 2 (γ 2 ) × H-1 2 (γ 2 ). Hence γ 1 = γ 2 and the proof is completed.

Remark 4.2 This method uses the fact that the scattered wave becomes singular at the boundary as the source point approach a boundary point. It has been employed by Kirsch and Kress for the transmission problem [START_REF] Kirsch | Uniqueness in inverse scattering problems[END_REF] and Hähner for isotropic medium (see [START_REF] Cakoni | Qualitative Methods in Inverse Scattering Theory[END_REF][START_REF] Colton | Using fundamental solutions in inverse problems[END_REF] and references therein). Our proof is based on the blow up of the scattered part of the Green function (Proposition 3.3) and the reciprocity relation (Proposition 3.1). So we have generalized the technique of point source (already used for bounded obstacle) to unbounded obstacle (namely Ω -).

Reconstruction algorithm

In this section, we use for simplicity the notation (F, u ∞ ) instead of (F + , u + ∞ ).

Iterative method

To reconstruct the profile γ from the far field measurement u ∞ (θ, φ), φ ∈ (0, π), we solve the non-linear operator equation

F(f ) = u ∞ , (4.2) 
where F : D(F) ⊂ X → Y operates between the Hilbert spaces X and Y and is defined by A + (θ, φ) for f ∈ D(F) (see (2.12)). In our application we choose D(F) = H 2 0 (-a, a), X = H 1 0 (-a, a) and Y = L 2 (]0, π[). To solve (4.2) we use a Newton-type algorithm: in each iteration step we solve the linear equation

F(f n ) + F (f n )h n = u ∞ (4.3) 
and then update f n by f n+1 = f n + h n with an initial guess f 0 ∈ D(F). Since K n := F (f n ), the Fréchet derivative of F, is a compact operator (see remark 4.4), then (4.3) is ill-posed, the solution does not depend continuously on the given data. So, if we have perturbed data

u δ ∞ instead of u ∞ in (4.2) satisfying u δ ∞ -u ∞ ≤ δ,
then we need to regularize the problem in order to compute approximate solutions f δ that converge to some solution of (4.2) as δ → 0. Tikhonov regularization is certainly the most well-known regularization method but in our case we propose a better method to the linear system (4.3). As inner iteration we apply a few steps of the conjugate gradient method (CG) to the normal equation associated with (4.3):

K * n K n h n = K * n (F(f n ) -u ∞ ). (4.4) 
The Matlab function lsqr from the Regularization Tools program package by Hansen (see [START_REF] Hansen | Regularisation tools. A Matlab package for analysis and solution for discrete illposed problems[END_REF]) implements the CG algorithm applied to normal equation (4.4). The outer iteration (4.3) is terminated at the first index n(δ) for which the residual in less than the noise level δ, that is,

F(f n(δ) ) -u δ ∞ ) ≤ τ δ,
with some parameter τ > 1.

Hanke (see [START_REF] Hanke | Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems[END_REF]) has proved the convergence of the CG-method under the following assumption on the nonlinearity of F:

F(f 2 ) -F(f 1 ) -F (f 1 )(f 2 -f 1 ) ≤ C f 2 -f 1 F(f 2 ) -F(f 1 ) .
Unfortunately, this condition is not yet verified in our situation.

Fréchet derivative

From now, we assume that the incident angle θ is fixed and the observation angle φ ∈ (0, π). The equation (2.12) can be written

F(f )(φ) = u ∞ (φ), φ ∈]0, π[,
where the non linear integral operator is given by:

F(f )(φ) = a -a F + (θ, φ, y 1 , f (y 1 ), f (y 1 ))dy 1 , φ ∈]0, π[, with F + (θ, φ, y 1 , f (y 1 ), f (y 1 ) = F + 1 (θ, φ, y 1 , f (y 1 ), f (y 1 )) + S r (φ)F + 2 (θ, φ, y 1 , f (y 1 ), f (y 1 ))
and

F + 1 (θ, φ, y 1 , f (y 1 ), f (y 1 )) = (A 1 f (y 1 ) + B 1 ) exp (-A 1 y 1 -B 1 f (y 1 )) + R(θ)(A 1 f (y 1 ) + B 2 ) exp (A 1 y 1 + B 2 f (y 1 )) + T (θ)(-A 1 f (y 1 ) + B 3 ) exp (-A 1 y 1 -B 3 f (y 1 )), F + 2 (θ, φ, y 1 , f (y 1 ), f (y 1 )) = (A 1 f (y 1 ) -B 2 ) exp (A 2 y 1 -B 1 f (y 1 )) + R(θ)(A 1 f (y 1 ) + B 1 ) exp (A 2 y 1 + B 2 f (y 1 )) + T (θ)(-A 1 f (y 1 ) + B 4 ) exp (A 1 y 1 -B 3 f (y 1 )).
The coefficients are defined in (2.13) and (2.15).

Proposition 4.3

We assume that f 0 ∈ H 2 0 (-a, a). The Fréchet derivative K 0 = F (f 0 ) is the linear integral operator K 0 : H 1 0 (-a, a) → L 2 (]0, π[) defined by:

K 0 h(φ) = a -a
k(φ, y 1 )h(y 1 )dy 1 with the kernel k(φ, y 1 ) = F f -F y 1 f -f 0 (y 1 )F f f at the point (φ, y 1 , f 0 (y 1 ), f 0 (y 1 ))

Proof:

The mean value theorem gives

F (φ, y 1 , f 0 + h, f 0 + h ) = F (φ, y 1 , f 0 , f 0 ) + hF f + h F f + o(|h| + |h |).
This implies

F(f 0 + h) = F(f 0 ) + a -a (hF f + h F f )dy 1 + o( h L 2 + h L 2 ) = F(f 0 ) + a -a (hF f -h dF f dy 1 )dy 1 + o( h H 1 ) = F(f 0 ) + a -a (F f -F f f f 0 -F y 1 f -f 0 F f f )hdy 1 + o( h H 1 ) = F(f 0 ) + a -a (F f -F f f f 0 -F y 1 f )hdy 1 + o( h H 1 ).
Note that F f f = 0 since the mapping f → F is linear.

More precisely, the kernel k(φ, y 1 ) is given by the following expression:

k(φ, y 1 ) = k 1 (φ, y 1 ) + S r (φ)k 2 (φ, y 1 )
with

k 1 (φ, y 1 ) = K 1 exp(-A 1 y 1 -B 1 f 0 (y 1 )) + R(θ)K 2 exp(A 1 y 1 + B 2 f 0 (y 1 )) +T (θ)K 3 exp(-A 1 y 1 -B 3 f 0 (y 1 )), k 2 (φ, y 1 ) = K 4 exp(A 2 y 1 -B 1 f 0 (y 1 )) + T (θ)K 5 exp(A 1 y 1 -B 3 f 0 (y 1 ))
and

K 1 = -B 2 1 + A 2 1 = -2(k + ) 2 cos(θ + φ)[cos(θ -φ) + 1], K 2 = B 2 2 -A 2 1 = 2(k + ) 2 cos(θ -φ)[cos(θ + φ) + 1], K 3 = -B 2 3 -A 2 1 = (k + ) 2 + (k -) 2 + 2(k + ) 2 cos θ cos φ + 2k + sin φ (k -) 2 -(k + ) 2 cos 2 θ, K 4 = -B 1 B 2 -A 1 A 2 = 2(k + ) 2 sin(θ -φ) sin(θ + φ), K 5 = -B 3 B 4 + A 2 1 = k + (sin θ + sin φ)(k -sin χ + k + sin φ) -(k + ) 2 (cos θ + cos φ) 2 , R(θ) = a 2 -c 1 a 2 + c 1 , T (θ) = 2a 2 a 2 + c 1 , S r (φ) = -ib 2 -(k -) 2 + b 2 1 -ib 2 + (k -) 2 + b 2 1 .
The coefficients A j and B j are defined in (2.13) and (2.15).

Remark 4.4

1) If f 0 ∈ H 2 0 (-a, a), K 0 is in fact a bounded operator in L 2 (]0, π[) and is compact (the kernel k(φ, y 1 ) is a bounded function). 2) If f 0 ∈ H 1 0 (-a, a) then K 0 : H 1 0 (-a, a) → L 2 (]0, π[
) is bounded (but not compact) and given by:

K 0 h = a -a (h(y 1 )F f (φ, y 1 , f 0 , f 0 ) + h (y 1 )F f (φ, y 1 , f 0 , f 0 ))dy 1 .

Numerical Results

In this last section, we give some numerical tests of the proposed method. These numerical results allow us to underline the effects of some parameters, such as the incident angle, the geometry or the noise, on the reconstruction. The reconstruction is obtained from the far field pattern for a single illumination by a plane wave at a fixed frequency. In all the examples we determine the shape of a one-dimensional interface between two half-spaces. The method converges rapidly and yields highly resolved reconstructions after 20 iterations. In the figure 2 we present the reconstruction of rough interface between two dielectric half-spaces and in the figure 3-4-5 the reconstruction of different underwater profiles. The examples are presented for incidence directions θ = π/2 and θ = π/6 without noise. Note that the reconstruction is not sensitive to noise of about 5%. Obviously, the best reconstruction is obtained for the case of normal incidence. In all examples we used N = 160 points in the discretization of the parametrization f . The synthetic data for the far field u ∞ (θ, φ) were obtained via trapezoidal quadrature rule with N collocation points φ j = jπ N , j = 1 to N . The CG-algorithm is stopped after three steps. We note that if we continue the process the precision is deteriorated. This phenomena is pointed out in the literature concerning the regularization of the nonlinear ill-posed problems ( [START_REF] Hanke | Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems[END_REF][START_REF] Hanke | Convergence analysis of the Landweber iteration for nonlinear ill-posed problems[END_REF]) and the stopping rule in the inner or outer iterations is called the generalized discrepancy principle.

In conclusion, the numerical results show accurate reconstruction when the size of the roughness H is less than 0.3λ where λ is the wavelength. The algorithm is stable with respect to data with a noise of about 5%. For H ≥ 0.5λ the construction starts to deteriorate (see figure 5). Indeed, for this range of frequencies, the nonlinear equation if severely ill-posed in the sense that the linearized equation is ill-conditioned. The performance of the conjugate gradient method can be improved by the use of adequate pre-conditioner ( [START_REF] Calvetti | Invertible smoothing preconditioners for linear discrete ill-posed problems[END_REF]), hence further research is required to expect better reconstruction for such a profile. We refer to [START_REF] Desanto | Scalar Wave Theory[END_REF] for the existence and the uniqueness of G. If y 2 > 0, by construction, G is decomposed into G(x, y) = G 0 (k + , x, y) + G r (x, y) for x 2 > 0 and G(x, y) = G t (x, y) for x 2 < 0, where G r and G t solve Helmholtz equation in the whole space R 2 and satisfy the transmission conditions

G r -G t = -[G 0 ] , ∂ ∂x 2 (G r -G t )(x, y) = - ∂G 0 (x, y) ∂x 2 on x 2 = 0.
Then G r and G t are analytic functions in R 2 . However G is (globally) in C 1 (R 2 ) by elliptic regularity.

A2. Asymptotic expansion

We suppose that γ is C 3 and put γ δ = γ ∩ B(0, δ), then γ δ = {(t, ct 2 + O(t 3 )), |t| ≤ δ}.

Let y = (0, η), with η > 0. Our aim is to estimate the following integrals when η → 0 A(η)

0 du √ 1 + u 2 + 1 √ 1 -2cη A(η) 0 log √ 1 + u 2 √ 1 + u 2 du,
where

A(η) = δ √ 1 -2cη η δ η .
We obtain when η → 0 
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 1 Figure 1. Geometry of the problem

  If γ ∈ C 2 and z ∈ γ , then ∂G 0 (k, y, z) ∂n(z) = -1 2π|y -z| + O(|y -z| log |y -z|).
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 41 If the far field pattern u (1) ∞ (θ, φ) and u (2)

  (i) Reconstruction of dielectric profile with the parameters λ = 0.632, k + = 2π λ , k -= 1.5k + for incidence angles θ = π 2 (left) and θ = π 6 (right). Here we have an interface between air and glass with trapezoidal shape (depth H = 0.1µm , base b = 4µm).
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 2 Figure 2 (ii) Reconstruction of underwater profiles with the parameters k + = 4, k -= 1.5k + , H = 0.3 and θ = π 2 . On the right, we plot the rate of the convergence.
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 4 Figure 4(iv) Reconstruction of underwater profiles with the parameters k + = 4, k -= 1.5k + , H = 0.5 and θ = π 2 . On the right, we plot the rate of the convergence.

2 ±(y 2 2 = 0 on x 2

 2222 Figure 5

I 1

 1 (η) = γ ds(z) |y -z| , I 2 (η) = γ log |y -z| |y -z| ds(z).From |y -z| 2 = η 2 + (1 -2cη)t 2 + O(t 3 ) = ρ 2 (t, η) + O(t 3 ),we deduce 1 |y -z| = 1 ρ + O(1), log |y -z| = log ρ + O(t) and log |y -z| |y -

  Finally we get I 1 (η) = -2 log η + O(1) and I 2 (η) = -log 2 η + O(1).
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