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Abstract

In this paper, we propose a model for the incorporation of voicing information into a

speech recognition system in noisy environments. The employed voicing information

is estimated by a novel method that can provide this information for each filter-

bank channel and does not require information about the fundamental frequency.

The voicing information is modelled by employing the Bernoulli distribution. The

voicing model is obtained for each HMM state and mixture by a Viterbi-style train-

ing procedure. The proposed voicing incorporation is evaluated both within a stan-

dard model and two other models that had compensated for the noise effect, the

missing-feature and the multi-conditional training model. Experiments are first per-

formed on noisy speech data from the Aurora 2 database. Significant performance

improvements are achieved when the voicing information is incorporated within

the standard model as well as the noise-compensated models. The employment of

voicing information is also demonstrated on a phoneme recognition task on the

noise-corrupted TIMIT database and considerable improvements are observed.
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1 Introduction

Speech sounds are produced by passing a source-signal through a vocal-tract

filter (Fant, 1960), i.e., different speech sounds may be produced when a given

vocal-tract filter is excited by different source-signals. Thus, the representa-

tion and modelling of speech signals should include information about both

the vocal-tract filter and the source-signal. The characteristics of the vocal-

tract filter are reflected by the envelope of a short-time spectrum. As the

source-signal may in general consist of a mixture of white noise and train

pulses with a period corresponding to the fundamental frequency (F0), the

information about the source-signal may be characterised by the voicing char-

acter (i.e., voiced/unvoiced) of individual frequency-regions and the value of

the fundamental frequency.

Current frame-based speech representations for speech pattern processing –

with the mel-frequency cepstral coefficients (MFCCs) (Davis and Mermel-

stein, 1980) and the frequency-filtered logarithm filter-bank energies (Nadeu

et al., 2001) being among the most successful – typically aim at representing

the characteristics of the vocal-tract filter. The use of voicing information in

∗ Corresponding author.

Email addresses: p.jancovic@bham.ac.uk (Peter Jančovič),
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speech recognition was suggested in the 1970s (Rabiner and Sambur, 1976).

However, until recently this has mainly been for speech end-point detection.

The employment of the fundamental frequency in speech recognition may be of

interest especially for tonal languages and this has recently been investigated

in, e.g., Huang and Seide (2000). The incorporation of the voicing-information

in a speech recognition system is of concern in this paper.

Recently there have been several works investigating the incorporation of the

voicing information into speech recognition. The authors in (Thomson and

Chengalvarayan, 2002) (Ljolje, 2002) (Kitaoka et al., 2002) (Zolnay et al.,

2003) (Graciarena et al., 2004) have investigated the use of various measures

for estimating the level of voicing of an entire speech frame and have appended

these voicing features into a standard spectral-envelope feature representation.

The voicing features employed were obtained based on an autocorrelation-

function (Thomson and Chengalvarayan, 2002) (Zolnay et al., 2003) (Gracia-

rena et al., 2004), energy of the residual error signal from the linear prediction

analysis (Kitaoka et al., 2002), a harmonic product spectrum (Zolnay et al.,

2003), and an entropy of high-order cepstrum (Graciarena et al., 2004). In

addition to the voicing features, the information on F0 was employed in both

Ljolje (2002) and Kitaoka et al. (2002). In Thomson and Chengalvarayan

(2002), the effect of including the voicing features under various training pro-

cedures was also studied. Experimental evaluations in the above mentioned

works were presented only on a speech signal that was not corrupted by addi-

tional noise and mainly modest improvements have been reported. Beaufays

et al. (2003) built a soft speech/non-speech detector by employing several fea-

tures, including a frame-level voicing, and used the output of the detector

to penalise speech/non-speech confusions between the models and the signal.
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In Jackson et al. (2003), the voicing information was included by decom-

posing the speech signal into simultaneous periodic and aperiodic streams

and weighting the contribution of each stream during the recognition. This

method requires knowledge about the fundamental frequency. Significant im-

provements on noisy speech recognition have been demonstrated on the Au-

rora 2 connected-digit database, however, these results were achieved by using

the F0 estimated from clean speech. Similar decomposition approach but em-

ploying comb filters independently designed in each sub-band was presented

in Ishizuka et al. (2006) with recognition accuracy improvements reported

for the Aurora 2J database when using the standard model trained on clean

speech. In Jančovič and Ming (2002) an HMM model was estimated based

only on high-energy frames, which effectively correspond to the voiced speech.

This was observed to improve the performance on a digit recognition task in

noisy conditions. O’Shaughnessy and Tolba (1999) divided the phoneme-based

models of speech into a subset of voiced and unvoiced models and used this

division to restrict the Viterbi search during the recognition. The effect of

such division of models itself was not presented. Niyogi and Ramesh (2003)

employed the voicing onset time in a two-pass HMM-based speech recognition

system to reclassify the segments recognised as stop consonants.

In this paper we present a novel model for the incorporation of the voicing

information into an HMM-based automatic speech recognition (ASR) system

in noisy conditions. This paper extends our preliminary work presented in

Jančovič and Köküer (2007b). The voicing information employed is estimated

by a novel method that can provide this information for each filter-bank chan-

nel, while requiring no information about the F0. The voicing information is

incorporated within an HMM-based statistical framework in the back-end of
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the ASR system. The Bernoulli distribution is employed to model the voicing

information. The parameters of the voicing model associated with each mix-

ture at each HMM state are estimated by a separate Viterbi-style training pro-

cedure (without altering the trained HMMs). The incorporation of the voicing-

probability serves as a penalty during recognition for those mixtures/states

whose voicing information does not correspond to the voicing information of

the signal. To deal with the effect of noise on voicing, marginalisation of the

voicing information of unvoiced features during recognition is proposed. The

effect of employing the voicing information for an entire frame and for each

filter-bank channel is demonstrated. Appending the voicing information into

the feature vector is also undertaken and compared to the proposed model.

The incorporation of the voicing information is evaluated in a standard model

trained on clean speech and in models that compensate for the effect of the

noise, including the missing-feature model (e.g., Cooke et al., 2001), and the

multi-conditional training model. Experiments are performed in various noisy

conditions and SNRs on connected-digit recognition on the Aurora 2 database

and on the phoneme recognition on the TIMIT database. Experimental results

show significant improvements in recognition performance in noisy conditions

achieved by models with incorporated voicing information.

The paper is set out as follows: The method for estimation of the voicing in-

formation is presented in Section 2. The proposed incorporation of the voicing

information into an HMM-based ASR system is described in Section 3. Exper-

imental evaluations on connected-digit recognition and phoneme recognition

are presented in Section 4, and conclusions are presented in Section 5.
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2 Estimating voicing information of filter-bank channels

Estimation of voicing information of a speech signal for each filter-bank chan-

nel is performed by an algorithm we introduced previously in (Jančovič and

Köküer, 2007a), where various analyses are also presented. This algorithm

exploits the effect of short-time processing, due to which the shape of the

short-time magnitude spectrum of voiced speech around each harmonic fre-

quency should follow approximately the shape of the magnitude spectrum

of the frame-analysis window. Note that it does not require any information

about the fundamental frequency. The steps of the method are as follows:

1) Short-time magnitude-spectrum calculation: A frame of a time-domain signal

is weighted by a frame-analysis window function, expanded by zeros and the

FFT is applied to provide a signal short-time magnitude-spectrum, denoted

by S(k). The frame length of 256 samples (corresponding to 32 ms) and FFT

of 512 samples was used here.

2) Voicing-distance calculation for spectral peaks: For each peak of the sig-

nal short-time magnitude-spectrum, a distance, referred to as voicing-distance

vd(k), between the spectrum around the peak and magnitude-spectrum of the

frame-analysis window W (k) is calculated as

vd(kp) =

[

1

2M + 1

M
∑

m=−M

(

|S(kp + m)|

|S(kp)|
−

|W (m)|

|W (0)|

)2
]1/2

(1)

where kp is the frequency-index of a spectral peak and M determines the

number of components of the spectrum at each side around the peak to be

compared. The Hamming window was used and the parameter M was set to

2. The voicing-distance values for the frequency points other than peaks were
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obtained by an interpolation between the voicing-distance values of adjacent

peaks, as described in (Jančovič and Köküer, 2007a).

3) Voicing-distance calculation for filter-bank channels: The voicing-distance

for each filter-bank channel is calculated as a weighted average of the voicing-

distances within the channel, reflecting the calculation of filter-bank energies

that are used to derive features for recognition, i.e.,:

vdfb(b) =
1

X(b)
·

kb+Nb−1
∑

k=kb

vd(k) · Gb(k) · |S(k)|2 (2)

where Gb(k) is the frequency-response of the filter-bank channel b, and kb

and Nb are the lowest frequency-component and number of components of

the frequency response, respectively. The X(b) =
∑kb+Nb−1

k=kb
Gb(k)|S(k)|2, i.e.,

the overall filter-bank energy value. The filters Gb(k) here correspond to the

Mel-spaced filter-bank analysis, which was also used in the feature extraction

(see Section 4.1.2).

4) Postprocessing of the voicing-distances: The voicing-distances obtained from

Eq. 1 (after the interpolation) and Eq. 2 were filtered by 2D median filters

in order to eliminate accidental errors. Median filters of size 5x9 and 3x3

were used, respectively, where the first number corresponds to the number of

frames.

The voicing information of a filter-bank channel could be directly expressed

by the voicing-distance value. However, in this paper, for the simplicity of

its incorporation, a binary valued voicing information was used. A filter-bank

channel b is considered as voiced, i.e., v(b) = 1, if the corresponding voicing-

distance vdfb(b) is below a given threshold otherwise it is considered unvoiced,

i.e., v(b) = 0. The value of the threshold provides a trade-off between the
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amount of false-acceptance and false-rejection errors. The threshold range from

0.18 to 0.21 was shown to provide false-acceptance below 5% (Jančovič and

Köküer, 2007a). This range provided similar recognition accuracy performance

in experiments here and the presented results are obtained with the threshold

value of 0.21. It should be noted that in the experimental evaluation presented

in Section 4, we also used the voicing-information about an entire frame, where

a frame is assigned as voiced if there are at least three filter-bank channels

detected as voiced.

Figure 1 depicts examples of spectrograms of clean and noisy speech and the

corresponding voicing distances for filter-bank channels. It can be seen that

the harmonic regions obtain low voicing distance values.

Frame−index

F
re

qu
en

cy
−

in
de

x

100 200 300 400

50

100

150

200

250

F
ilt

er
−

ba
nk

 c
ha

nn
el

Frame−index
100 200 300 400

5

10

15

20

0.1

0.2

0.3

0.4

(a)

Frame−index

F
re

qu
en

cy
−

in
de

x

100 200 300 400

50

100

150

200

250

F
ilt

er
−

ba
nk

 c
ha

nn
el

Frame−index
100 200 300 400

5

10

15

20

0.1

0.2

0.3

(b)

Fig. 1. Spectrogram (left) and corresponding voicing distances of filter-bank channels

(right) of speech utterance which is clean (a) and corrupted by White noise at 15dB

(b).
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3 Incorporating the voicing information into an HMM-based ASR

system

This section presents the incorporation of the voicing information, estimated

in Section 2, within an HMM-based speech recognition system. The aim of

the incorporation of the voicing information is to penalise during the recog-

nition those HMM states whose voicing model is in disagreement with the

voicing information of the signal being recognised. The following sections give

detailed descriptions of the estimation of voicing models, the incorporation of

the voicing information and control of its effect during recognition, and the

demonstration of the effect of the incorporated voicing information during the

state-time recognition search.

3.1 Estimating the voicing models for HMM states

Let v = (v(1), . . . , v(B)) denote the voicing information vector at a given

frame, where v(b) is the voicing information of the channel b and B is the

number of channels. The voicing-probability P (v|l, s) for each HMM state s

and mixture l is modelled using a multivariate Bernoulli distribution as

P (v|l, s) =
B
∏

b=1

µ
v(b)
b,l,s(1 − µb,l,s)

1−v(b). (3)

The parameter µb,l,s of the distribution can be estimated using a Baum-Welch

or Viterbi training procedure. The latter was used in this paper. On the train-

ing data-set, a separate Viterbi-style training procedure was performed after

the HMMs have been trained using spectral features, i.e., the trained HMMs

are not altered. The following gives details of the voicing model estimation.
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Given a speech utterance, for each frame t we have the spectral-feature vec-

tor yt and voicing vector vt, resulting a sequence of {(y1,v1), . . . , (yT ,vT )}.

The Viterbi algorithm is then used to obtain the state-time alignment of the

sequence of feature vectors {y1, . . . ,yT} on the HMMs corresponding to the

speech utterance. This provides an association of each feature vector yt to

some HMM state s. The posterior probability that the mixture-component l

(at state s) have generated the feature vector yt is then calculated as

P (l|yt, s) =
P (yt|l, s)P (l|s)

∑

l′ P (yt|l′, s)P (l′|s)
(4)

where the mixture-weight P (l|s) and the probability density function of the

spectral features used to calculate the P (yt|l, s), are obtained as an outcome

of the HMM training.

For each mixture l and HMM state s, we collect (over the entire training data-

set) the posterior probabilities P (l|yt, s) for all yt’s associated with the state

s together with the corresponding voicing vectors vt’s. The parameter µb,l,s of

the voicing model is then estimated as

µb,l,s =

∑

t:yt∈s P (l|yt, s) · vt(b)
∑

t:yt∈s P (l|yt, s)
(5)

where vt(b) is the value of the voicing feature.

Examples of the estimated voicing-probabilities P (v(b) = 1|l, s) for HMMs of

phonemes /ay/, /v/, and /f/ are depicted in Figure 2. It can be seen that the

voicing probabilities for the vowel /ay/ are high over a large number of filter-

bank channels. Comparing the voiced and unvoiced fricatives /v/ and /f/,

respectively, it can be seen that the voicing-probabilities are high for many

mixtures (of each state) of the voiced fricative /v/, while close to zero for the

unvoiced fricative /f/. Note that the voicing-probabilities at some mixtures of
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the first and last states of the model /f/ show an increased voicing, which may

be due to contextual effects.
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Fig. 2. Examples of the estimated voicing-probabilities for 3 state HMM models of

phonemes /ay/, /v/, and /f/ depicted at (a), (b), and (c), respectively. Please note

the different scales at each figure.

3.2 Incorporating the voicing information during recognition

During the recognition, the standard HMM state emission probability of a

spectral feature vector yt at frame-time t in state s, i.e., P (yt|s), is replaced

by calculating the joint probability of the spectral feature vector and the

voicing vector vt, i.e., P (yt,vt|s). Assuming that all spectral features and

voicing features are independent of one another, using L mixture densities,
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the P (yt,vt|s) is calculated in the proposed model as

P (yt,vt|s) =
L

∑

l=1

P (l|s)
∏

b

P (yt(b)|l, s)P (vt(b)|l, s) (6)

where P (l|s) is the weight of the lth mixture component, and P (yt(b)|l, s) and

P (vt(b)|l, s) are the probability of the bth spectral feature and voicing feature,

respectively, given state s and mixture l. Note that instead of using the voicing

information of each filter-bank channel as considered above, one may use only

the voicing information about an entire frame, i.e., the voicing information

vector v at a given frame will then consist of a single value indicating whether

a frame is voiced or unvoiced. The same equations as above would apply

for estimation and incorporation of the voicing-probability. The frame-level

voicing information in our experiments was obtained as described at the end

of Section 2.

The incorporation of the voicing information as in Eq. 6 may not be effective

in noisy conditions due to a possible mismatch between the voicing of the

current noisy signal and the trained voicing models. The voicing mismatch

may occur as some filter-bank channels which were voiced in a clean signal

become unvoiced in a noisy signal due to the effect of noise – an example of this

can be observed in Figure 1. The voicing-probability for these channels would

then have a small value on the correct voiced model and a large value on any

incorrect unvoiced model and as such could negatively affect the recognition.

This problem may be dealt with by using the voicing information of the signal

during the recognition only when it was estimated as voiced, i.e., marginalising

the voicing-probability term in Eq. 6 for features detected as unvoiced. This

issue will be demonstrated in the experimental section.
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3.3 Transformation of the voicing-probability

During recognition, the voicing-probability may become very small (or zero)

on states/mixtures whose trained voicing model have the parameter µb,l,s ap-

proaching (or equal) to zero or one. This is not desirable, as it can cause the

overall probability during the recognition to become largely affected by the

voicing-probability. This could be avoided by setting a small minimum value

for P (v(b)|l, s). A more elegant solution, also allowing us to easily control the

effect of the voicing-probability on the overall probability, may be to employ

a sigmoid function to transform the P (v(b)|l, s) for each b to a new value, i.e.,

P (v(b)|l, s) =
1

1 + e−α(P (v(b)|l,s)−0.5)
(7)

where α is a constant defining the slope of the function and the value 0.5 gives

shift of the function.
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Fig. 3. Voicing-probability transformation using a sigmoid function with various

values of the slope parameter α and no transformation. Note the y-axis is in the

log-scale.

Examples of the voicing-probability transformation with various values for α

are depicted on Figure 3. Note that setting α to zero corresponds to models

without the incorporation of the voicing-probability. Increasing the value of

α increases the effect of the voicing-probability on the overall probability.

However, a high value for α may cause the errors in voicing estimation to have a
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high impact on the overall probability, and consequently affect the recognition

performance negatively. An appropriate value for α can be decided based on a

small set of experiments on the development data. In our experiments, we have

observed that the values of α within the range [2, 6] yielded good recognition

results.

3.4 The effect of the voicing-probability during the recognition

This section demonstrates the effect of incorporating the voicing-probability

on the recognition process. Frame-level voicing information was considered to

simplify the presentation of the results. An experiment was performed to iden-

tify the amount of disagreement between the voicing information of models and

the signal. For each voiced frame of the signal, the voicing-probability of the

state to which the frame is associated according to the best path through the

state-time trellis found by the Viterbi algorithm is obtained. The histograms

of these voicing-probabilities collected over noisy test speech utterances (white

noise at 0dB) are depicted in Figure 4(a). It can be seen that when the voic-

ing information is not incorporated (light) there is a large amount of voiced

frames being assigned to states with low voicing-probability. This situation is

significantly improved when the voicing information is incorporated since this

acts as a penalty during the recognition for those states whose voicing is not

in agreement with the voicing of the signal.

Figure 4(b) shows an example of the Viterbi-found path for the speech utter-

ance “two” obtained by ASR system without and with incorporated voicing-

probability, and the corresponding recognition result obtained as “six” and

“two”. Also, the estimated frame-level voicing information of the utterance

14



 

 

 

ACCEPTED MANUSCRIPT 

 

and the voicing-probabilities of the HMMs are shown at the bottom and the

right-side of the figure, respectively. A significant disagreement between the

voicing of the model and the signal can be seen when the voicing is not incor-

porated, e.g., voiced frames after frame-index 43 are assigned to the silence

model.
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Fig. 4. Histogram of state voicing-probabilities associated with voiced frames without

(light) and with (dark), using the voicing information (a). Recognition of a speech

utterance “two”, and state-time path, without (light) and with (dark), using voic-

ing-probability. Below: frame-level voicing of the utterance. Right: voicing-probability

of each state for HMM of digit “six” and “two” (b).

4 Experimental evaluations

The experimental evaluation of the proposed model was performed on two

speech recognition tasks. First, tests were carried out on the Aurora 2 database

for the connected-digit recognition task, as this is currently one of the stan-

dard databases used for noisy speech recognition. In order to provide a better
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analysis of the incorporation of the voicing information, further tests were

performed on the TIMIT database for phoneme recognition.

The evaluation was performed first by using standard models trained on clean

training data and then by using models that had compensated for the effect of

noise. The latter was done in order to determine what performance improve-

ments could be expected by incorporation of the voicing information when

idealised noise-compensated models are available since the use of such models

may reduce the amount of misalignment between data and models (and thus

also voicing misalignment). The missing-feature theory (MFT) was employed

as one way of noise compensation. In order to obtain the best (idealised) elim-

ination of the noise effect, the MFT-model with an oracle mask, obtained by

full a-priori knowledge of noise, was employed. In Aurora task, models ob-

tained by multi-conditional training were also used as an alternative way of

noise compensation.

The experimental evaluation was performed by using an in-house speech recog-

niser and the Hidden Markov Model Toolkit (HTK) (Young et al., 1999)

which was modified to include the missing-feature method and the voicing-

probability incorporation.

4.1 Experiments on Aurora 2 database

4.1.1 Database description

The Aurora 2 English language database (Hirsch and Pearce, 2000) was used

for speaker-independent connected-digit recognition in noisy conditions. The

recognition experiments were performed using speech data from the test set A
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in the Aurora 2 database which contains 1001 utterances of speech artificially

corrupted by four environmental noise types: subway, babble, car, and exhibi-

tion hall, each of these at six different SNRs: 20, 15, 10, 5, 0, and -5 dB.

4.1.2 Acoustic modelling

The frequency-filtered logarithm filter-bank energies (Nadeu et al., 2001) (re-

ferred here as FF-features) were used as speech feature representation due to

their suitability for missing-feature based recognition. It is to be noted that

FF-features have previously been shown to yield similar recognition perfor-

mance as mel-frequency cepstral coefficients (Nadeu et al., 2001). The FF-

features were obtained with the following parameter set-up: frames of 32 ms

length with a 10 ms shift between the frames were used; both preemphasis

and Hamming window were applied to each frame; the short-time magnitude

spectra, obtained by applying the FFT, was passed to Mel-spaced filter-bank

analysis with 20 channels; the obtained logarithm filter-bank energies were

then filtered using the filter H(z)=z-z−1 (Nadeu et al., 2001). A feature vector

consisting of 18 elements was obtained (the edge values were excluded). In

order to include dynamic spectral information, the first-order delta parame-

ters were added to the static FF-feature vector, resulting in a 36-dimensional

feature vector.

The HMMs were trained following the procedures distributed with the Au-

rora 2 database, and summarised here. Each digit was modelled by a continuous-

observation left-to-right HMM with 16 states (no skip allowed), with three

and ten Gaussian mixtures for each state in the case of the standard and

multi-conditional model, respectively, and with diagonal covariance matrices.
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Standard and MFT-based models were trained using the clean speech train-

ing set containing 8440 utterances of 55 male and 55 female adult speakers.

A multi-conditional model was trained using the multi-conditional training

set, which consists of both clean speech and speech corrupted at four different

SNRs (20, 15, 10, and 5 dB) by noises from this test-set.

The voicing information was estimated for filter-bank channels as described

in Section 2. A FF-feature was then assigned as voiced, i.e., v(b)=1, if both

of the filter-bank channels involved in the calculation of the FF-feature were

voiced, otherwise they were assigned as unvoiced. The voicing models were

trained using the clean training data for both the standard and MFT-based

model and using the multi-conditional training data for the multi-conditional

model. In recognition, models incorporating the voicing information used a

sigmoid function with α set to 5 in the case of standard model, and with α

set to 3 in the MFT-based and multi-conditional models in all the Aurora 2

experiments.

4.1.3 Experimental analysis of the methods

This section presents an experimental analysis of various ways of incorporating

the voicing information as well as examining the effect of errors in voicing

estimation. In order to assess the performance of the analysed methods, the

experiments are performed on the Aurora 2 speech data corrupted by White

noise, as this noise does not contain any pure sinusoidal components.

First, we analyse two ways of incorporating the voicing information during

recognition as discussed in Section 3.2 – the model denoted as “VP(0&1)”

employs the voicing-probability term in Eq. 6 for both voiced (i.e., 1) and
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unvoiced (i.e., 0) features and the model denoted as “VP(1)” for only voiced

features (i.e., marginalising the voicing-probability term for unvoiced features).

The experimental results are presented in Figure 5. It can be seen that the

method employing the voicing-probability for both voiced and unvoiced fea-

tures gives (overall) a significantly lower recognition accuracy than that of

employing the voicing-probability only for voiced features. The reason for the

low performance obtained when including the voicing-probability term for un-

voiced features may be that some of those features may have been voiced on

clean speech, thus no longer in agreement with the trained voicing models –

this has been discussed in more detail in Section 3.2 and can be also observed

in Figure 1. The experimental results presented in the rest of the paper are

obtained by using the voicing-probability term only for features detected as

voiced and for clarity the notation VP(1) is simplified to VP.
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Fig. 5. Recognition accuracy results obtained by the standard model with the voic-

ing-probability being incorporated for both voiced and unvoiced features and for only

voiced features. For comparison, results by the standard model are also included.

Secondly, we present experiments to demonstrate the effect of possible er-

rors in voicing estimation on the recognition performance when the voicing-

probability is incorporated. The experimental results obtained by employing

the voicing information estimated on noisy speech are compared to those ob-

tained by employing the oracle voicing information. A filter-bank channel of

noisy speech is assigned an oracle label voiced if it was estimated as voiced on
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corresponding clean speech and its local-SNR is above 0 dB (i.e., speech domi-

nated). The experimental results, presented in Figure 6, show that nearly iden-

tical recognition accuracies are obtained when employing the estimated voic-

ing information and the oracle voicing information. These results demonstrate

a good performance of the proposed voicing-estimation method presented in

Section 2 as the errors it makes have virtually no effect on the recognition

accuracy of an ASR system incorporating this voicing information.
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Fig. 6. Recognition accuracy results obtained by the standard model with incorporated

voicing probability employing both the estimated and oracle voicing information. For

comparison, results by the standard model are also included.

Next, we present experiments to compare the effect of incorporating the voicing-

probability when feature-level and frame-level voicing information is employed,

i.e., voicing information of each filter-bank channel and a single value voic-

ing information of an entire frame, respectively. The experimental results are

depicted in Figure 7. It can be seen that the use of a feature-level voicing

(“Standard+VP”) provides significantly better performance at all SNRs than

using the frame-level voicing (“Standard+VPfrm”), which is a consequence of

a more detailed modelling of the voicing information.

For comparison, we also incorporated the voicing information in a way em-

ployed in some of the previous other research, e.g., Zolnay et al. (2003), in

which a frame-level voicing information (representing the level of voicedness
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of a frame) is appended into the feature vector. The frame-level voicing in-

formation we used here represents the proportion of the voiced filter-bank

channels in a frame, which provides a measure of voicedness of a frame. The

results are depicted in Figure 7 under the notation “Standard+VPoth”. It can

be seen that the model “Standard+VPoth” obtained some improvements over

the standard model, however, these improvements are significantly lower (es-

pecially at low SNRs) than those obtained by the proposed “Standard+VP”

model.
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Fig. 7. Recognition accuracy results obtained by the standard model with incorporated

voicing probability employing the feature-level and frame-level voicing information.

For comparison, results by the standard model incorporating the voicing information

as employed in some other research and standard model alone are also included.

Last, we discuss the model complexity. In our experimental set-up, the stan-

dard model has 108 mean and 108 variance parameters, plus 2 free mixture

weights, totalling 218 free parameters per state. The standard model with

incorporated feature-level voicing information has an additional 54 parame-

ters, totalling 272 parameters. The multi-conditional model without and with

incorporated voicing information has in total 729 and 909 parameters, respec-

tively. Since the incorporation of the voicing information increases the number

of parameters, in order to evaluate its effect we performed comparison with

the standard model having a similar complexity. In experiments, the standard

model with 4 mixtures per state (denoted as “Standard(4mix)”) was employed
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as it has in total 291 parameters, which is similar to 272 parameters needed

for the standard model with 3 mixtures and incorporated voicing information.

Results are depicted in Figure 8. Comparing the systems of similar complexity,

it can be seen that the performance obtained by the model with incorporated

voicing information does not come from the increased complexity of the model.
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Fig. 8. Comparison of the recognition accuracy results obtained by models of similar

complexity: the standard model with 4 mixtures per state and the standard model

with 3 mixtures per state and incorporated voicing information. The standard model

with 3 mixtures also included for comparison.

4.1.4 Experimental results

Experimental results on the standard model

First, the evaluation of the proposed voicing incorporation was performed

using a standard model trained on clean data. The results are presented in

Figure 9. It can be seen that the incorporation of the voicing-probability pro-

vides significant improvements in recognition accuracy. In the case of Babble

noise, it was observed that the incorporation of the voicing-probability re-

sulted in a high increase in the number of insertions, and as such a decrease of

the recognition accuracy. This is due to the Babble noise being a background

speech. This could be dealt with by segmenting the signal into regions of inter-

est and regions of no interest. As this issue is not the subject of this paper, we
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employed a simple method for segmenting the detected voiced regions into a

foreground and background based on their energy, and considered foreground

regions to be the speech of interest. The energy-based foreground/background

detection was performed by calculating an average of the five highest, Eh, and

five lowest, El, frame energies within a 500ms segment around the current

frame-time and assigning the frame as foreground if its energy was above the

value of El + 0.15(Eh −El). The estimated voicing information was used only

if the frame was detected as foreground. Experimental results obtained by

employing the voicing information with the foreground detection are denoted

by “Standard+VP+FD” in Figure 9. As we can see here, considerable recog-

nition accuracy improvements over the standard model without incorporating

the voicing are achieved for Babble noise and also some further improvements

for other noisy conditions at low SNRs. The voicing information with the

foreground detection is employed in the following experiments in this section.
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Fig. 9. Recognition accuracy results obtained by the standard model without and

with incorporated voicing probability (without and with incorporated foreground de-

tection).

The performance of the standard model without and with incorporated voicing

is summarised in terms of the average recognition accuracy and error rate
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reduction calculated over all noises for a given SNR in Table 1 and over SNRs

(0–20 dB) for a given noise condition in Table 2. It can be seen that the model

incorporating the voicing information provides a large error rate reduction at

each SNR, with the highest reductions at SNRs of 10, 5 and 0 dB. Similarly, the

proposed model provides large error rate reductions for each noisy condition.

Table 1

Average recognition accuracy results and error rate reduction (ERR) over noisy

conditions for the standard model without and with incorporated voicing-probability.

SNR Avg. Rec. Acc. [%] ERR

[dB] Stand+VP Stand [%]

20 94.49 93.48 15.45

15 90.57 89.04 13.96

10 82.98 77.73 23.55

5 67.14 52.21 31.24

0 41.83 24.49 22.97

-5 17.76 12.53 5.98

ave (0–20) 75.40 67.39 24.56

Experimental results on noise-compensated models

Next, we performed two sets of evaluations in order to determine whether

the incorporation of the voicing information could still provide improvements

when used within models that had already suppressed the effect of noise (as

employment of a noise compensation would effectively cause the misalignment
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Table 2

Average recognition accuracy results and error rate reduction (ERR) over SNRs

(0–20 dB) for the standard model without and with incorporated voicing-probability.

Noisy Avg. Rec. Acc. [%] ERR

speech Stand+VP Stand [%]

Subway 80.11 70.88 31.71

Babble 72.37 67.20 15.75

Car 76.27 68.18 25.42

Exhib. 72.85 63.30 26.04

of voicing to be less likely).

This is first demonstrated by using a model based on the missing-feature

theory (MFT) as a way of noise compensation. In order to obtain the best

(idealised) noise compensation, we used the MFT-model with an oracle mask,

obtained by full a-priori knowledge of noise. In this model, the static features

whose local SNRs are below 0dB were marginalised. The experimental results

are presented in Figure 10. It can be seen that the incorporation of the voicing-

probability into the MFT-model (“MFT+VP”) results in significant improve-

ments at low SNRs for Subway, Car and Exhibition noisy speech, as well as

some improvements on Babble noisy speech. The second noise-compensated

model we employed was the model based on the multi-conditional training.

The results are presented in Figure 11. Again, the voicing incorporation pro-

vides significant improvements at low SNRs.

The performance of the noise-compensated models without and with incorpo-
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Fig. 10. Recognition accuracy results obtained by the MFT-model using the oracle

mask without and with incorporating the voicing probability.
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Fig. 11. Recognition accuracy results obtained by the multi-conditional trained model

without and with incorporating the voicing probability.

rated voicing is summarised in terms of the average recognition accuracy and

error rate reduction calculated over all noises for a given SNR in Table 3 and

over SNRs (0–20 dB) for a given noisy condition in Table 4. The error rate

reductions are large at all SNRs, with the highest reduction at 0 dB SNR,

and they are over 24% for all noisy conditions except for the Babble noise.

The above results demonstrate that even when the noise effect has already

been compensated, the incorporation of the voicing information provides a

significant error rate reduction.
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Table 3

Average recognition accuracy results and error rate reduction (ERR) over noisy

conditions for the MFToracle and MultiCond models without and with incorporated

voicing-probability.

SNR Avg. Rec. Acc. [%] ERR Avg. Rec. Acc. [%] ERR

[dB] MFTo+VP MFTo [%] MultiC+VP MultiC [%]

20 96.31 95.76 13.02 96.78 95.92 20.91

15 94.66 93.90 12.50 96.04 95.28 15.95

10 90.17 87.70 20.09 94.37 93.35 15.31

5 79.26 70.78 29.04 87.74 85.40 16.01

0 55.67 36.82 29.83 68.75 58.40 24.88

-5 24.69 15.21 11.19 32.02 23.46 11.19

ave (0–20) 83.21 76.99 27.03 88.74 85.67 21.42

4.2 Experiments on the TIMIT database

In order to further examine the effect of incorporating the voicing informa-

tion, we performed experiments for isolated phoneme recognition. Having the

start/end information of the phoneme in the signal, these experiments aimed

to demonstrate the effect of the voicing incorporation.
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Table 4

Average recognition accuracy results and error rate reduction (ERR) over SNRs

(0–20 dB) for the MFToracle and MultiCond models without and with incorporated

voicing-probability.

Noisy Avg. Rec. Acc. [%] ERR Avg. Rec. Acc. [%] ERR

speech MFTo+VP MFTo [%] MultiC+VP MultiC [%]

Subway 86.91 80.15 34.04 91.65 88.27 28.77

Babble 81.49 78.75 12.93 85.24 84.18 6.69

Car 83.67 75.26 33.99 90.51 86.76 28.30

Exhibition 80.79 73.81 26.66 87.53 83.46 24.61

4.2.1 Database description

The TIMIT database (Garofolo et al., 1993), downsampled to 8 kHz, was used.

The training set comprised speech from all speakers in the TIMIT training

set (318 speakers, 5040 utterances). Testing was performed on the TIMIT

complete test set (168 speakers, 1344 utterances) corrupted by White noise at

SNRs of 20, 15, and 10 dB.

4.2.2 Acoustic modelling

The FF-features as described in Section 4.1.2 were used. The vocabulary con-

sisted of 39 monophones. Each monophone was modelled by a continuous-

observation left-to-right HMM with 3 states (no skip allowed), with eight

component Gaussian mixtures and diagonal covariance matrices used for each

state. The HMMs were trained on clean speech from the training set. No
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phone language model was employed in recognition experiments, which was

considered appropriate for investigating the effect of incorporating voicing in-

formation. Note that our baseline recognition system achieved 56% accuracy

on clean data which is similar to results for this task presented elsewhere, e.g.,

(Russell and Jackson, 2005). Models incorporating the voicing information

used a sigmoid function with α set to 2.

4.2.3 Experimental results

The experiments were performed using both the standard model and the MFT-

model with oracle mask as the noise-compensated model and the obtained

results are shown in Figure 12(a) and Figure 12(b), respectively. The results

are presented as N-best recognition accuracy (with N equal to 1, 3 and 5),

i.e., the correct result being among the first N recognition results. The N-best

recognition analysis can provide useful insights for employment of phoneme-

level language models, which are often used for re-scoring the recognition

results in various areas of speech pattern processing, for instance, in continuous

speech recognition for spoken document retrieval (Larson, 2001) and language

identification (Zissman and Berkling, 2001). From Figures 12(a) and (b), it can

be seen that the incorporation of the voicing information provides considerable

recognition accuracy improvements in all cases. With the voicing-probability

incorporated, the percentage of the correctly recognised phonemes within the

first three and five results is significantly improved when using the standard

model and considerably improved when using the noise-compensated model.

For instance, the recognition accuracy for N=5 at 10 dB SNR improved from

43.8% to 54.7% and from 63.22% to 67.79% when using the standard model

and the noise-compensated model, respectively. Note that the results presented
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in these two figures are the average over all the phonemes. As the voicing-

probability was incorporated only for features being voiced, improvements are

not expected for unvoiced phonemes and as such the actual improvements

for the voiced phonemes may be considerably higher than those observed in

Figure 12. As an example of this, Figure 13 presents the 1-best recognition
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Fig. 12. The N-best phoneme recognition accuracy obtained by the standard model

(a) and MFT-model using oracle mask (b), each without and with incorporating the

voicing information. Results on speech corrupted by White noise at SNR of 10, 15

and 20dB.

accuracy results for each individual phoneme obtained by the standard model

at 15 dB SNR. In the figure, phonemes are placed in descending order based

on the difference between recognition accuracies obtained by the model with

and without incorporating the voicing-probability. It can be seen that the

incorporation of the voicing-probability provides large recognition accuracy

improvements for many of the voiced phonemes. For instance, phonemes /v/,

/y/, /oy/ obtained absolute recognition accuracy improvements of 20.29 %,

12.76 %, and 8.66 %, respectively. It can be observed that some phonemes show

a slight decrease in recognition accuracy, which may be due to the context

affecting the voicing of the signal.
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Fig. 13. Recognition accuracy for individual phonemes obtained by the standard

model without and with incorporating the voicing probability for speech corrupted

by White noise at 15 dB SNR.

5 Conclusion

In this paper, we presented a novel model for the incorporation of the voicing

information of a speech signal into an HMM-based automatic speech recog-

nition system. The voicing information employed was obtained by a novel

method that can provide this information for each filter-bank channel, while

requiring no information about the fundamental frequency. The voicing infor-

mation was modelled by using Bernoulli distribution. A Viterbi-style training

procedure for estimation of the voicing-models for each mixture at each HMM

state was presented. In the incorporation of the voicing-probability during

recognition, the marginalisation of unvoiced voicing information and the use

of a sigmoid function to control the contribution of the voicing-probability

were proposed. The employment of a frame-level and feature-level voicing

information were compared and significant gains by using the feature-level

voicing were demonstrated. An experimental evaluation was first performed

on noisy speech data from the Aurora 2 database. The effectiveness of the
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proposed model was demonstrated when employed in both a standard model

and in models that had compensated for the effect of noise, missing-feature

and multi-conditional training. The experimental evaluations showed that the

incorporation of the voicing information within the standard model as well as

noise-compensated models provided significant performance improvements in

particular at strong noisy conditions. When the voicing information was incor-

porated, the error rate reduction averaged over all noisy conditions and SNRs

was 24.56%, 27.08% and 21.35% for the standard, the MFT-oracle and the

multi-conditional training models, respectively. Further experimental evalua-

tions were also performed on phoneme recognition task on a noise-corrupted

TIMIT database. These experimental results were analysed as N-best recogni-

tion performance. It was shown that considerable performance improvements

can be achieved when the voicing information is incorporated in both the

standard model and the MFT-oracle noise-compensated model.
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