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Stabilised W eighted Linear Prediction

Carlo Magi ∗,1, Jouni Pohjalainen 2, Tom Bäckström, Paavo Alku

Helsinki University of Technology (TKK), Laboratory of Acoustics and Audio Signal

Processing, P.O. Box 3000, FI-02015 TKK, Finland

Abstract

Weighted linear prediction (WLP) is a method to compute all-pole models of speech by

applying temporal weighting of the square of the residual signal. By using short-time en-

ergy (STE) as a weighting function, this algorithm was originally proposed as an improved

linear predictive (LP) method based on emphasising those samples that fit the underlying

speech production model well. The original formulation of WLP, however, did not guaran-

tee stability of all-pole models. Therefore, the current work revisits the concept of WLP by

introducing a modified short-time energy function leading always to stable all-pole models.

This new method, stabilised weighted linear prediction (SWLP), is shown to yield all-pole

models whose general performance can be adjusted by properly choosing the length of the

STE window, a parameter denoted by M .

The study compares the performances of SWLP, minimum variance distortionless re-

sponse (MVDR), and conventional LP in spectral modelling of speech corrupted by ad-

ditive noise. The comparisons were performed by computing, for each method, the log-

arithmic spectral differences between the all-pole spectra extracted from clean and noisy

speech in different segmental signal-to-noise ratio (SNR) categories. The results showed

that the proposed SWLP algorithm was the most robust method against zero-mean Gaussian

noise and the robustness was largest for SWLP with a small M -value. These findings were

corroborated by a small listening test in which the majority of the listeners assessed the

quality of impulse-train-excited SWLP filters, extracted from noisy speech, to be percep-

tually closer to original clean speech than the corresponding all-pole responses computed

by MVDR. Finally, SWLP was compared to other short-time spectral estimation methods

(FFT, LP, MVDR) in isolated word recognition experiments. Recognition accuracy ob-

tained by SWLP, in comparison to other short-time spectral estimation methods, improved

already at moderate segmental SNR values for sounds corrupted by zero-mean Gaussian

noise. For realistic factory noise of low pass characteristics, the SWLP method improved

the recognition results at segmental SNR levels below 0 dB.
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1 Introduction

Linear prediction (LP) is the most widely used all-pole modelling method of speech

(Makhoul, 1975). The prevalence of LP stems from its ability to estimate the spec-

tral envelope of a voice signal and to represent this information by a small number

of parameters. By modelling the spectral envelope, LP captures the most essential

acoustical cues of speech originating from two major parts of the human voice pro-

duction mechanism, the glottal flow (which is the physiological source behind the

over-all spectral envelope structure) and the vocal tract (which is the cause of the

local resonances of the spectral envelope, the formants). In addition to its ability to

express the spectral envelope of speech with a compressed set of parameters, LP

is known to guarantee the stability of the all-pole models, provided that the auto-

correlation criterion is used. Moreover, implementation of the conventional LP can

be done with a small computational complexity. LP analysis, however, also suf-

fers from various drawbacks, such as the biasing of the formant estimates by their

neighbouring harmonics (El-Jaroudi and Makhoul, 1991). This is caused by alias-

ing that occurs in the autocorrelation domain and the phenomenon is, in general,

most severe for high-pitch voiced speech. Additionally, it is well-known that the

performance of LP deteriorates in the presence of noise (Sambur and Jayant, 1976).

Therefore, several linear predictive methods with an improved robustness against

noise have been developed (Lim and Oppenheim, 1978; Zhao et al., 1997; Shima-

mura, 2004). However, it is worth noticing that most of these robust modifications

of LP are based on the iterative update of the prediction parameters. Weighted lin-

ear prediction (WLP) uses time-domain weighting of the square of the prediction

error signal (Ma et al., 1993). By emphasising those data segments that have a high

signal-to-noise ratio (SNR), WLP has been recently shown to yield improved spec-

tral envelopes of noisy speech in comparison to the conventional LP analysis (Magi

et al., 2006). In contrast to many other robust methods of LP, the filter parameters

of WLP can, importantly, be computed without any iterative update.

When the order of LP increases, the spectral envelopes given by LP might over-

estimate the underlying speech spectrum (Murthi and Rao, 2000). This occurs es-

pecially in the analysis of voiced speech of sparse harmonic structure, in which case

LP models not only the spectral envelope but also the multiples of the fundamental.

The minimum variance distortionless response (MVDR) method tries to cope with

this problem by providing a smooth spectral envelope even when the model order

is increased. MVDR is popular in array processing but it has recently also attracted

increasing interest in speech processing where it has been used, for example, in the

∗ Corresponding author. Tel.: +358-9-451-2479; fax: +358-9-460-224.
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jpohjala@acoustics.hut.fi (Jouni Pohjalainen), tom.backstrom@tkk.fi
(Tom Bäckström), paavo.alku@tkk.fi (Paavo Alku).
1 Supported by Academy of Finland (project number 205962) and TKK.
2 Supported by Academy of Finland (project number 107494).

2



 

 

 

ACCEPTED MANUSCRIPT 

 

0 0.005 0.01 0.015 0.02 0.025
−1

−0.5

0

0.5

1

1.5

time/s

A
m

pl
itu

de

Clean speech waveform
Corrupted speech waveform
STE weight function

0 0.005 0.01 0.015 0.02 0.025

0

0.5

1

1.5

time/s

A
m

pl
itu

de

Glottal flow
STE weight function

(a)

(b)

Fig. 1. Upper panel: Time-domain waveforms of clean speech (vowel /a/ produced by a

male speaker), additive zero-mean Gaussian white noise corrupted speech (SNR=10dB),

and short-time energy (STE) weight function (M = 8) computed from noisy speech ac-

cording to Eq. 7. Lower panel: Glottal flow estimated from the clean vowel /a/ together

with STE weight function (M = 8) computed also from the clean speech signal.

feature extraction of speech recognition (Wölfel et al., 2003; Dharanipragada et al.,

2007; Wölfel and McDonough, 2005; Y apanel and Hansen, 2003).

This study addresses the computation of spectral envelopes of speech from noisy

signals by comparing three all-pole modelling methods: the conventional LP, MVDR,

and WLP. Because the original version of WLP presented in (Ma et al., 1993) does

not guarantee stability of the all-pole model, the idea of WLP is revisited by de-

veloping weight functions which always result in a stable all-pole model. It will be

shown that with a proper choice of parameters the proposed stabilised WLP method

yields spectral envelopes similar to those given by low order MVDR model but with

improved robustness against additive background noise.

2 Weighted Linear Prediction

The discussion is begun by briefly presenting the optimisation of the filter para-

meters in WLP. Both in conventional LP and in WLP, sample xn is estimated by a

linear combination of the p past samples. This estimate can be formulated as

x̂n = −

p∑

i=1

aixn−i, (1)
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where coefficients ai ∈ R, ∀i = 1, . . . , p. The prediction error εn(a), the residual,

is defined as

εn(a) = xn − x̂n = xn +
p

∑

i=1

aixn−i = a
T
xn, (2)

where a = [a0 a1 · · · ap]
T

with a0 = 1 and xn = [xn · · · xn−p]
T

. The goal is

to find the coefficient vector a, of a p:th order FIR predictor, which minimises the

cost function E (a), also known as the prediction error energy. This problem can be

formulated as the constrained minimisation problem:

minimise E (a)

subject to a
T
u = 1,

(3)

where the unit vector u is defined as u = [1 0 · · · 0]T . This minimisation depends

on the nature of the cost function E (a). The cost function in the WLP method is

defined as

E (a) =
N+p
∑

n=1

(εn(a))2wn. (4)

In matrix notation, Eq. 4 can be written as

E (a) = a
T





N+p
∑

n=1

wnxnx
T
n



 a = a
T
Ra, (5)

where R =
∑N+p

n=1 wnxnx
T
n . Here the signal xn is assumed to be zero outside the

interval [1, N ], R corresponds to the autocorrelation matrix if and only if ∀n =
1, . . . , N + p, wn = 1. According to Eq. 4, the formulation allows us to temporally

emphasise the square of the residual signal. It should be noticed that in difference

to conventional LP the autocorrelation matrix R is weighted.

Matrix R, defined in Eq. 5, is symmetric but does not posess the Toeplitz structure.

However, it is positive definite, thus making the minimisation problem in Eq. 3

convex. Using the Lagrange multiplier minimisation method (Bazaraa et al., 1993),

it can be shown (Bäckström, 2004) that a, which solves the minimisation problem

in Eq. 3, satisfies the linear equation

Ra = σ2
u, (6)

where σ2 = a
T
Ra is the error energy. The corresponding WLP all-pole filter is

obtained as H(z) = 1/A(z), where A(z) is the z-transform of a.
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Fig. 2. Time-domain waveforms of clean speech (vowel /a/ produced by a male speaker) and

short-time energy (STE) weight function (upper panels) and corresponding all-pole spectra

of order p = 10 computed by LP, MVDR, and SWLP (lower panels). SWLP analysis was

computed by using two different values for the length of the STE window: M = 8 (left

panels) and M = 24 (right panels).
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Fig. 3. Time-domain waveforms of clean speech (vowel /e/ produced by a female speaker)

and short-time energy (STE) weight function (upper panels) and corresponding all-pole

spectra of order p = 10 computed by LP, MVDR, and SWLP (lower panels). SWLP analy-

sis was computed by using two different values for the length of the STE window: M = 8

(left panels) and M = 24 (right panels).

3 Model F ormulation

The key concept of WLP, introduced in Eq. 4, is the time-domain weight function

wn. By choosing an appropriate waveform for wn, one can either temporally em-

phasise or attenuate the square of the residual signal prior to the optimisation of the

filter parameters. In (Ma et al., 1993) the weight function was chosen based on the

short-time energy (STE):

wn =
M−1
∑

i=0

x2

n−i−1, (7)
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where M is the length of the STE window. The performance of WLP was analysed

in the original study by Ma et al. (1993) by using only clean speech represented by

a small set of both synthetic and natural vowels. In the current study, however, the

idea of weighting is motivated from the point of view of computing linear predictive

models of speech that are more robust against noise than the conventional LP. From

this perspective, the use of the STE window can be justified by two arguments.

Firstly, as illustrated in Fig. 1(a), the STE function over-weights those sections of

the speech waveform which consist of samples of large amplitude. It can be argued

that these segments of speech are less vulnerable to additive, uniformly distributed

noise in comparison to values of smaller amplitude. Hence, by emphasising the

contribution of these strong data values in the computation of all-pole models one is

expected to get spectral models which show better robustness in noisy conditions.

Secondly, there is plenty of evidence in speech science indicating that formants

extracted during the closed phase of a glottal cycle are more prominent than those

computed during the glottal open phase due to the absence of sub-glottal coupling

(Wong et al., 1979; Yegnanarayana and Veldhuis, 1998; Childers and Wong, 1994;

Krishnamurthy and Childers, 1986). Hence, emphasis of the contribution of the

samples occurring during the glottal closed phase is likely to yield more robust

acoustical cues for the formants. Especially in the case of wideband noise, this

kind of emphasising should improve modelling of higher formants in comparison

to spectral models such as the conventional LP, which treat all data samples equally.

Figure 1(b) illustrates how the STE weight function focuses on the glottal closed

phase. In this example, the STE function was computed from the clean /a/ vowel

shown in the upper panel of Fig. 1. The glottal flow was estimated from the same

clean vowel using the inverse filtering algorithm presented in (Alku, 1992). Even

though WLP enables emphasising the contributions of samples occurring during

the closed phase, it is worth noticing that the goal of the method is not to try to

define the vocal tract filter precisely during the closed phase, as is the case in the

so-called closed phase covariance method of glottal inverse filtering (Wong et al.,

1979; Huiqun et al., 2006).

The stability of the WLP method with the STE weight function, as proposed in (Ma

et al., 1993), however, can not be guaranteed. Therefore, a formula for a generalised

weight function to be used in WLP is developed here so that the stability of the

resulting all-pole filter is always guaranteed. The autocorrelation matrix from Eq. 5

can be expressed as

R = YTY, (8)

where Y = [y0 y1 · · · yp] ∈ R
(N+p)×(p+1) and y0 =

[√
w1x1 · · · √wNxN 0 · · · 0

]T
.

The columns yk of the matrix Y can be generated via the formula

yk+1 = Byk k = 0, 1, . . . , p − 1, (9)
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Fig. 4. Spectral distortion values (SD2) between SWLP envelopes of order p = 10 com-

puted from clean and noisy speech. The length of the STE window was varied in six steps

from M = 4 to M = 24. Speech was corrupted by additive zero-mean Gaussian white

noise in five segmental SNR categories. SD2 values were computed as an average over all

the analysed segments consisting of 654 frames from the TIMIT database.

where

B =





























0 0 · · · 0 0
√

w2/w1 0 0 · · · 0

0
√

w3/w2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0
√

wN+p/wN+p−1 0





























. (10)

The derivation of this stabilised WLP method can be expressed as follows. The

weights are first calculated using Eq. 7 such that if wi = 0 a small constant is

added to the coefficient (wi = 10−6) and, before forming the matrix Y from Eq. 8,

the elements of the secondary diagonal of the matrix B are defined (observe this

difference in comparison to the original study by Ma et al. (1993)) for all i =
1, . . . , N + p − 1 as

Bi+1,i =







√

wi+1/wi, if wi ≤ wi+1,

1, if wi > wi+1.
(11)

Henceforth, the WLP method computed using matrix B, defined above, is called

the stabilised weighted linear prediction (SWLP) model, where the stability of the

corresponding all-pole filter is guaranteed due to Eq. 11 (see Appendix).
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4 Results

The behaviour of SWLP in spectral modelling of speech is demonstrated in the two

examples shown in Figs. 2 and 3. In these figures, the analysed speech sounds (vow-

els /a/ and /e/ in Figs. 2 and 3, respectively) are shown together with the STE weight

functions in the upper panels. The lower panels show spectra of parametric all-pole

models of order p = 10 computed with three techniques: conventional LP with the

autocorrelation criterion, minimum variance distortionless response, and the pro-

posed SWLP. In order to demonstrate the effect of the weight function length, the

SWLP analysis was computed using M values equal to 8 (left panels) and 24 (right

panels). The examples depicted demonstrate two characteristic features of SWLP.

First, the weight function computed by the STE clearly emphasises those segments

of speech where the data values are of large amplitude while segments of small am-

plitude values are given lesser weights. Second, the shape of the all-pole spectrum

computed by SWLP is, in general, smooth. However, the behaviour of the SWLP

spectrum depends on the length of the STE window: with M = 8, the SWLP shows

a very smooth spectral behaviour reminiscent of low order (p = 10) MVDR, but

for the larger M value the sharpness of the resonances in the SWLP spectrum in-

creases and its general spectral behaviour approaches that of LP. The reason behind

this is evident by referring to Eq. 10: the larger the value of M the more elements

of matrix B are equal to unity. In other words, the general spectral shape of the

SWLP filter can be made similar to MVDR by selecting a small value of M and it

can be adjusted to behave in a manner close to LP by using a larger value of M .

The following result section is divided into three major parts. First, objective spec-

tral distortion measurements were computed for LP, MVDR, and SWLP by using

the spectral distortion criterion, SD2. Next, small scale subjective tests were organ-

ised in order to obtain subjective evidence for the performance of low order MVDR

and SWLP. It is well known that the SD2 measure favours smooth spectra. There-

fore, automatic speech recognition tests were conducted as the third experiment

to get evidence on the performance of the different short-time spectral estimation

methods in the presence of noise.

The main focus in the experiments of this study was to measure how the proposed

SWLP method works for speech corrupted by additive noise and, in particular, to

compare the performance of SWLP to that of LP and MVDR in spectral modelling

of noisy speech. All the experiments reported in this study were conducted using the

sampling frequency of 8 kHz and the bandwidth of 4 kHz. The prediction order in

all methods tested was set to p = 10, thereby fulfilling the known rule between the

bandwidth and the prediction order (Markel and Gray, 1976). In addition, MVDR

was also computed using a high model order (p = 80) which is a typical choice

in studies in which MVDR has been used in automatic speech recognition (Wölfel

and McDonough, 2005; Dharanipragada et al., 2007). Corrupted signals with de-

sired segmental signal to noise ratios (SNR) were generated by adding noise to

8
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clean speech sounds. Two types of noise were used: white zero mean Gaussian

sequences produced by random number generator and factory noise recorded in

realistic circumstances (Varga et al., 1992). Segmental SNR was computed as an

average SNR over all 20ms frames in the speech signal (Kleijn and Paliwal, 1995).

4.1 Objective spectral distortion measurements

Objective evaluation of the effect of noise on all-pole modelling was computed

by adapting the widely used spectral distortion criterion, SD2 (Rabiner and Juang,

1993; Gray and Markel, 1979). With this measure, the difference between all-pole

spectra computed from clean and noisy speech is computed as follows:

V (ω) = log10 P1(ω) − log10 P2(ω), (12)

where P1 and P2 denote power spectra of the all-pole filters computed from clean

and noisy speech, respectively:

Pi(ω) =
σ2

i

|Ai(ej ω)|2 i = 1, 2. (13)

In Eq. 13, the gains σi of the all-pole filters are adjusted so that the impulse response

energies of the filters become equal. Since power spectra are computed using FFT,

the discrete version of SD2 must be used:

SD2 =

√

√

√

√

1

Ns

Ns−1
∑

i=0

|V (2π fi)|2, (14)

where Ns is the length of the discrete FFT spectra.

The experiments here were begun by running a test to analyse how much the per-

formance of SWLP is affected by additive Gaussian noise for different values of

M . Speech data, taken from the TIMIT database (Garofolo, 1993), consisted of

12 American English sentences from four different dialect regions produced by six

female and six male speakers. The frame length was 25 ms (200 samples) and no

pre-emphasis was used. The total number of speech frames analysed in this test

was 654, comprising both voiced and unvoiced speech sounds. The difference in

the SWLP spectral models computed from clean and noisy samples was quantified

in five different segmental SNR categories by using SD2. The experiments were

conducted by using six different values (4, 8, 12, 16, 20, 24) of the STE window

length M .

The results obtained from the first experiment are shown in Fig. 4. The data de-

picted show that the effect of noise on SWLP modelling depends greatly on the

choice of the STE window length M : the smaller the value of M the larger the ro-

bustness of SWLP against noise. By referring to the examples shown in Figs. 2 and

9



 

 

 

ACCEPTED MANUSCRIPT 

 

10 15 20 25 30

1

2

3

4

5

6

7

8

SNR (dB)

S
D

2 (d
B

)

LP
MVDR(p=10)
MVDR(p=80)
SWLP(M=24)
SWLP(M=8)

Fig. 5. Spectral distortion values (SD2) between all-pole envelopes computed from clean

and noisy speech with LP (p = 10), MVDR (p = 10 and p = 80) and SWLP (p = 10

with M = 8 and M = 24), where p is the model order and M is the length of the STE

weight function. Speech was corrupted by additive zero-mean Gaussian white noise in five

segmental SNR categories. SD2 values were computed as an average over all the analysed

segments consisting of 654 frames from the TIMIT database.

3, this behaviour can be explained by the effect the value of M has on the shape of

the STE function and, consequently, on the general shapes of the SWLP spectral

models. In the case of a small M value, temporal fluctuations in the weighting func-

tion are greater than those computed with a larger value of M (see Figs. 2(a), 2(c)

and Figs. 3(a), 3(c)). Consequently, the weighting in the case of a small M value

emphasises samples of large amplitude more than the weight function defined with

a larger M value. In the case of zero-mean Gaussian additive noise, this implies

that the all-pole models are computed by emphasising speech samples of larger

local SNR over those with small local SNR. Hence, the resulting SWLP model

computed with a small M value is less vulnerable to additive Gaussian noise. The

results shown in Fig. 4 can also be understood from the point of view of the general

shape of the SWLP filter (see Figs. 2(b), 2(d), 3(b), and 3(d)). In the case of a small

M value the all-pole model indicates, also in the case of clean speech, a smoother

spectral behaviour than the model computed with a larger M value. In other words,

the poles of the SWLP filter computed from speech with large SNR tend to be

closer to the origin of the z-plane when the STE function is computed with a small

M value. It is understandable that an all-pole filter which has a smooth spectral

envelope is less sensitive to noise than a model with sharp resonances, which also

explains why Fig. 4 shows the best performance for the lowest value of M .

The second experiment was conducted to compare the performance of the proposed

SWLP method to that of conventional LP and MVDR in spectral modelling of noisy

speech. Since the behaviour of SWLP depends greatly on the value of the STE win-

dow length M , it was decided to compute the SWLP by using two different values

for this parameter: a large value of M = 24 corresponding to SWLP which behaves

similarly to the conventional LP, and a small value M = 8, yielding SWLP filters

10
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of smooth spectral shape similar to those computed by low order (p = 10) MVDR.

The greatest M value used in previous experiments was 24, and hence it was se-

lected to represent the SWLP with a large M value. The selection of the small

M value was accomplished by running a special experiment in which the value of

M that yielded the largest similarity between the all-pole spectra given by SWLP

and MVDR (p = 10) was searched for. This was done by running an experiment

where SD2 was computed between the MVDR and SWLP all-pole envelopes by

varying the STE window length M from 4 to 24. The SD2 values were computed

as an average over the entire (uncorrupted) training data consisting of 650 frames

from TIMIT. The result of the experiment showed that the smallest spectral distor-

tion value between SWLP and MVDR spectra was achieved with M = 8. Hence,

all the further comparisons between SWLP and low order (p = 10) MVDR were

computed by using the parameter value M = 8.

Performance of LP, MVDR, and SWLP was compared by measuring, for each

method, how much the all-pole models computed from clean speech differ from

those computed from noisy speech. SD2 was used as an objective distance measure

between the all-pole spectra extracted from clean and noisy signals. Again, noise

corruption was done by adding zero-mean Gaussian noise to the clean utterances

with five segmental SNR levels. Data consisted of 12 sentences, produced by 6

females and 6 males, taken from the TIMIT database. (These utterances were dif-

ferent from those used in the search of the M value yielding the largest similarity

between SWLP and MVDR spectra). The total number of speech frames was 650.

The SD2 value for each method in each segmental SNR category was computed as

an average over the SD2 values obtained from individual frames.

The results obtained in comparing the robustness of the three all-pole modelling

techniques are shown in Fig. 5. As a general trend, all methods show an increase in

SD2 when segmental SNR decreases. This over-all trend implies, naturally, that the

spectral difference between the clean all-pole model and the one computed from

noisy speech increases for all the methods analysed when the amount of noise is

raised. In comparing conventional LP and MVDR, the results here are in line with

previous findings indicating that LP is sensitive to noise while MVDR shows a

clearly better performance (Magi et al., 2006). The behaviour of SWLP, however,

shows the best robustness against additive Gaussian noise. In particular, SWLP

with a small M value is able to tackle the effect of additive Gaussian noise more

effectively than any of the other methods tested.

4.2 Small scale subjective tests

Next, in order to get tentative subjective evidence for the performance of low or-

der MVDR and SWLP in the modelling of both clean and noisy speech, a small

listening test was organised. In this test, subjects (n = 13) listened to 200 ms
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sounds synthesised by exciting MVDR and SWLP filters of order p = 10 by im-

pulse trains. The all-pole filters were computed with MVDR and SWLP both from

clean and noisy utterances corrupted with additive zero-mean Gaussian noise with

SNR = 10 dB. The utterances consisted of eight Finnish vowels produced by one

male and one female subject. The test involved a perceptual comparison between

three sounds (the reference sound, sound A and sound B). The reference was always

the original, clean vowel. Sounds A and B were synthesised utterances produced,

in random order, by impulse train excited MVDR and SWLP filters. In order to

involve no pitch difference between the three sounds, the impulse train was always

extracted from the reference signal. In addition, the loudness of the three sounds

were normalised by adjusting the intensity levels of the sounds to be equal. The

listener was asked to evaluate which one of the two alternatives (A or B) sounded

more like the reference. In case the listener found that the quality difference be-

tween sound A and the reference was equal to that of sound B and the reference,

she or he replied with No preference. The listener was allowed to listen to the three

sounds as many times as she or he wished. The procedure was then repeated for all

the vowels including both clean and noisy speech.

Table 1

Subjective evaluation between impulse train exited SWLP (M = 8) and MVDR filters of

order p = 10. All-pole filters were computed from clean and noisy (SNR = 10 dB) male

and female vowels.

Male vowels Female vow-

els

Preferred method clean noisy clean noisy

MVDR 17% 1% 19% 5%

SWLP 71% 73% 46% 45%

No preference 12% 26% 35% 50%

The results, shown in Table 1, indicated that for clean male vowels, the listeners

preferred the quality of the all-pole filters computed by SWLP over that given by

MVDR: in 71% of all comparisons, they rated the vowels synthesised by SWLP

to be closer in quality to the original speech, while only in 17% of the cases the

listeners were in favour of MVDR. However, there were differences between the

vowels: for /a/, /e/, /o/, /ä/, and /ö/, all the listeners preferred the sound synthesised

by SWLP while for /i/ and /u/ SWLP was preferred only in approximately 10% of

the cases. For these two vowels, both SWLP and MVDR failed to model the second

formant properly. MVDR, however, modelled the over-all spectral envelope of the

original vowel sound slightly better which might have explained the higher prefer-

ence of MVDR. When listening to the sounds synthesised from noisy speech, the

responses were even more in favour of SWLP: in 73% of all the cases, the vow-

els produced by SWLP filters were preferred, while those synthesised by MVDR

filters were preferred in only 1% of the responses. For clean female vowels, the

listeners preferred SWLP in 46% of the cases while MVDR was assessed better
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in 19% of the comparisons. Again, when listening to the sounds synthesised from

noisy speech, the listeners favoured the sounds synthesised by SWLP: in 45% of

the cases, it was considered to yield quality closer to the original speech, while

MVDR was preferred only in 5% of the cases.

4.3 Automatic speech recognition tests

As the third main part of the experiments, the performance of the proposed SWLP

method was tested in feature extraction of a speech recogniser. In the field of au-

tomatic speech recognition (ASR), the mel-frequency cepstral coefficient (MFCC)

representation is, by far, the most popular method of feature extraction. The stages

of the MFCC computation for one speech frame can be outlined as follows (O’Shaughnessy,

2000): 1) estimation of the short-time magnitude spectrum; 2) computation of log-

arithmic mel-filterbank energies using triangular bandpass filters in the frequency

domain; 3) discrete cosine transformation of the logarithmic filtered energies. In

the first stage, simple FFT (periodogram) spectrum estimation is typically used;

however, it is not the best spectrum estimation method in terms of robustness when

the signal is corrupted by noise. Indeed, it has been argued that both LP and MVDR

spectrum estimation, when substituted as the first stage of the MFCC computation,

improve noise robustness of the features in certain cases (de Wet et al., 2001; Dha-

ranipragada et al., 2007). This raises the question of whether SWLP could also offer

improvement to the robustness of ASR systems.

The performance of six different spectrum estimation methods was evaluated in

ASR: FFT, LP (p = 10), MVDR with p = 10 and p = 80, and SWLP (p = 10) with

M = 8 and M = 24. This resulted in six slightly different 12-dimensional MFCC

feature vectors, which were tested in isolated word recognition (IWR). The goal

was to focus on the effect that the short-time spectrum in itself has on robustness.

This means that the information given to the recogniser only involved the shape

of the short-time spectrum. For this reason, neither the zeroth MFCC coefficient,

which reflects frame energy, nor the inter-frame ∆/∆∆-coefficients were included

in the feature vector. It is well known that the inclusion of ∆/∆∆-coefficients,

which characterise the temporal changes of the spectrum, in the feature vector gen-

erally improves the performance of an ASR system (O’Shaughnessy, 2000). The

∆/∆∆-coefficients are, however, based on short-time spectral estimation meth-

ods. Hence, it is reasonable to assume that whenever the spectrum estimation is

distracted by noise, this will also have a negative effect on the obtained ∆/∆∆-

coefficients, resulting in lower recognition performance.

The use of IWR as the test problem can be justified by two reasons. First, state of

the art continuous speech recognisers rely heavily on language models to improve

their performance. Because language modelling compensates for shortcomings in

the acoustic modelling, it may in an unpredictable fashion mask or distort the rel-
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ative performance differences between the different features. Second, the acoustic

modelling in both continuous and connected speech recognition benefits from long-

time temporal structure. Instead, by focusing on IWR with vocabularies consisting

of fairly short and common words, which might differ by just one phoneme, it can

be argued that the feature evaluation concentrates more effectively on the impor-

tance of the correct identification of phonetic units based on the short-time spec-

trum.

The IWR system used in the present study is based on dynamic time warping

(DTW) (O’Shaughnessy, 2000). DTW has been widely replaced by HMM methods

in continuous speech recognition, the main focus of current ASR research. How-

ever, DTW is still well suited for IWR tasks and provides a good test bench for the

present purpose of feature evaluation.

The idea of DTW is to compute a meaningful time-aligned distance between two

templates, a test template T (n) consisting of NT feature vectors and a reference

template R(n) consisting of NR feature vectors, by warping their time axes in order

to synchronise acoustically similar segments in the templates. The time alignment is

accomplished by finding the minimum-cost path through a grid of NT ×NR nodes,

where each node (i, j) corresponds to a pair of feature vectors (T (i), R(j)) and

has an associated cost d(T (i), R(j)). In the current implementation, d(T (i), R(j))
was chosen to be the squared Euclidean distance between the two MFCC feature

vectors T (i) and R(j). The optimised DTW distance was given by the sum of the

node costs along the best path. The current system uses the so-called constrained

endpoints version of DTW, where the path is required to start from grid node (1, 1)
and end at node (NT, NR) (O’Shaughnessy, 2000). The local continuity constraints

of the present implementation dictate that along any permitted path any grid node

(i, j) can be reached by one move only from one of the nodes (i−1, j), (i, j−1), or

(i − 1, j − 1). Exceptions naturally occur at grid boundaries where i = 1 or j = 1.

In addition to these constraints, at most two consecutive moves from (i, j − 1) to

(i, j) are permitted, except at the grid boundary where i = NT.

The training templates were clustered (Rabiner and Juang, 1993) using complete

link agglomerative clustering (Theodoridis and Koutroumbas, 2003). This involves

computing pairwise DTW distances between all training templates corresponding

to the same vocabulary word. For each word in the vocabulary, ten clusters were

generated and one reference template was chosen from each cluster. The represen-

tative template for each cluster was chosen as the one with the minimum average

distance between it and every other template in the same cluster. During the recog-

nition phase, each test template (test word) was recognised as follows. DTW dis-

tances were computed between the test template and each reference template (of

which there are ten for each word in the vocabulary). For each vocabulary word,

the average of the three smallest DTW distances was computed. The recognition

decision was then made based on the smallest such averaged distance. Similar av-

eraging is suggested in (Rabiner and Juang, 1993).
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Fig. 6. The averaged power spectra of white noise and car factory noise from the Noisex-92

database (Varga et al., 1992), after re-sampling the signal to 8 kHz. The spectra were esti-

mated using Welch’s method with a 20 ms window.

The test material consisted of words extracted from continuous speech in the TIMIT

database. The vocabulary of the recognition task was the 21 words in the two “SA”

sentences spoken by every speaker in TIMIT. These sentences were “She had your

dark suit in greasy wash water all year” and “Don’t ask me to carry an oily rag

like that”. The training set consists of these words spoken by 136 randomly chosen

male and 136 female speakers in the “train” subset of TIMIT (this number was

chosen because it is the number of female speakers in the TIMIT “train” subset).

The testing set has the words spoken by 50 randomly chosen male and 50 randomly

chosen female speakers in the TIMIT “test” subset (which has completely different

speakers from the “train” subset). Thus, the training and testing sets contained totals

of 5712 and 2100 word tokens, respectively. A similar TIMIT-based corpus (albeit

with slightly different sizes of the training and testing sets and non-balanced male-

female speaker populations) was used in (Wu and Chan, 1993), where the best

evaluated HMM-based recognisers using single-frame acoustic features achieved a

word recognition performance of 91.0 %.

The speech material was down-sampled to 8 kHz for the evaluation. All features

were computed using a frame length of 20 ms and a frame shift of 10 ms. No

preemphasis was used. Noise corruption was done by adding prerecorded, down-

sampled noise from the Noisex-92 database (Varga et al., 1992) to the test data with

seven different segmental SNR levels. Two types of noise were used: white noise

and factory noise recorded in a carproduction hall. The averaged power spectra of

these two noise signals are shown in Fig. 6. It can be seen that the two noise types

have very different characteristics, as the spectrum of the factory noise has a steep

downward slope.

The correct recognition rates for the two noise types are shown in Tables. 2-3. For

each noise type and segmental SNR level, the two best scores are shown in bold-

face. With clean speech, the two most conventional methods, FFT-MFCC and LP-

MFCC, showed the best performance. The results for FFT-MFCC and LP-MFCC
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are in agreement with a previous study, which found LP-based MFCC features

to be more robust than their FFT-based counterparts in moderate noise conditions

(de Wet et al., 2001). MVDR-MFCC with p = 10 slightly outperformed FFT-

MFCC in white noise with some segmental SNR levels, while MVDR-MFCC with

p = 80 showed, in general, modest improvement over FFT-MFCC in factory noise.

Considering that the factory noise used here is of a low-pass type, like most other

real-world noises used in other studies, the latter observation appears to be well in

line with the findings reported in the literature, e.g. (Dharanipragada et al., 2007).

The SWLP-MFCC features were superior to the other methods in white noise con-

ditions, in particular when used with the parameter value M = 8. With factory

noise, SWLP-MFCC became the best method when speech was severely corrupted

by noise (that is SNR < 0 dB), and in these cases SWLP-MFCC was on an average

10 percentage units better than the baseline FFT-MFCC.

Table 2

Correct recognition rates (%) with white noise. Two best scores are shown in boldface

Signal to noise ratio (dB)

Feature vector CLEAN 20 15 10 5 0 -5 -10

FFT-MFCC 90.9 86.5 78.3 61.7 42.1 24.6 13.3 8.7

LP-MFCC 91.6 87.8 80.0 65.9 49.9 32.7 15.7 7.2

MVDR-MFCC, p=10 89.5 84.8 75.8 60.3 44.2 28.0 13.1 6.9

MVDR-MFCC, p=80 89.7 85.2 76.6 61.7 45.0 25.8 12.3 6.2

SWLP-MFCC, M=8 88.7 86.7 82.5 73.7 58.0 38.5 19.2 9.5

SWLP-MFCC, M=24 90.3 87.8 84.3 73.6 54.0 32.0 15.4 7.2

Table 3

Correct recognition rates (%) with car factory noise. Two best scores are shown in boldface

Signal to noise ratio (dB)

Feature v ector CLEAN 20 15 10 5 0 -5 -10

FFT-MFCC 90.9 89.3 88.0 86.0 78.8 65.5 43.2 22.9

LP-MFCC 91.6 91.2 90.5 88.4 83.3 69.7 49.3 26.8

MVDR-MFCC, p=10 89.5 87.9 85.6 82.0 73.3 57.2 38.4 21.5

MVDR-MFCC, p=80 89.7 89.8 88.1 86.4 81.1 68.1 45.9 24.4

SWLP-MFCC, M=8 88.7 88.4 87.1 83.5 78.6 67.1 50.9 30.4

SWLP-MFCC, M=24 90.3 89.2 87.3 85.3 79.4 67.9 51.9 34.8

The results indicate that SWLP-based feature extraction outperformed the other

techniques in recognition of speech corrupted by white noise already at segmen-

tal SNR v alue of 20 dB. In the case of factory noise, the major improv ements

achiev ed by SWLP occurred at clearly smaller segmental SNR v alues of −5 dB
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and −10 dB. The difference in the performance of SWLP between the two noise

types can be explained by the fact that in the case of white noise, upper frequencies

of voiced speech are masked by noise already at reasonably high segmental SNR

levels. This, in turn, implies that traditional spectral modelling techniques, such as

LP, cannot model upper formants properly from speech corrupted by white noise.

The proposed SWLP, however, emphasises the contribution of speech samples dur-

ing the closed phase of the glottal cycle and thereby models formants during the

time span inside the fundamental period when the resonances are more prominent

(see Sec. 3). This implies that higher formants modelled by SWLP are less likely

to be masked by additive noise as severely as those modelled by LP and, conse-

quently, the acoustical cues embedded in them will be more effectively used in the

feature extraction. The spectral envelope of factory noise, however, is of a low-pass

nature and reminds that of voiced speech. Therefore, higher formants of speech

corrupted by factory noise are not distorted severely until at the lowest segmental

SNR categories below 0 dB. Hence, the improved recognition accuracy achieved

by the proposed SWLP method takes place at the lowest values of the segmental

SNR range in the case the additive noise is of low-pass nature.

5 Summary

LP was analysed in this study by using temporal weighting of the residual energy.

The work is based on the previous study by Ma et al. (1993) where the concept

of WLP was introduced by applying short-time energy waveform as the weighting

function. In contrast to the original work by Ma et al., the present study established

a modified STE weighting which guarantees the stability of the resulting all-pole

filter. This new method, named stabilised weighed linear prediction, was then com-

pared to two known all-pole modelling methods, conventional LP and minimum

variance distortionless response, by analysing speech corrupted by additive noise.

It was shown that the proposed SWLP method gave the best performance in ro-

bustness against noise when quantifying the difference between the clean and noisy

spectral envelopes using the objective spectral distortion measure SD2. This finding

was also corroborated by a small subjective test in which the majority of the listen-

ers assessed quality of impulse train excited SWLP all-pole filters extracted from

noisy speech to be perceptually closer to original clean speech than the correspond-

ing all-pole responses computed by MVDR. Finally, SWLP was compared to other

short-time spectral estimation methods in isolated word recognition experiments.

It was shown to improve recognition accuracy already at moderate segmental SNR

values for sounds corrupted by white noise. For realistic factory noise of low pass

characteristics, the proposed method improved the recognition results at segmental

SNR levels below 0 dB.

In difference to the original work by Ma et al. (1993), the present study also focused

on how the length of the STE window, the parameter M , affects the general shapes
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of the all-pole envelopes given by WLP. It was shown, importantly, that by choosing

the value of M properly, the behaviour of SWLP can be adjusted to be similar to

either LP (corresponding to large M values) or to MVDR (corresponding to small

M values). This makes SWLP an attractive method for speech processing because

it enables, with the same method, the computation of stable all-pole filters that yield

spectral envelopes which are either smooth or of large dynamics. In particular, we

believe that the proposed SWLP method when combined with a properly chosen

value of M might become a potential technique in the development of new feature

detection methods for recognition of noisy speech. This argument is justified by the

increasing interest shown recently in the speech recognition community towards the

MVDR technique, due to its promising performance in producing cepstral features

for the recognition of noisy speech (Wölfel et al., 2003; Dharanipragada et al.,

2007). The current study, however, shows evidence that MVDR is outperformed in

robustness by the proposed SWLP in cases when the level of noise corruption is

moderate to high. Hence, there are promising areas of future study in examining

how the concept of WLP affects the recognition of noisy speech, when used in a

state-of-the-art HMM-based continuous speech recognition framework.

A Stability of SWLP All-P ole Filter

In this section, a proof is presented for the minimum phase property of the SWLP

inverse filter A(z) = 1 + a1z
−1 + . . . + apz

−p, where the coefficients ai are solved

from Eq. 6. The structure of the proof is similar to that given in (Delsarte et al.,

1982), but for the sake of completeness a more detailed treatment is given in the

following.

Rewrite Eq. 6 in the case when the autocorrelation matrix R is factorised as R =
YTY and Y = [y0 y1 · · · yp] ∈ R

(N+p)×(p+1):
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. (A.1)

In the SWLP model formulation, the columns yi of matrix Y were generated via

Eq. 9, using matrix B from Eq. 11. However, the column vectors yi of matrix Y

can be expressed by the following reverse equation

yk = Myk+1 k = 0, 1, . . . , p − 1, (A.2)
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where

M :=





























0 1/B2,1 0 · · · 0

0 0 1/B3,2
. . .

...

...
...

. . .
. . . 0

0 0 · · · 0 1/BN+p,N+p−1

0 0 · · · 0 0





























(A.3)

and Bi+1,i are the elements of matrix B from Eq. 11. Matrix M, defined in Eq. A.3,

is a nilpotent 3 operator with power of nilpotency n = N + p. Moreover, the norm

of the Hilbert space for the matrix M is clearly equal to

‖M‖2 = max
n

{1/Bn+1,n} = max
n

{
√

wn/wn+1}. (A.4)

Note that, according to Eq. 11, 1 ≤ Bn+1,n < ∞, ∀n which implies that ‖M‖2 ≤
1.

Defining the matrices Y0 := [y0 y1 · · · yp−1] ∈ R
(N+p)×p and Y1 := [y1 y2 · · · yp] ∈

R
(N+p)×p and corresponding subspaces Y0 := span{y0, . . . ,yp−1} ⊂ C

N+p and

Y1 := span{y1, . . . ,yp} ⊂ C
N+p (where the base field is C), respectively. Note

that the reverse equation A.2 can be written in a more compact form

Y0 = MY1. (A.5)

Next, define the symmetric linear projection operator P : C
N+p → Y1 as

P := Y1(Y
T
1 Y1)

−1YT
1 . (A.6)

Thus, for all v ∈ Y1 the projection operator has the property

Pv = v. (A.7)

By rearranging Eq. A.1, the coefficients a = [a1 · · · ap]
T

can be solved from the

equation

a = −(YT
1 Y1)

−1YT
1 y0. (A.8)

From this equation yet another important property for the projection operator P is

obtained:

Py0 = Y1(Y
T
1 Y1)

−1YT
1 y0 = −Y1a. (A.9)

Lemma 1. The zeros of the inverse filter A(z) of the SWLP model are the nonzero

eig envalues of linear operator PM : C
N+p → Y1.

3 Matrix A is nilpotent with power of nilpotency n if n is the smallest integer such that

A
n

= 0.
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Proof. Take the eigenpair (v, λ) of the linear operator PM, where the eigenvector

v ∈ Y1 can be expressed as v = Y1ξ, where ξ = [ξ1 · · · ξp]
T ∈ C

p is the

coordinate vector with respect to the basis of space Y1. Using Eqs. A.5, A.7, A.9

gives

λY1ξ = PMY1ξ = PY0ξ

=
[

Py0 Py1 · · · Pyp−1

]

ξ

=
[

−Y1a y1 · · · yp−1

]

ξ

= Y1Cξ,

(A.10)

where

C =





















−a1

−a2 I(p−1)×(p−1)

...

−ap 0 · · · 0





















(A.11)

is the companion matrix of the inverse filter A(z), that is the zeros of A(z) are the

eigenvalues of C. According to Eq. A.10

Y1Cξ = λY1ξ

Y1(Cξ − λξ) = 0

Cξ = λξ,

(A.12)

where the last implication is due to the fact that

{x ∈ C
p | Y1x = 0} = ∅.

Theorem 1. The zeros of the inverse filter A(z) of the SWLP model are located

inside a circle with centre at the origin and radius

ρ = max
n

{
√

wn/wn+1} cos

(

π

N + p + 1

)

.

Proof. Take a normalised eigenvector v ∈ Y1 and the corresponding eigenvalue

λ ∈ C of the linear operator PM. Straightforward calculation gives

λ = λ‖v‖2 = vT λv = vTPMv

= (Pv)TMv = vTMv ∈ F(M).
(A.13)

Hence, the zeros of the inverse filter A(z) belong to the numerical range F(M)
of nilpotent linear operator M. It has been proved in (Karaev, 2004) that the nu-

merical range of the nilpotent operator M with power of nilpotency N + p is
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a circle (open or closed) with centre at the origin and radius ρ not exceeding

‖M‖2 cos( π
N+p+1

). Hence, according to Eq. A.4, the zeros of the inverse filter

A(z) of the SWLP model are located inside a circle with centre at the origin and

with radius ρ = maxn{
√

wn/wn+1} cos
(

π
N+p+1

)

. Note that, in the SWLP method,

maxn{
√

wn/wn+1} ≤ 1 according to Eq. 11, which guarantees the stability of the

corresponding all-pole filter 1/A(z).
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