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We analyze the radial symmetry of extremals for a class of interpolation inequalities known as Caffarelli-Kohn-Nirenberg inequalities, and for a class of weighted logarithmic Hardy inequalities which appear as limiting cases of the first ones. In both classes we show that there exists a continuous surface that splits the set of admissible parameters into a region where extremals are symmetric and a region where symmetry breaking occurs. In previous results, the symmetry breaking region was identified by showing the linear instability of the radial extremals. Here we prove that symmetry can be broken even within the set of parameters where radial extremals correspond to local minima for the variational problem associated with the inequality. For interpolation inequalities, such a symmetry breaking phenomenon is entirely new.

Introduction and main results

In this paper we are interested in the symmetry properties of extremals for a family of interpolation inequalities established by Caffarelli, Kohn and Nirenberg in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]. We also address the same issue for a class of weighted logarithmic Hardy inequalities which appear as limiting cases of the first ones, see [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF][START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]. Caffarelli-Kohn-Nirenberg interpolation inequalities [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] and the weighted logarithmic Hardy inequality [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] are respectively the main results of [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] and [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF]. Existence of extremals has been studied in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]. We shall assume that all constants in the inequalities are taken with their optimal values. For brevity, we shall call extremals the functions which attain equality in [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] or in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. Note that the set D 1,2 a (R d ) denotes the completion with respect to the norm

u → |x| -a ∇u 2 L 2 (R d ) + |x| -(a+1) u 2 L 2 (R d )
of the set D(R d \ {0}) of smooth functions with compact support contained in R d \ {0}.

The parameters a < ac and Λ = Λ(a) > 0 are in one-to-one correspondence and it could look more natural to ask the constants C CKN and C WLH to depend on a rather than on Λ. As we shall see later, it turns out to be much more convenient to express all quantities in terms of Λ, once the problem has been reformulated using the Emden-Fowler transformation. Furthermore, we can notice that the restriction a < ac can be removed using a transformation of Kelvin type: see [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] and Section 2.1 for details.

In the sequel we will denote by C * CKN (θ, p, Λ) and C * WLH (γ, Λ) the optimal constants in (1) and ( 2) respectively, when considered among radially symmetric functions. In this case the corresponding extremals are known (see [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF]) and the constants can be explicitly computed:

C * CKN (θ, p, Λ) := Λ (p-2) 2 2+(2θ-1) p p-2 2 p 2+(2θ-1) p 2 p θ Λ θ 4 p+2 6-p 2 p Γ 2 p-2 + 1 2 √ π Γ 2 p-2 p-2 p , C * WLH (γ, Λ) = 1 4 γ [Γ ( d 2 )] 1 2 γ
(2 π d+1 e) The main goal of this paper is to distinguish the set of parameters (θ, p, Λ) and (γ, Λ) for which equality holds in the above inequalities from the set where the inequality is strict.

To this purpose, we recall that when θ = 1 and d ≥ 2, symmetry breaking for extremals of (1) has been proved in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] when a < 0 and p > 2 ac -a Λ(a) + d -1 .

In other words, for θ = 1 and

a < A(p) := ac -2 d -1 (p + 2)(p -2)
< 0 , we have C * CKN (θ, p, Λ) < C CKN (θ, p, Λ). This result has been extended to the case θ ∈ [ϑ(p, d), 1] in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF]. Let By rewriting the condition θ < Θ(a, p, d) in terms of a, we find that in the set

Θ(a, p, d) := p -2 32 (d -1) p (p + 2) 2 (d 2 + 4 a 2 -4 a (d -2)) -4 p (p + 4) (d -1) and a -(p) := ac - 2 (d -1) p + 2 . Proposition 1 [4] Let d ≥ 2, 2 < p < 2 *
{(θ, p) : ϑ(p, d) ≤ θ ≤ 1 , p ∈ (2, 2 * )} the function a(θ, p) := ac - 2 √ d -1 p + 2 2 p θ p -2 -1 (3) 
takes values in (-∞, ac) and is such that symmetry breaking holds for any a < a(θ, p).

Notice in particular that a -(p) = a(ϑ(p, d), p) and that we recover the condition a < A(p) for θ = 1. Before going further, let us comment on the nature of the above symmetry breaking result. Among radially symmetric functions, extremals are uniquely defined up to a multiplication by a constant and a scaling. Denote by u * the unique radial extremal in (1) under an appropriate normalization (see [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] for details). Conditions a < A(p) = a(1, p) for θ = 1 and a < a(θ, p) for θ < 1 correspond exactly to the values of the parameters for which the linearized operator associated to the functional F θ,p,Λ (see Section 2.2) around u * in the space orthogonal to the radial functions admits a negative eigenvalue, while it is positive definite for a > a(θ, p). Thus, in the first case, u * no longer corresponds to a minimizer for the variational problem associated with the inequality. Also notice that, if for a sequence of non-radial extremals (un)n, (an)n converges to some a and (un)n converges to a radial extremal u * , then a = a(θ, p).

As in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF], it is worthwhile to observe that if a < -1/2, then

d 4 = ∂ ∂p ϑ(p, d) |p=2 < ∂ ∂p Θ(a, p, d) |p=2 = 1 4 + Λ(a) d -1 .
This is consistent with the limiting case θ = γ (p -2) and p → 2 + corresponding to the the weighted logarithmic Hardy inequality (2).

Proposition 2 [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] Let d ≥ 2 and a < -1/2. Assume that γ > 1/2 if d = 2 and

d 4 ≤ γ < 1 4 + Λ(a) d -1 ,
then the optimal constant C WLH (γ, Λ(a)) in inequality [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] is not achieved by a radial function.

In other words, letting

ã(γ) := ac - 1 2 (d -1)(4 γ -1) (4) 
then, for any given γ > d/4, symmetry breaking occurs whenever a ∈ (-∞, ã(γ)).

A first step of our analysis is to counterbalance the above symmetry breaking results with some symmetry results. To this purpose we recall that for θ = 1, radial symmetry for extremals of (1) was proved by various methods in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF][START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF][START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] if 0 ≤ a < ac. We shall extend these results to the case θ < 1 using the method of [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. Our first new result is based on Schwarz' symmetrization, and states the following:

Theorem 2 For any d ≥ 3, p ∈ (2, 2 * ), there is a curve θ → ā(θ, p) such that, for any a ∈ [ā(θ, p), ac), C CKN (θ, p, Λ(a)) = C * CKN (θ, p, Λ(a))
. Moreover, lim θ→1-ā(θ, p) = 0, and lim θ→0+ ā(θ, p) = ac.

At this point, d = 2 is not covered and we have no corresponding result for the weighted logarithmic Hardy inequality. Actually, numerical computations (see Fig. 1) do not indicate that our method, which is based on Schwarz' symmetrization, could eventually apply to the logarithmic Hardy inequality.

As for the case θ = 1, d ≥ 2, where symmetry is known to hold for (1) in a neighborhood of a = 0 -, for b > 0: see [START_REF] Lin | Erratum to: "Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF][START_REF]Symmetry of extremal functions for the Caffarrelli-Kohn-Nirenberg inequalities[END_REF][START_REF] Smets | Partial symmetry and asymptotic behavior for some elliptic variational problems[END_REF][START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF][START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], the symmetry result of Theorem 2 is far from sharp. Indeed, for θ = 1, it has recently been proved in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] that symmetry also holds for p in a neighborhood of 2 + , and that there is a continuous curve p → a(p) such that symmetry holds for any a ∈ (a(p), ac), while extremals are not radially symmetric if a ∈ (-∞, a(p)). We shall extend this result to the more general interpolation inequalities (1) and to [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF].

Notice that establishing radial symmetry in the case 0 < θ < 1 in (1) poses a more delicate problem than when θ = 1, because of the term |x| -(a+1) u

2 (1-θ) L 2 (R d )
. Nonetheless, by adapting the arguments of [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], we shall prove that a continuous surface splits the set of parameters into two sets that identify respectively the symmetry and symmetry breaking regions. The case d = 2 is also covered, while it was not in Theorem 2.

Theorem 3 For all d ≥ 2, there exists a continuous function a * defined on the set 1) has only radially symmetric extremals. (ii) If (a, p) ∈ (-∞, a * (θ, p)) × (2, 2 * ), none of the extremals of (1) is radially symmetric. (iii) For every p ∈ (2, 2 * ), a(θ, p) ≤ a * (θ, p) ≤ ā(θ, p) < ac.

{(θ, p) ∈ (0, 1]×(2, 2 * ) : θ > ϑ(p, d)} with values in (-∞, ac) such that lim p→2+ a * (θ, p) = -∞ and (i) If (a, p) ∈ (a * (θ, p), ac) × (2, 2 * ), (
Surprisingly, the symmetry in the regime a → ac appears as a consequence of the asymptotic behavior of the extremals in (1) for θ = 1 as a → -∞, which has been established in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. Symmetry holds as p → 2 + for reasons which are similar to the ones found in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF].

Concerning the weighted logarithmic Hardy inequality [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], we observe that it can be obtained as the limiting case of inequality (1) as p → 2 + , provided θ = γ (p -2). Actually, in this limit, the inequality degenerates into an equality, so that (2) is obtained by differentiating both sides of the inequality with respect to p at p = 2. It is therefore remarkable that symmetry and symmetry breaking results can be extended to [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], which is a kind of first order correction to Hardy's inequality. Inequality (2) has been established recently and so far no symmetry results were known for its extremals. Here is our first main result: Theorem 4 Let d ≥ 2, there exists a continuous function a * * : (d/4, ∞) → (-∞, ac) such that for any γ > d/4 and a ∈ [a * * (γ), ac), there is a radially symmetric extremal for (2), while for a < a * * (γ) no extremal of (2) is radially symmetric. Moreover, a * * (γ) ≥ ã(γ) for any γ ∈ (d/4, ∞).

Theorems 3 and 4 do not allow to decide whether (θ, p) → a * (θ, p) and γ → a * * (γ) coincide with (θ, p) → a(θ, p) and γ → ã(γ) given by ( 3) and (4) respectively. If the set of non-radial extremals bifurcates from the set of radial extremals, then a * = a in case of (1) and a * * = ã in case of (2). Moreover, most of the known symmetry breaking results rely on linearization and the method developed in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] for proving symmetry and applied in Theorems 3 and 4 also relies on linearization. It would therefore be tempting to conjecture that a * = a and a * * = ã. It turns out that this is not the case. We are now going to establish a new symmetry breaking phenomenon, outside the zone of instability of the radial extremal, i.e. when a > a, for some values of θ < 1 for (1) and for some a > ã(γ) in case of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. These are striking results, as they clearly depart from previous methods.

Theorem 5 Let d ≥ 2. There exists η > 0 such that for every p ∈ (2, 2+η) there exists an ε > 0 with the property that for θ ∈ [ϑ(p, d), ϑ(p, d) + ε) and a ∈ [a(θ, p), a(θ, p) + ε), no extremal for (1) corresponding to the parameters (θ, p, a) is radially symmetric.

Notice that there is always an extremal function for (1) if θ > ϑ(p, d), and also in some cases if θ = ϑ(p, d). See [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF] for details. The plots in Fig. 2 provide a value for η.

We have a similar statement for logarithmic Hardy inequalities, which is our third main result. Let

Λ SB (γ, d) := 1 8 (4 γ -1) e π 4 γ-d-1 16 1 4 γ-1 d γ 4 γ 4 γ-1 Γ d 2 2 4 γ-1 .
(5)

Theorem 6 Let d ≥ 2 and assume that γ > 1/2 if d = 2. If Λ(a) > Λ SB (γ, d),
then there is symmetry breaking: no extremal for (2) corresponding to the parameters (γ, a) is radially symmetric. As a consequence, there exists an

ε > 0 such that, if a ∈ [ã(γ), ã(γ) + ε) and γ ∈ [d/4, d/4 + ε), with γ > 1/2 if d = 2
, there is symmetry breaking.

This result improves the one of Proposition 2, at least for γ in a neighborhood of (d/4) + . Actually, the range of γ for which Λ SB (γ, d) < Λ(γ) can be deduced from our estimates, although explicit expressions are hard to read. See Fig. 4 and further comments at the end of Section 5.

This paper is organized as follows. Section 2 is devoted to preliminaries (Emden-Fowler transform, symmetry breaking results based on the linear instability of radial extremals) and to the proof of Theorem 2 using Schwarz' symmetrisation. Sections 3 and 4 are devoted to the proofs of Theorems 3 and 4 respectively. Theorems 5 and 6 are established in Section 5.

Preliminaries

The Emden-Fowler transformation

Consider the Emden-Fowler transformation

u(x) = |x| -(d-2-2a)/2 w(y) where y = (s, ω) ∈ R × S d-1 =: C , x ∈ R d , s = -log |x| ∈ R and ω = x/|x| ∈ S d-1 .
The scaling invariance in R d becomes a translation invariance in the cylinder C, in the s-direction, and radial symmetry for a function in R d becomes dependence on the svariable only. Also, invariance under a certain Kelvin transformation in R d corresponds to the symmetry s → -s in C. More precisely, a radially symmetric function u on R d , invariant under the Kelvin transformation u(x) → |x| 2 (a-ac) u(x/|x| 2 ), corresponds to a function w on C which depends only on s and satisfies w(-s) = w(s). We shall call such a function a s-symmetric function.

Under this transformation, (1) can be stated just as an interpolation inequality in H 1 (C). Namely, for any w ∈ H 1 (C),

w 2 L p (C) ≤ C CKN (θ, p, Λ) ∇w 2 L 2 (C) + Λ w 2 L 2 (C) θ w 2 (1-θ) L 2 (C) (6) 
with Λ = Λ(a) = (ac -a) 2 . With these notations, recall that

Λ = 0 ⇐⇒ a = ac and Λ > 0 ⇐⇒ a < ac .
At this point it becomes clear that a < ac or a > ac plays no role and only the value of Λ > 0 matters. Similarly, by the Emden-Fowler transformation, (2) becomes

C |w| 2 log |w| 2 dy ≤ 2 γ log C WLH (γ, Λ) ∇w 2 L 2 (C) + Λ , (7) 
for

any w ∈ H 1 (C) normalized by w 2 L 2 (C) = 1, for any d ≥ 1, a < ac, γ ≥ d/4, and γ > 1/2 if d = 2.

Linear instability of radial extremals

Symmetry breaking for extremals of ( 7) has been discussed in detail for θ = 1 in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF], and by the same methods in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF], where symmetry breaking has been established also when θ ∈ (0, 1). The method goes as follows. Consider an extremal w * for (6) among s-symmetric functions. It realizes a minimum for the functional

F θ,p,Λ [w] := ∇w 2 L 2 (C) + Λ w 2 L 2 (C) w 2 1-θ θ L 2 (C) w 2/θ L p (C) (8) 
among functions depending only on s and F θ,p,Λ [w * ] = C * CKN (θ, p, Λ) -1/θ . Once the maximum of w * is fixed at s = 0, since w * solves an autonomous ordinary differential equation, by uniqueness, it automatically satisfies the symmetry w * (-s) = w * (s) for any s ∈ R. Next, one linearizes F θ,p,Λ around w * . This gives rise to a linear operator, whose kernel is generated by dw * /ds and which admits a negative eigenvalue in H 1 (C) if and only if a < a(θ, p), that is for

Λ > Λ(θ, p) := (ac -a(θ, p)) 2 ,
where the function a(θ, p) is defined in (3). Hence, if a < a(θ, p), it is clear that F θ,p,Λ -F θ,p,Λ [w * ] takes negative values in a neighbourhood of w * in H 1 (C) and extremals for (6) cannot be s-symmetric, even up to translations in the s-direction. By the Emden-Fowler transformation, extremals for (1) cannot be radially symmetric.

Remark 1 Theorem 5 asserts that there are cases where a > a(θ, p), so that the extremal s-symmetric function w * is stable in H 1 (C), but for which symmetry is broken, in the sense that we prove C * CKN (θ, p, Λ) < C CKN (θ, p, Λ). This will be studied in Section 5.

In the case of the weighted logarithmic Hardy inequality, symmetry breaking can be investigated as in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] by studying the linearization of the functional

G γ,Λ [w] := ∇w 2 L 2 (C) + Λ w 2 L 2 (C) w 2 L 2 (C) exp 1 2 γ C w 2 w 2 L 2 (C) log w 2 w 2 L 2 (C) dy . ( 9 
)
around an s-symmetric extremal w * . In this way one finds that extremals for inequality [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] are not s-symmetric whenever d ≥ 2,

Λ > Λ(γ) := 1 4 (d -1)(4 γ -1) = Λ(ã(γ)) .

Proof of Theorem 2

As in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], we shall prove Theorem 2 by Schwarz' symmetrization after rephrasing (1) as follows. To u ∈ D 1,2 a (R d ), we may associate the function v ∈ D 1,2 0 (R d ) by setting:

u(x) = |x| a v(x) ∀ x ∈ R d .
Inequality ( 1) is then equivalent to

|x| a-b v 2 L p (R d ) ≤ C CKN (θ, p, Λ) (A -λ B) θ B 1-θ with A := ∇v 2 L 2 (R d ) , B := |x| -1 v 2 L 2 (R d ) and λ := a (2 ac -a). We observe that the function B → h(B) := (A -λ B) θ B 1-θ satisfies h ′ (B) h(B) = 1 -θ B - λ θ A -λ B
.

By Hardy's inequality, we know that

A -λ B ≥ inf a>0 A -a (2 ac -a) B = A -a 2 c B > 0 for any v ∈ D 1,2 0 (R d ) \ {0}. As a consequence, h ′ (B) ≤ 0 if (1 -θ) A < λ B . ( 10 
)
If this is the case, Schwarz' symmetrization applied to v decreases A, increases B, and therefore decreases ( 1) is then reached among radial functions. Notice that λ > 0 is required by our method and hence only the case ac > 0, i.e. d ≥ 3, is covered.

A -λ B) θ B 1-θ , while it increases |x| a-b v 2 L p (R d ) . Optimality in (
Let t := A B -a 2 c .
Condition [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF] 

amounts to t ≤ θ a 2 c -(ac -a) 2 1 -θ . ( 11 
)
If u is a minimizer for [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF], it has been established in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]Lemma 3.4] that

(t + Λ) θ ≤ (C CKN (1, 2 * , a 2 c )) ϑ(d,p) C * CKN (θ, p, 1) (ac -a) 2 θ-2 d ϑ(p,d) t+ a 2 c ϑ(d,p) . ( 12 
)
For completeness, we shall briefly sketch the proof of ( 12) below in Remark 5. The two conditions ( 11) and (12) determine two upper bounds for t, which are respectively monotone decreasing and monotone increasing in terms of a. As a consequence, they are simultaneously satisfied if and only if a ∈ [a 0 , ac), where a 0 is determined by the equality case in [START_REF] Horiuchi | Best constant in weighted Sobolev inequality with weights being powers of distance from the origin[END_REF] and [START_REF] Lin | Erratum to: "Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. See Remark 2 Although this is not needed for the proof of Theorem 2, to understand why symmetry can be expected as a → ac, it is enlightening to consider the moving planes method. With the above notations, if u is an extremal for (1), then v is a solution of the Euler-Lagrange equation

- θ A -λ B ∆v + 1 -θ B - θ λ A -λ B v |x| 2 = v p-1 |x| -(b-a) v p L p (R d ) . If d = 2, then λ = -a 2 < 0 and 1-θ B -θ λ A-λ B is always positive. If d ≥ 3, 1-θ B -θ λ A-λ B
is negative if and only if [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF] holds. Assume that this is the case. Using the Emden-Fowler transformation defined in Section 2.1, we know that the corresponding solution on the cylinder is smooth, so that v has no singularity except maybe at x = 0. We can then use the moving planes technique and prove that v is radially symmetric by adapting the results of [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF][START_REF] Esteban | Nonexistence result for positive solutions of nonlinear elliptic degenerate problems[END_REF]. Using Hardy's inequality, (d -2) 2 B ≤ 4 A, also notice that (10) cannot hold unless

θ > (d -2 -2a) 2 (d -2) 2 = (ac -a) 2 a 2 c .
This imposes that a → ac as θ → 0 + . Compared to [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R n[END_REF], a numerical investigation (see Fig. 1) shows that this last condition is qualitatively correct.

3 Radial symmetry for the Caffarelli-Kohn-Nirenberg inequalities

In this section, we shall first establish some a priori estimates which will allow us to adapt the method of [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] to the case of inequality (1).

A priori estimates

Recall that if u and w are related via the Emden-Fowler transformation, u is radially symmetric if and only if w is independent of the angular variables. The following result is taken from [2, Theorem 1.2, (i), p. 231], where θ = 1. Here we are interested in the regime corresponding to a → -∞.

Lemma 1 Let d ≥ 1 and p ∈ (2, 2 * ). For any t > 0, there exists a constant c(d, p, t) such that

1 c(d, p, t) w 2 L p (C) ≤ ∇w 2 L 2 (C) + t w 2 L 2 (C) ∀ w ∈ H 1 (C)
and

lim t→∞ t d p -ac c(d, p, t) = sup u∈H 1 (R d )\{0} u 2 L p (R d ) ∇u 2 L 2 (R d ) + u 2 L 2 (R d ) =: Sp(R d ) .
In other words, as t → +∞, we have

t d p -ac w 2 L p (C) ≤ Sp(R d ) (1 + o(1)) ∇w 2 L 2 (C) + t w 2 L 2 (C)
for any given p ∈ (2, 2 * ).

Remark 3 Sp(R d ) is the best constant in the Gagliardo-Nirenberg inequality

u 2 L p (R d ) ≤ Sp(R d ) ∇u 2 L 2 (R d ) + u 2 L 2 (R d )
and t d p -ac is the factor which appears by the scaling

u → t -(d-2)/4 u(•/ √ t), that is t d p -ac u 2 L p (R d ) ≤ Sp(R d ) ∇u 2 L 2 (R d ) + t u 2 L 2 (R d )
for all t > 0. This is natural in view of the analysis done in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. We also observe that lim p→2 Sp(R d ) = 1.

From Lemma 1, we can actually deduce that the asymptotic behavior of c(d, p, t) as t → ∞ is uniform in the limit p → 2.

Corollary 1 Let d ≥ 1 and q ∈ (2, 2 * ). For any p ∈ [2, q], c(d, p, t) ≤ t -ζ [c(d, q, t)] 1-ζ ∀ t > 0 with ζ = 2 (q-p)
p (q-2) . As a consequence,

lim t→∞ sup p∈[2,q] t d p -ac c(d, p, t) ≤ Sq(R d ) q (p-2)
p (q-2) .

Proof Using the trivial estimate

w 2 L 2 (C) ≤ 1 t ∇w 2 L 2 (C) + t w 2 L 2 (C) ,
the estimate of Lemma 1

w 2 L q (C) ≤ c(d, q, t) ∇w 2 L 2 (C) + t w 2 L 2 (C)
and Hölder's interpolation:

w L p (C) ≤ w ζ L 2 (C) w 1-ζ L q (C)
, we easily get the first estimate. Since where S * (d) = C CKN (1, 2 * , a 2 c ) is the optimal constant in Sobolev's inequality: for any

u ∈ H 1 (R d ), u 2 L 2 * (R d ) ≤ S * (d) ∇u 2 L 2 (R d ) .
Consider the functional F θ,p,Λ defined by ( 8) on H 1 (C). A minimizer exists for any p > 2 if d = 1 or d = 2, and p ∈ (2, 2 * ) if d ≥ 3. See [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF] for details if θ = 1 and [5, Theorem 1.3 (ii)] if θ ∈ (ϑ(p, d), 1). The special, limiting case θ = ϑ(p, 1) is discussed in [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF] if d = 1 and in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF] if d ≥ 1. From now on, we denote by w = w θ,p,Λ an extremal for [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], whenever it exists, that is, a minimizer for F θ,p,Λ . It satisfies the following Euler-Lagrange equations,

-θ ∆w + ((1 -θ) t + Λ) w = (t + Λ) 1-θ w p-1 with t := ∇w 2 L 2 (C) / w 2 L 2 (C)
, when we assume the normalization condition

∇w 2 L 2 (C) + Λ w 2 L 2 (C) θ w 2 (1-θ) L 2 (C) = w p L p (C) .
Such a condition can always be achieved by homogeneity and implies

w p-2 L p (C) = 1 C CKN (θ, p, Λ) . ( 13 
)
As a consequence of the Euler-Lagrange equations, we also have

∇w 2 L 2 (C) + Λ w 2 L 2 (C) = (t + Λ) 1-θ w p L p (C) . ( 14 
)
Remark 5 If w is a minimizer for F θ,p,Λ , then we know that

(t + Λ) θ w 2 L 2 (C) = w 2 L p (C) C CKN (θ, p, Λ) ≤ w 2 L p (C) C * CKN (θ, p, Λ) = w 2 L p (C) C * CKN (θ, p, 1) Λ θ-p-2 2 p .
On the other hand, by Hölder's inequality:

w L p (C) ≤ w ϑ(d,p) L 2 * (C) w 1-ϑ(d,p) L 2 (C)
, and by Sobolev's inequality (cf. Remark 4) written on the cylinder, we know that

w 2 L p (C) ≤ (S * (d)) ϑ(p,d) w 2 ϑ(d,p) L 2 * (C) w 2 (1-ϑ(d,p)) L 2 (C) = (S * (d)) ϑ(p,d) ∇w 2 L 2 (C) + a 2 c w 2 L 2 (C) ϑ(p,d) w 2 (1-ϑ(p,d)) L 2 (C) = (S * (d)) ϑ(p,d) t + a 2 c ϑ(p,d) w 2 L 2 (C) .
Collecting the two estimates proves [START_REF] Lin | Erratum to: "Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] for v(x) = |x| -ac w(s, ω), where s =log |x| and ω = x/|x|, for any x ∈ R d (Emden-Fowler transformation written for a = 0).

As in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF], we can assume that the extremal w = w θ,p,Λ depends only on s and on an azimuthal angle φ ∈ (0, π) of the sphere, and thus satisfies

-θ ∂ssw + D φ (∂ φ w) + ((1 -θ) t + Λ) w = (t + Λ) 1-θ w p-1 . ( 15 
)
Here we denote by ∂sw and ∂ φ w the partial derivatives with respect to s and φ respectively, and by D φ the derivative defined by: D φ w := (sin φ) 2-d ∂ φ ((sin φ) d-2 w). Moreover, using the translation invariance of (6) in the s-variable, the invariance of the functional F θ,p,Λ under the transformation (s, ω) → (-s, ω) and the sliding method, we can also assume without restriction that w is such that

       w(s, φ) = w(-s, φ) ∀ (s, φ) ∈ R × (0, π) , ∂sw(s, φ) < 0 ∀ (s, φ) ∈ (0, +∞) × (0, π) , max C w = w(0, φ 0 ) , (16) 
for some φ 0 ∈ [0, π]. In particular notice that

∇w 2 L 2 (C) = ω d-2 +∞ 0 π 0 |∂sw| 2 + |∂ φ w| 2 (sin φ) d-2 dφ ds
where ω d-2 is the area of S d-2 . From Lemma 1, we obtain the following estimate: Assume that limn→∞ tn = ∞, consider ( 14) and apply Lemma 1 to get

Corollary 2 Assume that d ≥ 2, Λ > 0, p ∈ (2,
t d pn -ac n min{θ,1-θ} Sp n (R d ) (1 + o(1)) ≤ (tn + Λn) 1-θ wn pn-2 L pn (C) = (tn + Λn) 1-θ C CKN (θ, pn, Λn) (17) 
where we have used the assumption that 1 -ϑ(pn, d) = d pn -ac > 1 -θ. This gives a contradiction in case (i).

Using the fact that

C CKN (θ, p, Λ) ≥ C * CKN (θ, p, Λ)
where C * CKN (θ, p, Λ) is the best constant in (1) among radial functions given in Section 1, and observing that

C * CKN (θ, p, Λ) = C * CKN (θ, p, 1) Λ p-2 2 p -θ , we get 1/C * CKN (θ, p, Λ) ∼ Λ θ-p-2 2 p → 0 as Λ → 0 .
In case (iii), if we assume that tn → +∞, then this provides a contradiction with (17).

In case (ii), we know that

lim p→2+ C * CKN (θ, p, Λ) = Λ -θ
and, by (17) and Lemma 1,

t d pn -ac n min{θ, 1 -θ} Sp n (R d ) (1 + o(1)) ≤ (tn + Λ) 1-θ C * CKN (θ, pn, Λ) = Λ θ t 1-θ n (1 + o(1))
as n → ∞. Again this provides a contradiction in case we assume lim such that, for any p ∈ (2, 2 * ),

w 2 L p (C) ≤ ε ∇w 2 L 2 (C) + Z(ε, p) w 2 L 2 (C) ∀ w ∈ H 1 (C) holds for any ε ∈ (0, ε(p)) with Z(ε, p) := ε -p-2 p+2 k(p, 1) 2 p p+2 .
Proof From [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], we know that there exists a continuous function λ :

(2, 2 * ) → (a 2 c , ∞) such that lim p→2 λ(p) = ∞, lim p→2 * λ(p) = a 2
c and, for any λ ∈ (0, λ(p)], the inequality

w 2 L p (C) ≤ k(p, λ) ∇w 2 L 2 (C) + λ w 2 L 2 (C) ∀ w ∈ H 1 (C) holds true. Therefore, letting ε(p) := k(p, λ(p)) = λ(p) -(p+2)/(2 p) k(p, 1) , our estimate holds with λ = λ(p), ε = λ -(p+2)/(2 p) k(p, 1) and Z(ε, p) = ε λ. ⊓ ⊔ Lemma 3 Assume that d ≥ 2, p ∈ (2, 2 * ) and θ ∈ [ϑ(p, d), 1]. If w is an extremal function of (6) and if w is not s-symmetric, then θ (d -1) + (1 -θ) t + Λ < (t + Λ) 1-θ (p -1) w p-2 L ∞ (C) . ( 18 
)
Proof Let w be an extremal for [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], normalized so that (16) holds. We denote by φ ∈ (0, π) the azimuthal coordinate on S d-1 . By the Poincaré inequality in S d-1 , we know that:

S d-1 |D φ (∂ φ w)| 2 dω ≥ (d -1) S d-1 |(∂ φ w)| 2 dω
while, by multiplying the equation in ( 15) by D φ (∂ φ w), after obvious integration by parts, we find:

θ C ∂s ∂ φ w 2 + D φ ∂ φ w 2 dy + ((1 -θ) t + Λ) C ∂ φ w 2 dy = (t+Λ) 1-θ (p-1) C w p-2 ∂ φ w 2 dy ≤ (t+Λ) 1-θ (p-1) w p-2 L ∞ (C) C ∂ φ w 2 dy .
By combining the two above estimates, the conclusion holds if . Let (Λn)n be a sequence converging to 0 + and let (wn)n be a sequence of extremals for [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], satisfying the normalization condition [START_REF]Symmetry of extremal functions for the Caffarrelli-Kohn-Nirenberg inequalities[END_REF]. Then both tn := ∇wn 2 L 2 (C) / wn 2 L 2 (C) and wn L ∞ (C) converge to 0 as n → +∞.

∂ φ w L 2 (C) = 0. ⊓ ⊔ 3 
Proof First of all notice that, under the given assumption, we can use the results in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]Theorem 1.3 (i)] in order to ensure the existence of an extremal for (6) even for θ = ϑ(p, d). Moreover with the notations of Corollary 2, we know that (tn)n is bounded and, by ( 13) and ( 14),

∇wn 2 L 2 (C) + Λn wn 2 L 2 (C) = (tn + Λn) 1-θ C CKN (θ, p, Λn) p/(p-2) with C CKN (θ, p, Λn) -p/(p-2) ≤ C * CKN (θ, p, Λn) -p/(p-2) ∼ Λ θ p p-2 -1 2 n
→ 0 as Λn → 0 + , where we have used the fact that θ p p-2 -1 2 > 0 for θ ≥ ϑ(p, d). Thus, using [START_REF]Symmetry of extremal functions for the Caffarrelli-Kohn-Nirenberg inequalities[END_REF] we have lim 

≤ (t∞(1 + o(1)) + Λn) 1-θ wn p-2 L ∞ (C) Wn 2 L 2 (C) .
This is in contradiction with the fact that Wn H 1 (R d ) = 1, for any n ∈ N. Proof The case θ = 1 is already established in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF]. So, for fixed Λ > 0 and 0 < θ < 1, let wn be an extremal of ( 6) with p = pn → 2 + . By Corollary 2, we know that (tn)n is bounded and

∇wn 2 L 2 (C) + Λ wn 2 L 2 (C) = (tn + Λ) 1-θ wn pn-2 L pn (C) wn 2 L pn (C) .
First we prove that tn converges to 0 as n → +∞. Assume by contradiction that limn→∞ tn = t > 0 after extracting a subsequence if necessary, and choose ε ∈ (0, 1/Λ) so that

(t + Λ) θ > Λ θ (ε t + 1) . ( 19 
)
Recalling that C * CKN (θ, p, Λ) ∼ Λ -θ as p → 2 + , we find that

wn pn-2 L pn (C) = 1/C CKN (θ, pn, Λ) ≤ 1/C * CKN (θ, pn, Λ) → Λ θ .
Using Lemma 2 to estimate

wn 2 L pn (C) by ε ∇w 2 L 2 (C) + Z(ε, p) w 2 L 2 (C)
, for n large enough, we get

(tn + Λ) wn 2 L 2 (C) = ∇wn 2 L 2 (C) + Λ wn 2 L 2 (C) = (tn + Λ) 1-θ wn pn-2 L pn (C) wn 2 L pn (C) ≤ (tn + Λ) 1-θ Λ θ (1 + o(1)) (ε tn + Z(ε, pn, d)) wn 2 L 2 (C) .
Hence, by passing to the limit as n → ∞, and using the fact that

lim n→∞ Z(ε, pn, d) = 1 , we deduce that (t + Λ) ≤ (t + Λ) 1-θ Λ θ (ε t + 1)
in contradiction with (19). This proves that lim n→+∞ tn = 0. Summarizing, wn is a solution of -θ ∆wn + ((1 -θ) tn + Λ) wn = (tn + Λ) 1-θ w pn-1 n such that tn = ∇wn 2 L 2 (C) / wn 2 L 2 (C) → 0 as n → +∞. Let cn := wn L pn (C) and Wn := wn/cn. We know that

c pn-2 n = 1 C CKN (θ, pn, Λ) ≤ 1 C * CKN (θ, pn, Λ) → Λ θ and ∇Wn 2 L 2 (C) + Λ Wn 2 L 2 (C) = (tn + Λ) 1-θ c pn-2 n Wn pn L pn (C) = (tn + Λ) 1-θ c pn-2 n .
Hence we have lim

n→∞ ∇Wn 2 L 2 (C) + Λ Wn 2 L 2 (C) = lim n→∞ (tn + Λ) 1-θ c pn-2 n ≤ Λ .
Furthermore, from limn→∞ tn = 0, we deduce that limn→∞ ∇Wn 2 L 2 (C) = 0 and lim sup n→∞ Wn 2 L 2 (C) ≤ 1. This proves that (Wn)n is bounded in H 1 (C) and that, up to subsequences, its weak limit is 0. By elliptic estimates and (16), we conclude that lim sup n→∞ Wn L ∞ (C) = 0. Therefore, lim sup n→∞ Wn pn-2 L ∞ (C) ≤ 1.

We can summarize the properties we have obtained so far for an extremal wn of ( 6) with p = pn → 2 + as follows: lim n→∞ tn = 0 and lim sup

n→∞ wn pn-2 L pn (C) ≤ Λ θ .
Incidentally, by means of the maximum principle for [START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF], we also get that

wn pn-2 L ∞ (C) ≥ (1 -θ) tn + Λ (tn + Λ) 1-θ ≥ Λ θ , which establishes that lim n→∞ wn pn-2 L ∞ (C) = Λ θ .
Inequality ( 18) is clearly violated for n large enough unless ∂ φ wn ≡ 0. This concludes the proof. ⊓ ⊔

A reformulation of Theorem 3 on the cylinder. Scalings and consequences

As in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], it is convenient to rewrite Theorem 3 using the Emden-Fowler transformation.

Theorem 7 For all d ≥ 2, there exists a continuous function Λ * defined on the set

{(θ, p) ∈ (0, 1]×(2, 2 * ) : θ ≥ ϑ(p, d)} with values in (0, +∞) such that lim p→2+ Λ * (θ, p) = +∞ and (i) If (Λ, p) ∈ (0, Λ * (θ, p)) × (2, 2 * ), then (1) has only s-symmetric extremals. (ii) If Λ = Λ * (θ, p), then C CKN (θ, p, Λ) = C * CKN (θ, p, Λ). (iii) If (Λ, p) ∈ (Λ * (θ, p), +∞) × (2, 2 * ), none of the extremals of (1) is s-symmetric. (iv) 0 < Λ * (θ, p) ≤ Λ(θ, p).
Notice that s-symmetric and non s-symmetric extremals may coexist in case (ii). In (iv), we use the notation Λ(θ, p) = (ac -a(θ, p)) 2 , where the function a(θ, p) is defined in [START_REF] Chou | On the best constant for a weighted Sobolev-Hardy inequality[END_REF].

A key step for the proof of Theorem 7 relies on scalings in the s variable of the cylinder. If w ∈ H 1 (C) \ {0}, let wσ(s, ω) := w(σ s, ω) for σ > 0. A simple calculation shows that

F θ,p,σ 2 Λ [wσ] = σ 2-1 θ + 2 p θ F θ,p,Λ [w] -σ 2-1 θ + 2 p θ (σ 2 -1) ∇ωw 2 L 2 (C) w 2 1-θ θ L 2 (C) w 2/θ L p (C) . (20) 
As a consequence, we observe that

C * CKN (θ, p, σ 2 Λ) -1 θ = F θ,p,σ 2 Λ [w * θ,p,σ 2 Λ ] = σ 2-1 θ + 2 p θ C * CKN (θ, p, Λ) -1 θ = σ 2-1 θ + 2 p θ F θ,p,Λ [w * θ,p,Λ ] . Lemma 4 If d ≥ 2, Λ > 0 and p ∈ (2, 2 *
), then the following holds:

(i) If C CKN (θ, p, Λ) = C * CKN (θ, p, Λ), then C CKN (θ, p, λ) = C * CKN (θ, p, λ
) and, after a proper normalization, w θ,p,λ = w * θ,p,λ for any λ ∈ (0, Λ).

(ii) If there is an extremal w θ,p,Λ , which is not s-symmetric, even up to translations in the s-direction, then C CKN (θ, p, λ) > C * CKN (θ, p, λ) for all λ > Λ.

Recall that, according to [START_REF] Del Pino | A logarithmic Hardy inequality[END_REF], the extremal w * θ,p,λ among s-symmetric functions is uniquely defined up to translations in the s variable, multiplications by a constant and scalings with respect to s. We assume that it is normalized in such a way that it is uniquely defined. As for non s-symmetric minimizers, we have no uniqueness result. With a slightly loose notation, we shall write w θ,p,λ for an extremal, but the reader has to keep in mind that, eventually, we pick one extremal among several, which are not necessarily related by one of the above transformations.

Proof To prove (i), apply (20) with wσ = w θ,p,λ , λ = σ 2 Λ, 0 < σ < 1 and w(s, ω) = w θ,p,λ (s/σ, ω):

1 C CKN (θ, p, λ) 1 θ = F θ,p,λ [w θ,p,λ ] = σ 2-1 θ + 2 p θ F θ,p,Λ [w] + σ -1 θ + 2 p θ (1 -σ 2 ) ∇ωw 2 L 2 (C) w 2 1-θ θ L 2 (C) w 2/θ L p (C) ≥ σ 2-1 θ + 2 p θ C * CKN (θ, p, Λ) 1 θ + σ -1 θ + 2 p θ (1 -σ 2 ) ∇ωw 2 L 2 (C) w 2 1-θ θ L 2 (C) w 2/θ L p (C) = 1 C * CKN (θ, p, λ) 1 θ + σ -1 θ + 2 p θ (1 -σ 2 ) ∇ωw 2 L 2 (C) w 2 1-θ θ L 2 (C) w 2/θ L p (C)
.

By definition, C CKN (θ, p, λ) ≥ C * CKN (θ, p, λ) and from the above inequality we find that necessarily ∇ωw ≡ 0, and the first claim follows.

Assume that w θ,p,Λ is an extremal with explicit dependence in ω and apply (20) with w = w θ,p,Λ , wσ(s, ω) := w(σ s, ω), λ = σ 2 Λ and σ > 1:

1

C CKN (θ, p, λ) 1 θ ≤ F θ,p,σ 2 Λ [wσ] = σ 2-1 θ + 2 p θ C CKN (θ, p, λ) 1 θ -σ -1 θ + 2 p θ (σ 2 -1) ∇ωw θ,p,Λ 2 L 2 (C) w θ,p,Λ 2 1-θ θ L 2 (C) w θ,p,Λ 2/θ L p (C) ≤ σ 2-1 θ + 2 p θ C * CKN (θ, p, Λ) 1 θ -σ -1 θ + 2 p θ (σ 2 -1) ∇ωw θ,p,Λ 2 L 2 (C) w θ,p,Λ 2 1-θ θ L 2 (C) w θ,p,Λ 2/θ L p (C) < C * CKN (θ, p, λ) -1 θ ,
since ∇ωw θ,p,Λ ≡ 0. This proves the second claim.

⊓ ⊔

By virtue of Corollary 3, we know that, for p ∈ (2, 2 * ) and ϑ(p, d) ≤ θ ≤ 1, the set {Λ > 0 : F θ,p,Λ has only s-symmetric minimizers} is not empty, and hence we can define:

Λ * (θ, p) := sup {Λ > 0 : F θ,p,Λ has only s-symmetric minimizers} .
In particular, by Proposition 1 (also see Section 2.2), Lemma 4 and Proposition 4, we have: 0 < Λ * (θ, p) ≤ Λ(θ, p) and lim p→2+ Λ * (θ, p) = +∞ .

Corollary 4 With the above definition of Λ * (θ, p), we have:

(i) if λ ∈ (0, Λ * (θ, p)), then C CKN (θ, p, λ) = C * CKN (θ, p, λ) and, after a proper normal- ization, w θ,p,λ = w * θ,p,λ , (ii) if λ = Λ * (θ, p), then C CKN (θ, p, λ) = C * CKN (θ, p, λ), (iii) if λ > Λ * (θ, p) and θ > ϑ(p, d), then C CKN (θ, p, λ) > C * CKN (θ, p, λ). Proof (i) is a consequence of Lemma 4 (i). It is easy to check that C CKN (θ, p, λ) is a non-increasing function of λ. By considering lim λ→Λ+ F θ,p,Λ [w * θ,p,λ ], we get (ii). If p ∈ (2, 2 * ) and θ ∈ (ϑ(p, d), 1]
, it has been shown in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF] that F θ,p,Λ always attains its minimum in H 1 (C) \ {0}, so that (iii) follows from Lemma 4 (ii).

⊓ ⊔

The proof of Theorem 7

In case θ = ϑ(p, d), extremals might not exist: see [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]. To complete the proof of Theorem 7, we have to prove that the property of Lemma 4 (iii) also holds if θ = ϑ(p, d) and to establish the continuity of Λ * .

Lemma 5 If λ > Λ * (θ, p) and θ = ϑ(p, d), then C CKN (θ, p, λ) > C * CKN (θ, p, λ).
Proof Consider the Gagliardo-Nirenberg inequality

u 2 L p (R d ) ≤ C GN (p) ∇u 2 ϑ(p,d) L 2 (R d ) u 2 (1-ϑ(p,d)) L 2 (R d ) ∀ u ∈ H 1 (R d ) (21) 
and assume that C GN (p) is the optimal constant. According to [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF] (see Lemma 6 below for more details), we know that

C GN (p) ≤ C CKN (ϑ(p, d), p, λ) .
According to [5, Theorem 1.4 (i)] there are extremals for [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] with θ = ϑ(p, d), p ∈ (2, 2 * ) and λ > 0, whenever the above inequality is strict. By Corollary 4 (ii) we know that

C GN (p) ≤ C * CKN (ϑ(p, d), p, λ) if λ = Λ * (ϑ(p, d), p). Case 1: Assume that C GN (p) = C * CKN (ϑ(p, d), p, Λ * (ϑ(p, d), p)). Then for all λ > Λ * (ϑ(p, d), p), C * CKN (ϑ(p, d), p, λ) < C GN (p) ≤ C CKN (ϑ(p, d), p, λ) because C * CKN (θ, p, λ) is decreasing in λ, which proves the result. Case 2: Assume that C GN (p) < C * CKN (ϑ(p, d), p, Λ * (ϑ(p, d), p)).
We can always choose λ > Λ * (ϑ(p, d), p), sufficiently close to Λ * (ϑ(p, d), p), so that

C GN (p) < C * CKN (ϑ(p, d), p, λ) ≤ C CKN (ϑ(p, d), p, λ) .
Then [5, Theorem 1.4 (i)] ensures the existence of an extremal w θ,p,λ of ( 6) with θ = ϑ(p, d). By the definition of Λ * (ϑ(p, d), p), such an extremal is non s-symmetric.

The result follows from Lemma 4 (ii).

⊓ ⊔

To complete the proof of Theorem 7, we only need to establish the continuity of Λ * with respect to the parameters (θ, p) with p ∈ (2, 2 * ) and ϑ(p, d) ≤ θ < 1. The argument is similar to the one used in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF] for the case θ = 1. First of all, by using the definition of Λ * (θ, p), Lemma 4 (i) and the s-symmetric extremals, it is easy to see that, for any sequences (θn)n and (pn)n such that θn → θ and pn → p ∈ (2, 2 * ), lim sup n→>+∞ Λ * (θn, pn) ≤ Λ * (θ, p) .

To see that equality actually holds, we argue by contradiction and assume that for a given sequence θn ∈ [ϑ(pn, d), 1] and pn ∈ (2, 2 * ), we have:

Λ∞ := lim n→+∞ Λ * (θn, pn) < Λ * (θ, p) .
For n large, fix λ such that Λ * (θn, pn) < λ < Λ * (θ, p) ≤ Λ(θ, p).

If θ > ϑ(p, d), then θn > ϑ(pn, d) for n large, and we find a sequence of non s-symmetric extremals w θn,pn,λ that, along a subsequence, must converge to an ssymmetric extremal w * θ,p,Λ , a contradiction with λ < Λ(θ, p) as already noted in the introduction.

If , there exist non s-symmetric extremals w θn,pn,λ of ( 6) relative to the parameters (θn, pn, λ), that, along a subsequence, must converge to an extremal of (6) relative to the parameters (θ, p, Λ). Since λ < Λ * (θ, p), the limiting extremal must be s-symmetric and we obtain a contradiction as above. This completes the proof of Theorem 7.

⊓ ⊔ Remark 6 As already noticed above, at Λ = Λ * (θ, p), we have

C CKN (θ, p, Λ * (θ, p)) = C * CKN (θ, p, Λ * (θ, p))
and, as long as there are extremal functions, either Λ * (θ, p) = Λ(θ, p), or a s-symmetric extremal and a non s-symmetric one may coexist. This is precisely what occurs in the framework of Theorem 5, at least for θ > ϑ(p, d).

Radial symmetry for the weighted logarithmic Hardy inequalities

As in Section 3.4, we rephrase Theorem 4 on the cylinder.

Theorem 8 For all d ≥ 2, there exists a continuous function Λ * * defined on the set {γ > d/4} and with values in (0, +∞) such that for all Λ ∈ (0, Λ * * (γ)], there is an s-symmetric extremal of (2), while for any Λ > Λ * * (γ), no extremal of (7) is s-symmetric. Moreover, 

Λ * * (γ) ≤ 1 4 (4 γ -1) (d -1) = Λ(γ).
+ Λn = C -1 n exp 1 2 γ C |wn| 2 log |wn| 2 dy .
As in [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF], consider Hölder's inequality,

w L q (C) ≤ w ζ L 2 (C) w 1-ζ L p (C) with ζ = 2 (p -q)/(q (p -2))
for any q such that 2 ≤ q ≤ p ≤ 2 * . For q = 2, this inequality becomes an equality, with ζ = 1, so that we can differentiate with respect to q at q = 2 and obtain

C |w| 2 log |w| 2 w 2 L 2 (C) dy ≤ p p-2 w 2 L 2 (C) log w 2 L p (C) w 2 L 2 (C)
.

Let C GN (p) be the best constant in (21). Combining the two inequalities, we obtain the following logarithmic Sobolev inequality on the cylinder: for all d ≥ 1,

C w 2 log w 2 w 2 L 2 (C) dy ≤ d 2 w 2 L 2 (C) log ∇w 2 L 2 (C) w 2 L 2 (C) + K(d) w 2 L 2 (C) , (24) 
where

K(d) := inf p∈(2,2 * ) p p -2 C GN (p) .
See [4, Lemma 5] for more details and a sharp version, but not in Weissler's logarithmic form as it is here, of the logarithmic Sobolev inequality on the cylinder. Applying this inequality to wn, we obtain

∇wn 2 L 2 (C) + Λn ≤ C -1 n e K(d) 2 γ ∇wn 2 L 2 (C) d 4 γ .
Since γ > d/4, Λn → 0 and Cn → +∞ (see [4, Theorem B']), we see that (∇wn)n converges to 0 as n → +∞. On the other hand, wn L 2 (C) = 1, so, up to subsequences, (wn)n converges weakly and in C 2,α loc to w ≡ 0. Now, like in the proofs of Corollary 3 by using (22), we see that the function χn := D φ wn satisfies:

C |∂sχn| 2 + |∂ φ χn| 2 dy -C -1 n exp 1 2 γ C |wn| 2 log |wn| 2 dy C |χn| 2 (3 + 2 log |wn| 2 ) dy = µn χn 2 L 2 (C) . (25) 
Hence, by means of the Poincaré inequality we derive

(d -1 -µn) χn 2 L 2 (C) ≤ C -1 n exp 1 2 γ C |wn| 2 log |wn| 2 dy C |χn| 2 (3 + 2 log wn) dy ≤ C -1 n exp 1 2 γ C |wn| 2 log |wn| 2 dy χn 2 L 2 (C) (3 + 2 log ( wn L ∞ (C) )) ≤ 0
for n large, since wn L ∞ (C) converges to 0 as n → +∞. Next observe that by the strong convergence of (∇wn)n to 0 in L 2 (R d ) (23) and by the logarithmic Sobolev inequality (24), we obtain limn→∞ µn = 0. So, necessarily χn ≡ 0 for n large and the proof is complete. ⊓ ⊔

The proof of Theorem 8

Consider the functional G γ,Λ defined in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF]. If w ∈ H 1 (C)\{0}, let wσ(s, ω) := w(σ s, ω) for any σ > 0. A simple calculation shows that for all σ > 0,

G γ,σ 2 Λ [wσ ] = σ 2-1 2 γ G γ,Λ [w] - (σ 2 -1) σ -1 2 γ ∇ωw 2 L 2 (C) w 2 L 2 (C) exp 1 2 γ C w 2 w 2 L 2 (C) log w 2 w 2 L 2 (C) dy .
The above expression is the counterpart of (20) in the case of the weighted logarithmic Hardy inequality and we can even observe that 2 -1 2 γ = lim p→2+ (2 -1 θ + 2 p θ ) when θ = γ (p -2). We use it exactly as in Section 3.4 to prove that for any d ≥ 2, Λ > 0 and γ > d/4, the following properties hold:

(i) If C CKN (γ, Λ) = C * WLH (γ, Λ), then C CKN (γ, λ) = C * WLH (γ, λ
) and, after a proper normalization, w γ,λ = w * γ,λ , for any λ ∈ (0, Λ). (ii) If there is there is an extremal w γ,Λ , which is not s-symmetric, even up to translations in the s-direction, then C WLH (γ, λ) > C * WLH (γ, λ) for all λ > Λ. At this point, in view of Proposition 5 and by recalling the role of the function ã in (4), we can argue as in Section 3.5 to prove the existence of a continuous function Λ * * defined on (d/4, ∞), such that λ). This concludes the proof of Theorems 8.

(i) 0 < Λ * * (γ) < Λ(γ), (ii) if λ ∈ (0, Λ * (γ)), then C WLH (γ, λ) = C * WLH (γ, λ) and, after a proper normalization, w γ,λ = w * γ,λ , (iii) if λ = Λ * * (γ), then C WLH (γ, λ) = C * WLH (γ, λ), (iv) if λ > Λ * * (γ), then C WLH (γ, λ) > C * WLH (γ,
⊓ ⊔

New symmetry breaking results

This section is devoted to the proof of Theorems 5 and 6. We prove symmetry breaking in the range of parameters where the radial extremal is a strict, local minimum for the variational problem associated to inequalities (1) and ( 2). Consider the optimal constants in the limit cases given respectively by θ = ϑ(p, d) and γ = d/4. We recall that

1 C CKN (ϑ(p, d), p, Λ) = inf u∈D 1,2 a (R d )\{0} |x| -a ∇u 2 ϑ(p,d) L 2 (R d ) |x| -(a+1) u 2 (1-ϑ(p,d)) L 2 (R d ) |x| -b u 2 L p (R d ) and 1 C WLH (d/4, Λ) = inf |x| -a ∇u 2 L 2 (R d ) exp -2 d R d |u| 2 |x| 2 (a+1) log |x| 2 (ac-a) |u| 2 dx
where the last infimum is taken on the set of the functions u

∈ D 1,2 a (R d ) such that |x| -(a+1) u L 2 (R d ) = 1.
We also define the best constants in Gagliardo-Nirenberg and logaritmic Sobolev inequalities respectively by

1 C GN (p) := inf u∈H 1 (R d )\{0} ∇u 2 ϑ(p,d) L 2 (R d ) u 2 (1-ϑ(p,d)) L 2 (R d ) u 2 L p (R d ) and 1 C LS := inf u∈H 1 (R d ) u L 2 (R d ) =1 R d |∇u| 2 dx exp -2 d R d |u| 2 log |u| 2 dx
It is well known (see for instance [START_REF] Weissler | Logarithmic Sobolev inequalities for the heat-diffusion semigroup[END_REF]) that C LS = 2 π d e . 

Remark 7

The condition C LS < C * WLH (d/4, Λ) amounts to a ∈ (a⋆, ac) for some explicit a⋆ and from [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]Theorem 1.4] we know that this is a sufficient condition for the existence of an extremal function for [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. The symmetry breaking results of Theorem 6 hold for any a ∈ (-∞, a⋆). In that case, the existence of an extremal for (2) is not known if γ = d/4, d ≥ 3, but it is granted by [START_REF] Dolbeault | Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities[END_REF]Theorem 1.3] As a concluding remark for the weighted logarithmic Hardy inequality, we emphasize the fact that, in many cases, the comparison with the logarithmic Sobolev inequality gives better informations about the symmetry breaking properties of the extremals than methods based on a linearization approach.

d |u| p |x| bp dx 2 p≤ 2 |x| 2 (

 222 More precisely, let d ∈ N * , θ ∈ (0, 1) and define ϑ(d, p) := d pa) := (a -ac) 2 , p(a, b) := 2 d d -2 + 2 (b -a) .Notice that0 ≤ ϑ(d, p) ≤ θ < 1 ⇐⇒ 2 ≤ p < p * (d, θ) := 2 d d -2 θ ≤ 2 * ,where, as usual, 2* = p * (d, 1) = 2 d d-2 if d ≥ 3, while we set 2 * = p * (2, 1) = ∞ if d = 2. If d = 1, θ is restricted to [0, 1/2) and we set 2 * = p * (1, 1/2) = ∞.In this paper, we are concerned with the following interpolation inequalities:Theorem 1 [1, 4, 5] Let d ≥ 1 and a < ac. (i) Let b ∈ (a + 1/2, a + 1] when d = 1, b ∈ (a, a + 1] when d = 2and b ∈ [a, a + 1] when d ≥ 3. In addition, assume that p = p(a, b). For any θ ∈ [ϑ(d, p), 1], there exists a finite positive constant C CKN (θ, p, Λ) with Λ = Λ(a) such that R C CKN (θ, p, Λ) for any u ∈ D 1,2 a (R d ). Equality in (1) is attained for any p ∈ (2, 2 * ) and θ ∈ (ϑ(p, d), 1) or θ = ϑ(p, d) and ac -a > 0 not too large. It is not attained if p = 2, or a < 0, p = 2 * and d ≥ 3, or d = 1 and θ = ϑ(p, d). (ii) Let γ ≥ d/4 and γ > 1/2 if d = 2. There exists a positive constant C WLH (γ, Λ) with Λ = Λ(a) such that, for any u ∈ D 1,2 a (R d ), normalized by R d |u| a+1) dx = 1, we have: R d |u| 2 |x| 2 (a+1) log |x| d-2-2 a |u| 2 dx ≤ 2 γ log C WLH (γ, Λ) R d |∇u| 2 |x| 2 a dx (2) and equality is attained if γ ≥ 1/4 and d = 1, or γ > 1/2 if d = 2, or for d ≥ 3 and either γ > d/4 or γ = d/4 and ac -a > 0 not too large.

2 π

 2 d+1 e . Notice that γ = 1/4 is compatible with the condition γ ≥ d/4 only if d = 1. The constant C * WLH (1/4, Λ) is then independent of Λ. By definition, we know that C * CKN (θ, p, Λ) ≤ C CKN (θ, p, Λ) and C * WLH (γ, Λ) ≤ C WLH (γ, Λ) .

Fig. 1 .Fig. 1

 11 Fig. 1 According to the proof of Theorem 2, symmetry holds if a ∈ [a 0 (θ, p), ac), θ ∈ (ϑ(p, d), 1). The curves θ → a 0 (θ, p) are parametrized by θ ∈ [ϑ(p, d), 1), with d = 5, ac = 1.5 and p = 2.1, 2.2, . . . 3.2. Horizontal segments correspond to θ = ϑ(p, d), a 0 (θ, p) ≤ a < ac.

Remark 4

 4 d p -ac -ζ = (1 -ζ) d q -ac , we find t d p -ac c(d, p, t) ≤ t d q -ac c(d, q, t) Notice that for d ≥ 3, the second estimate in Corollary 1 also holds with q = 2 * and ζ = 1 -ϑ(p, d). In such a case, we can actually prove that c(d, p, t) ≤ t ac-d p (ϑ(p, d) S * (d)) ϑ(p,d) (1 -ϑ(p, d)) 1-ϑ(p,d)

Λ→0+t

  (θ, p, Λ) < ∞ , where the limits above are taken respectively for Λ > 0 and θ ∈ (0, 1) fixed, and for p ∈ (2, 2 * ) and θ ∈ (ϑ(p, d), 1) fixed.Proof Let tn := ∇wn 2 L 2 (C) / wn 2 L 2 (C), where wn are extremals of (6) with Λ = Λn ∈ (0, +∞), p = pn ∈ (2, 2 * ) and θ ∈ (0, 1]. We shall be concerned with one of the following regimes:(i) Λn = Λ and pn = p do not depend on n ∈ N, and θ ∈ (ϑ(p, d), 1), (ii) Λn = Λ does not depend on n ∈ N, θ ∈ (0, 1] and limn→∞ pn = 2, (iii) pn = p does not depend on n ∈ N, θ ∈ [ϑ(p, d), 1] and limn→∞ Λn = 0.

  Let k(p, Λ) := C * CKN (θ = 1, p, Λ) and recall that k(p, Λ) = Λ -(p+2)/(2 p) k(p, 1) and lim p→2+ k(p, 1) = 1. As a consequence of the symmetry result in [6], we have Lemma 2 There exists a positive continuous function ε on (2, 2 * ) with lim p→2 ε(p) = ∞ and lim p→2 * ε(p) = a -(p+2)/p c k(2 * , 1)

. 2 Proposition 3

 23 The critical regime: approaching a = ac Assume that d ≥ 2, p ∈ (2, 2 * ) and θ ∈ [ϑ(p, d), 1]

2 L 2

 22 n→∞ ∇wn L 2 (C) = 0 and lim n→∞ wn L p (C) = 0. Hence, (wn)n converges to w ≡ 0, weakly in H 1 loc (C) and also in C 1,α loc for some α ∈ (0, 1). By (16), it follows lim n→∞ wn L ∞ (C) = 0 . Now, let t∞ := limn→∞ tn and assume by contradiction that t∞ > 0. The function Wn = wn/ wn H 1 (R d ) solves -θ ∆Wn + ((1 -θ) tn + Λn) Wn = (tn + Λn) 1-θ w p-2 n Wn . Multiply the above equation by Wn and integrate on C, to get θ ∇Wn 2 L 2 (C) + ((1 -θ) t∞(1 + o(1)) + Λn) Wn (C)

Corollary 3 3 . 3 Proposition 4

 3334 Assume that d ≥ 2, p ∈ (2, 2 * ) and θ ∈ [ϑ(p, d), 1]. There exists ε = ε(θ, p) > 0 such that extremals of (6) are s-symmetric for every 0 < Λ < ε.Proof Any sequence (wn)n as in Proposition 3 violates (18) for n large enough, unless ∂ φ wn ≡ 0. The conclusion readily follows.⊓ ⊔ The Hardy regime: approaching p = 2We proceed similarly as in Proposition 3 and Corollary 3. Assume that d ≥ 2, fix Λ > 0 and θ ∈ (0, 1]. There exists η ∈ (0, 4 θ/(d -2 θ)) such that all extremals of (6) are s-symmetric if p ∈ (2, 2 + η).

4. 1 Proposition 5

 15 The critical regime: approaching Λ = 0 In order to prove the above theorem, we first start by showing that for γ > d/4 and Λ close to 0, the extremals for (7) are s-symmetric. From [5, Theorem 1.3 (ii)], we know that such extremals exist. Let γ > d/4 and d ≥ 2. Then, for Λ > 0 sufficiently small, any extremal w γ,Λ of (7) is s-symmetric.Proof Let us consider γ > d/4 and a sequence of positive numbers (Λn)n converging to 0. Let us denote by (wn)n a sequence of extremals for[START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF] with parameter Λn. For simplicity, let us normalize the functions wn so that wn L 2 (C) = 1. Moreover, we can assume that wn = wn depends only on s and the azimuthal angle φ ∈ S d-1 and max C wn = wn(0, φ 0 ) for some φ 0 ∈ [0, π]. Finally, wn is a minimum for G θ,p,Λ defined in (9), and we have G θ,p,Λ [wn] = 1/Cn with Cn := C WLH (γ, Λn) for any n ∈ N.

Lemma 6 2 L 1 C 2 L 1 CFig. 2

 621212 Fig. 2 Plots of L(p, d) as a function of p for d = 3, . . . 10.

Fig. 3

 3 Fig. 3 Plot of C * WLH (d/4, Λ(-1/2))/C LS in terms of d ∈ N, d ≥ 3.

  for any γ > d/4, d ≥ 2. Compared with the result in Proposition 2, we see by numerical calculations that Λ(a) > Λ(γ) is more restrictive than Λ(a) > Λ SB (γ, d) except if d = 2 and γ ∈ [0.621414 . . . , 6.69625 . . .], d = 3 and γ ∈ [0.937725 . . . , 4.14851 . . .], or d = 4 and γ ∈ [1.31303 . . . , 2.98835 . . .]. For d ≥ 5, we observe that Λ SB (γ, d) < Λ(γ). See Fig. 4.

Fig. 4

 4 Fig. 4 Plot of Λ SB (γ, d)/ Λ(γ) as a function of γ, for d = 2, 3, . . . 6.

  2 * ) and θ ∈ (ϑ(p, d), 1). Let t = t(θ, p, Λ) be the maximal value of ∇w 2 L 2 (C) / w 2 L 2 (C) among all extremals of (6). Then t(θ, p, Λ) is bounded from above and moreover

	lim sup p→2+	t(θ, p, Λ) < ∞ and lim sup

  θ = ϑ(p, d), then, by strict monotonicity of C * CKN with respect to λ, we find: C GN (p) ≤ C * CKN (ϑ(p, d), p, Λ * (p, d)) < C * CKN (ϑ(p, d), p, λ) and so, for n sufficiently large: C GN (p) < C * CKN (θn, pn, λ) ≤ C CKN (θn, pn, λ). Again by [5, Theorem 1.4 (i)]

(1-θ) L 2 (R d )
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