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 we extended that result to graphs with maximum degree 3. We show here that γ(G) ≥ 1 -

, which leads to γ(G) ≥ 15 17 when considering graphs with odd girth at least 5, distinct from the Petersen graph.

Introduction

Throughout this paper, we shall be concerned with connected graphs with maximum degree 3. Staton [START_REF] Staton | Edge deletions and the chromatic number[END_REF] (and independently Locke [START_REF] Locke | Maximum k-colourable subgraphs[END_REF]) showed that whenever G is a cubic graph distinct from K 4 then G contains a bipartite subgraph (and hence a 3-edge colourable graph, by König's theorem [START_REF] König | Über Graphen und ihre Anwendung auf Determinantentheorie un Mengenlehre[END_REF]) with at least 7 9 of the edges of G. Bondy and Locke [START_REF] Bondy | Largest bipartite subgraphs in triangle free graphs with maximum degree three[END_REF] obtained 4 5 when considering graphs with maximum degree at most 3. In [START_REF] Albertson | Parsimonious edge colouring[END_REF] Albertson and Haas showed that whenever G is a cubic graph, we have γ(G) ≥ 13 15 (where γ(G) denote the largest fraction of edges of G that can be 3 edge-coloured) while for graphs with maximum degree 3 they obtained γ(G) ≥ 26 31 . Steffen [START_REF] Steffen | Measurements of edge-uncolorability[END_REF] proved that the only cubic bridgeless graph with γ(G) = 13 15 is the Petersen graph. In [START_REF] Fouquet | On parcimonious edge-colouring of graphs with maximum degree three[END_REF], we extended this result to graphs with maximum degree 3 where bridges are allowed. With the exception of G 5 (a C 5 with two chords), the graph P ′ obtained from two copies of G 5 by joining by an edge the two vertices of degree 2 and the Petersen graph, every graph G is such that γ(G) > 13 15 . Rizzi [START_REF] Rizzi | Approximating the maximum 3-edge-colorable subgraph problem[END_REF] showed that γ(G) ≥ 1 -

2 3g odd (G)
where g odd (G) is the odd girth of G, when G is triangle-free. In [START_REF] Fouquet | On parcimonious edge-colouring of graphs with maximum degree three[END_REF] we extended that result to graph with maximum degree 3 (triangles are allowed). We show here that γ(G) ≥ 1 -

2 3g odd (G)+2
, which leads to γ ≥ 15 17 when considering graphs with odd girth at least 5, distinct from the Petersen graph.

Theorem 1.1. let G be a graph with maximum degree 3 distinct from the Petersen graph.

Then γ(G) ≥ 1 - 2 3g odd (G)+2

Technical lemmas

Let φ : E(G) → {α, β, γ, δ} be a proper edge-colouring of G. It is often of interest to try to use one colour (say δ) as few as possible. When an edge colouring is optimal, following this constraint, we shall say that φ is δ -minimum. Since any two δ-minimum edge-colouring of G have the same number of edges coloured δ we shall denote by s(G) this number. For x, y ∈ {α, β, γ, δ}, x = y, φ(x, y) is the partial subgraph of G spanned by these two colours (this subgraph being a union of paths and even cycles where the colours x and y alternate) and E φ (x) is the set of edges coloured with x.

In [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF] we gave without proof (in French, see [START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] for a translation) results on δ-minimum edge-colourings of cubic graphs Lemma 2.1. [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF][START_REF]Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF][START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] Let φ be a δ-minimum edge-colouring of G. For any edge e = uv coloured with δ there are two colours x and y in {α, β, γ}such that the connected component of φ(x, y) containing the two ends of e is an even path joining these two ends. Moreover e has one end of degree 2 and the other of degree 3 or the two ends of degree 3 Remark 2.2. An edge coloured with δ by the δ-minimum edge-colouring φ is in A φ when its ends can be connected by a path of φ(α, β), B φ by a path of φ(β, γ) and C φ by a path of φ(α, γ). It is clear that A φ , B φ and C φ are not necessarily pairwise disjoint since an edge coloured with δ with one end of degree 2 is contained in 2 such sets. Assume indeed that e = uv is coloured with δ while d(u) = 3 and d(v) = 2 then, if u is incident to α and β and v is incident to γ we have an alternating path whose ends are u and v in φ(α, γ) as well as in φ(β, γ). Hence e is in A φ ∩ B φ . When e ∈ A φ we can associate to e the odd cycle C A φ (e) obtained by considering the path of φ(α, β) together with e.

We define in the same way C B φ (e) and C C φ (e) when e is in B φ or C φ . In the following lemma we consider an edge in A φ , an analogous result holds true whenever we consider edges in B φ or C φ as well.

Lemma 2.3. [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF][START_REF]Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF][START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] Let φ be a δ-minimum edge-colouring of G and let e be an edge in A φ then for any edge e ′ ∈ C A φ (e) there is a δ-minimum edge-colouring φ ′ such that

E φ ′ (δ) = E φ (δ) -{e} ∪ {e ′ }, e ′ ∈ A φ ′ and C A φ (e) = C A φ ′ (e ′ ). Moreover, each edge outside C A φ (e) but incident with this cycle is coloured γ, φ and φ ′ only differ on the edges of C A φ (e).
For each edge e ∈ E φ (δ) (where φ is a δ-minimum edge-colouring of G) we can associate one or two odd cycles following the fact that e is in one or two sets among A φ ,

B φ or C φ . Let C be the set of odd cycles associated to edges in E φ (δ). Lemma 2.4. [5, 6, 4] Let e 1 , e 2 ∈ E φ (δ) and let C 1 , C 2 ∈ C be such that C 1 = C 2 , e 1 ∈ E(C 1 ) and e 2 ∈ E(C 2 ) then C 1 and C 2 are (vertex) disjoint.
Lemma 2.5. [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF][START_REF]Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF][START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] Let e 1 = uv 1 be an edge of E φ (δ) such that v 1 has degree 2 in G. Then v 1 is the only vertex in N (u) of degree 2 and for any edge

e 2 = u 2 v 2 ∈ E φ (δ), {e 1 , e 2 } induces a 2K 2 .
Lemma 2.6. [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF][START_REF]Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF][START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF] Let e 1 and e 2 be two edges of E φ (δ). If e 1 and e 2 are contained in two distinct sets of A φ , B φ or C φ then {e 1 , e 2 } induces a 2K 2 otherwise e 1 , e 2 are joined by at most one edge. Lemma 2.7. [START_REF] Fouquet | Graphes cubiques d'indice chromatique quatre[END_REF][START_REF]Contribution à l' étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés[END_REF][START_REF]Tools for parsimonious edge-colouring of graphs with maximum degree three[END_REF]] Let e 1 , e 2 and e 3 be three distinct edges of E φ (δ) contained in the same set A φ , B φ or C φ . Then {e 1 , e 2 , e 3 } induces a subgraph with at most four edges. Lemma 2.8. [START_REF] Fouquet | On parcimonious edge-colouring of graphs with maximum degree three[END_REF] Let G be a graph with maximum degree

3 then γ(G) = 1 -s(G) m .
A cubic graph G on n vertices is called a permutation graph if G has a perfect matching M such G -M is the union of two chordless cycles A and B of equal length n 2 . When we delete one edge of the perfect matching M in the above permutation graph G, we shall say that the graph obtained is a near-permutation graph. Lemma 2.9. Let G be a permutation graph or a near-permutation graph with n vertices and odd girth n 2 . Suppose that G is not 3-edge colourable. Then G is the Petersen graph or the Petersen graph minus one edge.

Proof

Obviously, since G is not 3-edge colourable, n 2 is certainly odd. Let A = a 0 a 1 . . . a 2k and B = b 0 b 1 . . . b 2k be the two chordless cycles of length n 2 = 2k + 1 which partition V (G). When 2k + 1 = 3, it can be easily verified that G is 3-edge colourable and when 2k + 1 = 5, G is the Petersen graph or the Petersen graph minus one edge.

Assume thus that 2k + 1 ≥ 7.

Since at most one vertex of A and one vertex of B have degree 2, we can suppose that a 0 , a 1 , a 2 are joined to 3 distinct vertices of B. Without loss of generality we suppose that If C i ∈ C 2 , we may suppose that e i has a vertex of degree 2 (see Lemma 2.3) and we can associate to e i another odd cycle say C ′ i (Remark 2.2) whose edges distinct from e i form an even path P i using at least g odd (G) 2 edges which are not edges of C i . When l(C i ) = g odd (G), C i has no chord and it is an easy task to find a supplementary edge of 

a 0 b 0 ∈ E(G). Since G is not 3-edge colourable
P i not belonging to C i . When l(C i ) ≥ g odd (G)+ 2 (
(C i ∪ C ′ i ).
When C i ∈ C 3 , C i contains at least g odd (G) edges, moreover, each vertex of C i being of degree 3, there are s(G)-k 2 × g odd (G) additional edges which are incident to a vertex of Ci∈C3 C i . Let us remark that each above additional edge is counted as 1 2 whatever are these edges. In order to refine our counting, we need to introduce the following notion of free edge. An edge will be said to be free when at most one end belongs to some

C i ∈ C 3 .
Suppose that we can associate to each C i ∈ C 3 one private edge or two private free edges. Since

C i ∩ C j = ∅ and C ′ i ∩ C j = ∅ (1 ≤ i, j ≤ s(G), i = j), we would have m ≥ (k × ( 3 2 g odd (G) + 1) + (s(G) -k) × (g odd (G) + 1) + s(G) -k 2 × (g odd (G)) and m ≥ s(G) × ( 3 2 × g odd (G) + 1). Consequently γ(G) = 1 -s(G) m ≥ 1 - 2 3g odd (G)+2
, as claimed.

Our goal now is to associate to each C i ∈ C 3 one private edge or two private free edges.

When C i is incident to at least two free edges, let us choose any two such free edges as the private free edges associate to C i . By definition, these two free edges are not incident to any C j ∈ C 3 with j = i, insuring thus that they cannot be associated to C j . When l(C i ) ≥ g odd (G) + 2, we choose any edge of C i as a private edge.

Assume thus that l(C i ) = g odd (G). Hence

C i = x 0 x 1 . . . x g odd (G)-1 is chordless.
Suppose that C i is incident to at most one free edge. Without loss of generality, we can consider that x 0 is the only possible vertex of C i incident to some free edge. Since the edge incident to x 1 , not belonging to C i , is not free, let C j ∈ C 3 , i = j, such that x 1 is adjacent to y 1 ∈ C j . In the same way, the edge incident to x 2 , not belonging to

C i , is not free. Let C j ′ ∈ C 3 , i = j ′ , such that x 2 is adjacent to z 2 ∈ C j ′ . Suppose that j = j ′ ,
then by Lemma 2.3 we can consider that x 1 x 2 is coloured δ by φ as well as one of the edges of C j incident with the vertex y 1 and one of the edges of C j ′ incident with z 2 , a contradiction with Lemma 2.7 or Lemma 2.6. Henceforth, x 2 is adjacent to some vertex of C j . In the same way every vertex of C i , distinct from x 0 , is adjacent to some vertex of C j .

In .

By Lemma 2.9, G itself is the Petersen graph or C i ∪ C j induces a Petersen graph minus one edge (by the way, g odd (G) = 5). By hypothesis, the first case is excluded.

Assume thus that C i ∪ C j induces a Petersen graph minus one edge. In the last part of this proof, we show that this situation is not possible.

In order to fix the situation let H be the subgraph of G not containing C i ∪ C j . We suppose that C j is the chordless cycle of length 5 y 0 y 3 y 1 y 4 y 2 while x 1 y 1 , x 2 y 2 , x 3 y 3 and

x 4 y 4 are the edges joining C i to C j . Moreover x 0 is joined to some vertex a ∈ V (H) and y 0 is joined to some vertex b ∈ V (H). Without loss of generality, we can consider that φ colours alternately the edges of C i (C j respectively) with β and γ with the exception of the edge x 0 x 1 coloured with δ (y 0 y 3 respectively).

The edges x 1 y 1 , x 2 y 2 , x 3 y 3 and x 4 y 4 are thus coloured with α as well as the edges x 0 a and y 0 b (let us remark that a = b). The final situation is depicted in Figure 1. 

  a 1 b 1 and a 1 b 2k are not edges of G and since the odd girth is at least 7 we do not have the edges a 1 b 2 and a 1 b 2k-1 . Henceforth let b i (2 < i ≤ 2k -2) the neighbour of a 1 . One of the two paths determined by b 0 and b i on B must have odd length. Suppose, without loss of generality, that b 0 b 1 . . . b i has odd length then we have an odd cycle a 0 b 0 b 1 . . . b i a 1 whose length is at least 2k + 1, which leads to i = 2k -2. The vertex a 2 is not joined to b 2k-1 or b 2k-3 , otherwise G is 3-edge colourable, neither to b 2k ,b 2k-4 or b 1 , otherwise the odd girth is 5. Henceforth a 2 is joined to some vertex b j with 2 ≤ j ≤ 2k -5. If j is odd then b 0 b 1 . . . b j a 2 a 1 a 0 is an odd cycle of length at most 2k -1, impossible. If j is even then b j . . . b 2k-3 b 2k-2 a 1 a 2 an odd cycle of length at most 2k -1, impossible.

3 . 1 Proof

 31 Proof of Theorem 1.Let φ be a δ-minimum edge-colouring of G and E φ (δ) = {e 1 , e 2 . . . e s(G) }. C being the set of odd cycles associated to edges in E φ (δ), we write C = {C 1 , C 2 . . . C s(G) } and suppose that for i = 1, 2 . . . s(G), e i is an edge of C i . We know by Lemma 2.4 that the cycles of C are vertex-disjoint. Let l(C) = C∈C l(C) (where l(C) is the length of the cycle C) and assume that φ has been chosen in such a way that l(C) is maximum. Let us write C = C 2 ∪ C 3 , where C 2 denotes the set of odd cycles of C which have a vertex of degree 2, while C 3 is for the set of cycles in C whose all vertices have degree 3. Let k = |C 2 |, obviously we have 0 ≤ k ≤ s(G) and C 2 ∩ C 3 = ∅.
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 2 Figure 2: New colouring φ ′
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