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HYPERSURFACES WITH SMALL EXTRINSIC RADIUS OR LARGE
A1 IN EUCLIDEAN SPACES

ERWANN AUBRY, JEAN-FRANCOIS GROSJEAN, JULIEN ROTH

ABSTRACT. We prove that hypersurfaces of R®*! which are almost extremal for the
Reilly inequality on A1 and have LP-bounded mean curvature (p > n) are Hausdorff
close to a sphere, have almost constant mean curvature and have a spectrum which
asymptotically contains the spectrum of the sphere. We prove the same result for
the Hasanis-Koutroufiotis inequality on extrinsic radius. We also prove that when
a supplementary L? bound on the second fundamental is assumed, the almost ex-
tremal manifolds are Lipschitz close to a sphere when ¢ > n, but not necessarily
diffeomorphic to a sphere when ¢ < n.

1. INTRODUCTION

Sphere theorems in positive Ricci curvature are now a classical matter of study. The
canonical sphere (S",can) is the only manifold with Ric > n—1 which is extremal for
the volume, the radius, the first non zero eigenvalue A\; on functions or the diameter.
Moreover, it was proved in [f, [§, ] that manifolds with Ric > n—1 and volume close
to Vol (S™, can) are diffeomorphic and Gromov-Hausdorff close to the sphere. This
stability result was extended in [[I4, [ll, where it is proved that manifolds with Ric > n—1
have almost extremal volume if and only if they have almost extremal radius, if and
only if they have almost extremal A,. Almost extremal diameter and almost extremal
A1 are also equivalent when Ric > n—1 ([f, [L1]), but, as shown in [}, L3, it does
not force the manifold to be diffeomorphic nor Gromov-Hausdorff close to (S",can).
In this paper, we study the stability of three optimal geometric inequalities involving
the mean curvature of Euclidean hypersurfaces, and whose equality case characterizes
the Euclidean spheres (see Inequalities ([L.1), (.9) and below). More precisely we
study the metric and spectral properties of the hypersurfaces which almost realize the
equality case. It completes the results of [f, [Lf].

Let X : (M",g) — R"*! be a closed, connected, isometrically immersed n-manifold
(n > 2). The first geometric inequality we are interested in is the following

(1.1) IH |2 X — X[l2 > 1

where X := Voﬁ / Xdv, Vol M is the volume of (M™,g), H is the mean curvature

of the immersion X and || - ||, is the renormalized LP-norm on C*°(M) defined by

IfI5 = W/ |f[Pdv. Equality holds in ([.T]) if and only if X (M) is a sphere of
M
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radius m and center X (see section f). From ([[.L1]) we easily infer the Hasanis-

Koutroufiotis inequality on extrinsic radius (i.e. the least radius of the balls of R"*!
which contains X (M))

(12) HHH2Re:vt > 1
and center X. The

whose equality case also characterizes the sphere of radius T 1;”2

last inequality is the well-known Reilly inequality
(1.3) M <l H3

Here also, the extremal hypersurfaces are the spheres of radius T H” \ /A%' Let p > 2

and € € (0,1) be some reals. We will say that M is almost extremal for Inequality ([[1])
when it satisfies the pinching

(Pp@) ”HHPHX_YHQ < l+e,
We will say that M is almost extremal for Inequality ([[.J) when it satisfies the pinching

(Rp.e) [H|pReot <1+¢
We will say that M is almost extremal for Inequality ([[.J) when it satisfies the pinching

(Ape) 1+ = n|H|3

Remark 1.1. It derives from the proof of the three above geometric inequalities, given
in section B, that Pinching (R,.) or Pinching (Ap.) imply Pinching (P,¢). For that
reason, Theorems [1.4, [L.7, below are stated for hypersuraces satisfying Pinching
(Ppe) but are obviously valid for Pinching (R, ) or Pinching (Ap.).

Our first result is that, when ||H||, is bounded, almost extremal manifolds for one
of the three Inequalities (L), (.Y or (L.J) are Hausdorff close to an Euclidean sphere

of radius TS H” and have almost constant mean curvature.

Theorem 1.2. Let ¢ > n, p > 2 and A > 0 be some reals. There exist some po-
sitive functions C = C(p,q,n, A) and a = a(q,n) such that if M satisfies (Pp,c) and
Vol M||H|y < A, then we have

o 1

L) |1 =X - sl < o=

and there exist some positive functions C = C(p,q,r,n,A) and f = ff((g:;)) so that

(1.5) H]H! — HHHQHT < CEﬁHHHQ for any r € [1,q).

We assume moreover that ¢ > max(4,n). For any r >0 and n > 0, there exists eg =
eo(p,q,n, A,7m,m) > 0 such that if M satisfies (Ppe) (for e < eo) and Vol M||H|y < A

thenforanyxeS—X—i—m-S , we have

(1.6)

Vol (B(z,  THT )N X(M)) Vol (B(z, THG )ns) Vol (B(z, AT )ns)
‘ Vol M - Vol § ‘ S Vol §

where B(x,r) is the Euclidean ball with center x and radius .
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Theorem [I.9 generalizes and improves the main results of [fj] and [[Lf], where only
the pinchings (R, .) and (A,.) for p > 4 and ¢ = oo were considered. The control on
the mean curvature (Inequality ([.F)) and Inequality ([[.]) are new, even under a L
bound on the mean curvature. Note that ([[.f]) says not only that M goes near any
point of the sphere S (as was proven in [f], [[§]) but also that the density of M near
each point of S is close to Vol M /Vol S.

Remark 1.3. From Inequalities ([4) and ([.6) we infer that almost extremal hyper-
surfaces for one of the three geometric inequalities ([1]), (L.2) or (I.J) converge in
Hausdorff distance to a metric sphere of R"™L. As shown in Theorem [1.9, there is no
Gromov-Hausdorff convergence if we do not assume a good enough bound on the second
fundamental form.

Remark 1.4. By Theorem [[.3, when Vol M||H||? < A (q > n), Pinching (P, ) implies
Pinching (Ry ) for a constant €' = €'(e|A,p,q,n). In other words, Pinchings (P.)
and (R, ) are equivalent (in bounded mean curvature) and are both implied by Pinching
(Ape). However, we will see in Theorem that Pinching (Py.) (or (Rpc)) does not
imply Pinching (Apc).

Remark 1.5. The constant C(p,q,n,A) tends to oo when p — 2 or ¢ — n, but the
same result can be proved with Vol M ||H || < A replaced by Vol M ||H—[|H||2||;, < A(n),
where A(n) is a universal constant depending only on the dimension n.

Inequality follows from the following new pinching result on momenta.

Theorem 1.6. Let ¢ > n be a real. There exists a constant C = C(q,n) such that for
any isometrically immersed hypersurface M of R*1, we have

IX — X1h > el

sup|1X = X| = X = Xlo| < C(Vol M|[H|7)" X = K21 - 15—
M ( 2 1% = Xl

where v = ﬁ.
In particular, this gives

IX = Xlloo < C(Vol M|IH|I7)"[|X — X]|2
Our next result shows that almost extremal hypersurfaces must satisfy strong spec-
tral constraints. We denote 0 = pg < pp < --- < p; < --- the eigenvalues of the
canonical sphere S", m; the multiplicity of y; and o = Z m; (note that we have
0<i<k
or = O(n*) and my = O(n*)). We also denote 0 = A\g(M) < A\ (M) < --- < (M) <
-+ the eigenvalues of M counted with multiplicities.

Theorem 1.7. Let g > max(n,4), p > 2 and A > 0 be some reals. There exist some
positive functions C = C(p,q,n,A) and o = a(q,n) such that if M satisfies (P,.) and
Vol M||H |y < A then for any k such that 20,C%F < e7, the interval

[(1 = e /miCF) | Hl[3k, (1 + £ /miCF) || H |31

contains at least my, eigenvalues of M counted with multiplicities.
Moreover, the previous intervals are disjoints and we get

Ni(M) < (1+ 6a«/kak)\|HH§)\i(S") for any i < oy, — 1,
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and if Aoy (M) > (1 + &% /mxC*) || H |31, then
‘)\Z(M) - ||H||%)\Z(S")‘ < 6aw/kakHHH%)\i(S") for any i < o, — 1.
Remark 1.8. In the particular case of extremal hypersurfaces for Pinching (Ay.),
Theorem implies that
n|H|;
1+¢
and so we must have the n+ 1-first eigenvalues close to each other. Compare to positive

Ricci curvature where Ay, close to n implies A\p11 close to n, but we can have only k
eigenvalues close ton for any k <n —1 (see []).

<AM(M) < < X1 (M) < (14 C(n)e®)n|| HIJ3

Note that Theorem [[.7 does not say that the spectrum of almost extremal hyper-
surfaces for Inequality ([[.1]) is close to the spectrum of an Euclidean sphere, but only
that the spectrum of the sphere S = X + m -S™ asymptotically appears in the spec-
trum of M. Our next two results show that this inclusion is strict in general (we have
normalized the mean curvature by ||H||2 = 1 for sake of simplicity and E(x) stands for
the integral part of x).

Theorem 1.9. For any integers [,p there exists sequence of embedded hypersurfaces
(M;) of R diffeomorphic to p spheres S™ glued by connected sum along l points, such
that |Hj|| < C(n), [|Bjll, < C(n), |||X;|— 1HOO — 0, [||H;] - 1“1 — 0, and for any
o € N we have

)\O(Mj) — )\E(%)(Sn)
In particular, the M; have at least p eigenvalues close to 0 whereas its extrinsic radius
is close to 1.

Theorem 1.10. There ezists sequence of immersed hypersurfaces (M;) of R"™! dif-
feomorphic to 2 spheres S glued by connected sum along 1 great subsphere S*2, such
that ||Hj||, < C(n), ||Bjlla < C(n), ‘|Xj| - 1HOO — 0, H|HJ| - 1”1 — 0, and for any
o € N we have

Ao (M) = Ap(g)(S™7),
where S™ is the sphere S™ endowed with the singular metric, pulled-back of the ca-
nonical metric of S™ by the map m : (y,z,7) € St x "2 x [0,%] (y?, z,r) €
St x S"72 x [0, 3], where S' x S"72 x [0, %] is identified with S* C R* x R"™! via
the map ®(y, z,1) = ((Sin )y, (cos ’I“)Z). Note that S™® has infinitely many eigenvalues
that are not eigenvalues of S™.

Remark 1.11. Theorem [1.9 shows that Pinching (A,.) is not implied by Pinching
(Ppe) nor Pinching (Rp ), even under an upper bound on ||B||;,.

Remark 1.12. [t also shows that almost extremal manifolds are not necessarily dif-
feomorphic nor Gromov-Hausdorff close to a sphere. We actually prove that the (M;)
can be constructed by gluing spheres along great subspheres S* with k; <k <n—2 and
with || Bj||n—r < C(k,n) (see the last section of this article).

In [f] and [id] it has been proved that when the L>-norm of the second fundamental
form is bounded above, then almost extremal hypersurfaces are Lipschitz close to a
sphere S of radius m (which implies closeness of the spectra). In view of Theorem
.9, we can wonder what stands when || B||, is bounded with ¢ > n.
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Theorem 1.13. Let ¢ > n, p > 2 and A > 0 be some reals. There exist some po-
sitive functions C = C(p,q,n, A) and a = a(q,n) such that if M satisfies (P,c) and
Vol M || By < A, then the map

. 1 n
F : M — |H||QS
T = 1

Xo
X
is a diffeomorphism and satisfies ||dF (u)|> — |ul?| < Ce®|u|? for any vector u € TM.

Hl2 |

x|

The structure of the paper is as follows: after preliminaries on the geometric inequal-
ities for hypersurfaces in Section [}, we prove in Section ] a general bound on extrinsic
radius that depends on integral norms of the mean curvature (see Theorem [L.6]). We
prove Inequality ([L4) in Section f] and Inequality ([L.H) in Section [f. Theorem is
proven in Section f]. Section [f is devoted to estimates on the trace on hypersurfaces of
the homogeneous, harmonic polynomials of R"*!. These estimates are used in Section
B to prove Theorem [[.7 and in section [ to prove Inequality ([.)). We end the paper
in section [I(J by the constructions of Theorems [[.9 and [[.1(.

Throughout the paper we adopt the notation that C(p,q,n, A) is function greater
than 1 which depends on p, ¢, n, A. These functions will always be of the form
C = D(p, q,n)Aﬁ(‘L"). But it eases the exposition to disregard the explicit nature of
these functions. The convenience of this notation is that even though C' might change
from line to line in a calculation it still maintains these basic features.

2. PRELIMINARIES

Let X : (M",g) — R""! be a closed, connected, isometrically immersed n-manifold
(n > 2). If v denotes a local normal vector field of M in R"*!, the second funda-
mental form of (M", g) associated to v is B(-,-)=(V%,-) and the mean curvature is
H=(1/n)tr (B), where V° and (-,-) are the Euclidean connection and inner product
on R™+1,

Any function F on R™! gives rise to a function F' o X on M which, for more
convenience, will be also denoted F' subsequently. An easy computation gives the
formula

(2.1) AF = nHdF(v) + A°F + V%dF(v,v),

where A denotes the Laplace-Beltrami operator of (M,g) and A® is the Laplace-
Beltrami operator of R™*!. Applied to F(x) = z; or F(x) = (z,z), Formula R.I
gives the following

(2.2) AX; =nHy;, (AX,X) =nH(v,X)
1
(2.3) iA]X\Q =nH (v, X) —n, / H(v,X)dv = Vol M
M

These formulas are fundamental to control the geometry of hypersurfaces by their mean
curvature.
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2.1. A rough bound on geometry. The integrated Hsiung formula (P.J) and the
Cauchy-Schwarz inequality give the following

H(v, X)dv — .
(2.4) ~Velar — LS [H2]|X - X]|, = !!H!!2u€1§f+l [ X — ull2

This inequality ||H||2||X — X||2 > 1 is optimal since M satisfies
I1#lz]| X — X, =

if and only if M is a sphere of radius m and center X. Indeed, in this case X — X

and v are everywhere colinear, hence the differential of the function |X — X|? is zero
on M. Equality (2:J) then implies that H is constant on M equal to | X — X | 1.

2.2. Hasanis-Koutroufiotis inequality on extrinsic radius. We set R the ex-
trinsic Radius of M, i.e. the least radius of the balls of R™*! which contain M. Then

Inequality (R.4) gives
|Hll2Rewt > [ HII21 X = Xllz = 1Hl2inf X = ull
(25) HHHQReJ:t =

and when R, = ”1;”2, we have equality in (R.4), i.e. M is a sphere of radius i

[H]]2"

2.3. Reilly inequality on )\;. We translate M so that X = 0. By the min-max
principle and Equality ([2-), we have

)\IHXHQ fMXAX Hdev_ Hl/de
n 2 S T NGOl VolM " VolM

where A; is the first nonzero eigenvalue of M. Combined with Inequality (£.4), we get
the Reilly inequality

n
2. < H2dv.
(26) LS FoTar /M Y

Here also, equality in the Reilly inequality gives equality in .4 and so it characterizes

. 1 _ o
the sphere of radius s = | X2 = /A_”l_

3. UPPER BOUND ON THE EXTRINSIC RADIUS

In this section we prove Theorem [.6.

Proof. We translate M such that X = 0. We set ¢ = HX’ - HXH2| We have [dp?*| <
20021 hence, using the Sobolev inequality (see [[L2])

(3.1) IFI . < K (n)(Vol M) (|ldf 1 + || H £]1)



we get for any o > 1
1 _
il 2 < K(n)(Vol M)« (2allell5a"1 + |1 He™||1)
1
< K(n)(Vol M) (2aloll30=1 + 1 H gl zaq)

1
< K (n)(Vol M) (20 @l Ty + I1H lqllolloo 12l Ty )
q—1

q—1

1 _
< K (n)(Vol M) (20 + [ Hlgllelloc) 0l g

q—1
We set v = ?(qzi) and o = ay 2q1 + 1 5, where apy1 = va, + "5 and ag = q{—ql (i.e.
11 —2=). The previous inequality gives
p+1 a g1 +1 n ap
(HSDHapH > opF1 < <K(n)(VOl M)%( P g — + ||H||q)) RS y— <||30||ap>up
lllloo lelloo lelloo

Since ¢ > n then v > 1 and Z—,’j converges to ag + q’i—nn and we have

1<(”“0”“°)2ﬁ( K (n)(Vol M) a; (” =+ 1 ))ﬁ

lel) L

= (fE) (o) v ant (- + i)™
=a%>Q“w)«wmaﬂ””—umnwmn
<cln(fi5) ™ (oran (i 1) T

hence we have
1

lelle < Ola.m) (Vo M)F (- + 121) ) gl

1elloo
ST O
We set v = 52 If [|ollos > [|Hlq ")l then we get the result since we have

1 Y

lelleo < Cla (WM%NMWW%“HWM)Mh
1

< Clam) (VoL a0 ) (IX15 + el ) el

where we have used that ||H|,|| X2 > 1. We infer the result from the equality

X 1/2 . .
lell = V21X 12 (1 = B2 1 gl < [1H1ly o7, we get immediately the
desired inequality of the Theorem from the above expression of |||z and the fact that
[Hq[| X][2 > 1. O

4. PROOF OF INEQUALITY ([L.4)

Let M be an isometrically immersed hypersurface of R**1. We can, up to translation,
assume that | y Xdv = 0. By the Holder inequality and Pinching (P, ), we have
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1—2 2
[Hp X2 < (1 +e) < A+ )[Hp| X[ 2. < L+ )| Hl[[ X[l " X3, hence

HX||1 P2
1 31 272
—1xp, S +O7T 1) < ool E

On the other hand applying Inequality (B.1]) to f = 1 we get

(4.1) 1 < K(n)(Vol M) ||H|1

And combining the two above inequalities with Theorem L4and 1 < ||H|2|| X2 <
H C(p,q, )A /nga(q,n)‘
HHHz > 112

we get ([L4). More precisely we have |1X] -

Remark 4.1. Combining (f.1) with Inequality (.4) we get

(4.2) Xl < C(p,q,n) AV (Vol M)/"

14¢

Lemma 4.2. For any 0 < € < 1 if (P,.) is satisfied, then there exist some positive
functions C(p,q,n), a(q,n) and B(q,n) so that the vector field Z = v — HX satisfies

(4.3) IZll» < C(p,q,n)(1 + A) EWI 2> for any r € [2,q).

Proof. By the Holder inequality we have for any r € [2,q)
a(r— g) 2(g— ;) 2(g— ;)
121, < 12152 12152 < (@ + X ol L) T [ 25

2(q—r)
<A+ Xl H )7 12157

By remark .1, we have ||H || | Xl < C(p, q,n)ALrtl. Then

2(g—7)
1Z]l» < C(p,q,n)A%|| Z]} ;"

Moreover by integrating the Hsiung-Minkowsky formula (R.J) we have
2
1218 = 1 = gy [ H (v X)do+ IHXIE < =1+ |HI3IX

which, by Inequality (I4), gives ||Z||3 < C(p,q,n)AP@m)ga(an),

5. PROOF OF INEQUALITY ([[.5)

Since we have 1 = 5 [o; H(X,v)dv < |H|2|(X, v)|l2, Inequality (P,c) gives us

X1z < (L+ ) [{(X, )2, < Hl2[[ X2 <1+,

and so

Hv _
[X = (X, vvly < V3e | Xl 1X = W”Z = IXI13 = H3? < V3 [|X ]l
2



By Inequalities ([.4), this gives

[H? = [ H 3, < [[H? = [ XPIA[], + XTI - (113,

H? 1
= 1 (I = P+ 11X = i)
Hv Hv C AV/nee 1
<|H 4( =X |x - + (X + ))
e (g = X1 = e o+ =g, — UMY+

Hv 1
< I (VERIX (gl + X [2) + CAY e )
1H I3 1H |5

< oA H|3

Hence we have H|H| - ||H||2H1 < % < CAY/"e®||H|ly. Moreover we have

H\H\—HHHQH(I < 2/|H||lq < 2K (n)||H||2(Vol M)EHHHq. Hence by the Holder inequality,
for any r € [1,¢q) we have

1821 = 12l < (1= 1] 7 (] el,) e

< C(p,q,r,n)AB(q”"’")e“‘F” [ H |2

6. PROOF OF THE THEOREM

Let u € TM be a unit vector and put ¢ = | X || where X T is the tangential projection
of X on TM. For ¢ small enough we have from ([L.4) |X| > ﬁ and then the

application F' is well defined. We have dF(u) 5'e ) (see [H]), hence
for any a > 1

1 (X,u
= u —
llHllz\Xl( |XT]?

1 1 1 (u, X)?
(6.1) ldF: ()] = 1| € 7573 — X PP+
’ X2 [ 1H]l3 155 [X[*
Ce* 1211%
CIXPIHEE A

Now an easy computation using [L.4 shows that |dy)| < |(X,v) B — g| < %\B[ +
n. Now using the Sobolev inequality B and the fact that v, < (Vol M)V"||H]|s <
(Vol M)/™||H||, < (Vol M)Y™||B||, < AY™ (see [)), we have

415, < KO (VoL M) (20T 3], + 2m + A ] 15
qg—1
< K(n) (20CA° (VoL M)/ 4+ AV i) 1,
qg—1

And similarly to the proof of the theorem [L.§ we obtain

Vol M)'/nC AP
%]

Il < Ca,m)(" Ay,
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And using the fact that ||[¢]|c||Hll2 < [|[X]ool[Hll2 < 1+ C and A > v, we get
v .
llloo < CA° (s ) Il that is

112
lpldt < cA?
15113
Now since ||[¢0]|2 = [| X — (X, v) V|2 < V3| X||2 and ||H||2]| X |2 < 1+ ¢ we deduce that
1]loo < CABE (@n)  And reporting this in (F.1]) and using ([L4) with the fact that

|H||
1 X| > we get ||dF,(u)]? — 1] < CAPe(am),

2IIH ll2
7. HOMOGENEOUS, HARMONIC POLYNOMIALS OF DEGREE k

Let H*(R™*1) be the space of homogeneous, harmonic polynomials of degree k on
R™*1. Note that H*(R"*!) induces on S™ the spaces of eigenfunctions of AS" associated
— 2k -1
to the eigenvalues py := k(n + k — 1) with multiplicity my, := ntk-Ilynt2h-1
k n+k—1

(see [H]).

On the space H*(R"*1), we define the following inner product

1
P n o w7 o1~ P can »
(P, Qs = rem /Sn (dv

where dv.., denotes the element volume of the sphere with its standard metric. On
the other hand the inner product on M will be defined by

_ fgdv -
(f.g9) = . Vol M for f,g € C°(M).

In this section we give some estimates on harmonic homogeneous polynomials needed
subsequently. We set (Py,--- , Py, ) an arbitrary orthonormal basis of H*(R"!). Re-
mind that for any P € H*¥(R"*!) and any Y € R"*!, we have dP(X) = kP(X) and
VY%P(X,Y) = (k—1)dP(Y).

k
Lemma 7.1. For any x € R""! we have ZPf(m) = my|z|?.
i=1

Proof. For any z € S", Q,(P) = P%(z) is a quadratic form on H*(R"*1) whose trace
is given by > P2?(z). Since for any 2’ € S™ and any O € O, such that 2’ = Ox we
have Q/(P) = Q(P o O) and since P+ P o O is an isometry of H*(R"*1), we have
S P2 (2) = tr (@) = X% P(e') = tr (Qur). Now

ZVOIS" | E(@)dv =y = VolS”/ (izpz >

and so > "% P2(x) = my. We conclude by homogeneity of the P;. O

As an immediate consequence, we have the following lemma.

Lemma 7.2. For any xz,u € R, we have

mp

Z(dxpz(u))Q = my <%‘x’2(k71)’u‘2 + (/{?2 _ %) <u7x>2’x‘2(k72)> )

i=1
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Proof. Let x € S™ and u € S™ so that (u,z) = 0. Once again the quadratic forms
Qzu(P) = (dJCP(u))2 are conjugate (since O,y acts transitively on orthonormal

my
couples) and so Z(clg;P,(u))2 does not depend on u € x* nor on = € S™. By choosing
i=1

an orthonormal basis (u;)1<j<n of 1, we obtain that

mpg : 1 mip n 9 1 mg on
;(daﬁpi(u)) = ;;;(dmﬂ(%)) = m/gn;\v p?

1 / % S Mg i
- PAS' P =
nVol S" Jen P n

Now suppose that v € R""!. Then u = v + (u, )z, where v = u — (u, )z, and we have

mp mg

S (dPi(w)? =Y (doPi(v) + k{u,z) Pi())*
=1 =1

= (Ao P, (v))* + 2k(u, z) > do Py (v) Pi(@) + g (u, )2k

i=1 =1
— —mk%|v|2 + my (u, )k = my, <%|u|2 + (kz N %) <u’x>2) ’
n n n

my
where we derived the equality in Lemma .1 to make Z d, P;(v)P;(x) disappear. We
i=1

conclude by homogeneity of P;. O

my
Lemma 7.3. For any x € R""', we have Z\Vodﬂ(m)lz = mpo plz?*72) ) where
i=1

an i = (k— 1)(k? + up)(n + 2k — 3) < C(n)k*.
Proof. The Bochner equality gives

mi mp
01D (2 0p 7oy _ LA0|p|2
;rv dP;(z)| —;(«m P dP;) — 5 A \dm)

1 _ _
= —§mk(1€2 + ) A X PR = o, | X PR
O

Let HF(M) = {Po X , P € H*(R" 1)} be the space of functions induced on M by
HF(R™1). We will identify P and P o X subsequently. There is no ambiguity since we
have

Lemma 7.4. Let M™ be a compact manifold immersed by X in R"* and let (Py, ..., Py,)
be a linearly independent set of homogeneous polynoms of degree k on R" L. Then the
set (Pyo X, ..., Py oX) is also linearly independent.

Proof. Any homogeneous polynomial P which is zero on M is zero on the cone RT-M.
Since M is compact there exists a point x € M so that X, ¢ T, M and so R™-M has
non empty interior. Hence P o X = 0 implies P = 0. U
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Formula (R.1) implies
(7.1) AP = upH*P + (n + 2k — 2)HdP(Z) + V°dP(Z, Z)
In order to estimate AP, we define two linear maps

Vi HERYY) — C°(M)
P +—— dP(V)

and
(V,W)g - HFR™)  — C(M)
P — VOdP(V,W)

where V,W € I'(M) are vector fields.
If L: HF(R") — C>°(M) is a linear map, we set

LI = Z 1L (P13,

where (P, -+, Py,) is an orthonormal basis of (H*(R" 1), . [|ga)-

k
Remark 7.5. For any P € HF(R™Y), we have |L(P)||3 < [IL [|I? | P|3.
We now give some estimates on 7}, (HZ); and (Z, Z);.

Lemma 7.6. We have

mka/ 2(k—1 2
7.2 2L X260 71240
(7.2 172117 < 37/, 1XPE212]
mkk2 _
(7.3) I(HZ)EIP < Vol M !X\Z(’“ YH?|Z|?dv
4 VAAN 2 < mkakvn/ X 2(k—2) Z4
(7.4 1220417 < S [ 1XPE212

Proof. Let (P1,---, Py, ) be an orthonormal basis of H*(R"*1). By Lemma [I.9 we
have

I1Z;11? = Zudp I < b [ xpeDizpan
Vol M M

and

mka 2k—1 ) 2
HZ 2 E H(]P \ X ( )H AR

By Lemma [7.3, we have

mkakn
2,231 = 3 V%R (2. 2)[§ < ek [ IXPER1z
=1

which ends the proof. O
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Lemma 7.7. Let ¢ > n and A > 0 be some reals. There exist a constants C = C(q,n)
and B(q,n) such that for any isometrically immersed hypersurface M of R which
satisfies VOL M||H|? < A and any P € H*(M), we have

(HHH?“HPH% —|IPllg.| < Dor(CA%* || Pgn

where D = ||H? — | H|3|| I1IX|% + | HZ ||, X |l + 1213 + || 2|2
Proof. For any P € H*(M) we have
VP[5 = [dP®)[5 + [ldP]I3

= ||dP(Z)||3 + K*|HP|3 + ——— (2kHdP(Z)P+PAP)dv

Vol M
and from ([7.1]) we get

IVOP|3 =||dP(Z2)|3 + —— (PVOdP(Z, Z)+ (n+ 4k — 2)HdP(Z)P)dv

Vol M
+ (ui + B[ HP3

:voiM /M (G + K2 (H? = |H3) P + (n + 4k — 2) HAP(Z)P) dv

_|_

PV°dP(Z,Z)d EDHI2IPI2 + |[dP(2)]12
VolM/M VUAP(Z, Z)dv + (i + KO HIRI Pz + [dP(Z)]12

Now we have
2 no |12 2 2
(75) V0P[5, = [V P, + K IPIZ = (e + 82) 112,
Hence
IH |3 21VOP|5 — HVOPHSn = (e + K (IHIZ" NP3 = [1PNE) + | H|32(1dP(2)]13
|H|3?

2 P<(Mk +k*)(H? — [|[H|3) P + H(n+ 4k — 2)dP(Z) + V°dP(Z, Z))dv
VOIM M

Which gives
(7.6)

2
IEIBEIPIZ - I1PIZ.| <

— [l - 7P,

HHH% ’
T k2
HHH% ’ 2 2| p2
H* —|H|3|Pd
ot [ = P
Note that, by Lemma [.] and Remark [.5, we have

VOIM 2 V 1 M M ? i=1 '

VolM [y, 2

2
< mp | XIEH? = 12 3] 115

(<n + 4k — 2)|(HZ)iP, P)| + | ZE(P)I3 + (2, 2).P. P)| )
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which, combined with ([.6), gives

2
I3 P13 — 1Pllsn | <

IHIZ=2IV0PI3 - VP,

+k2
e HIBH XS — L I
s 2Pl (4 a1 — 2y ] ()5 1 1Pl + 1122 12 1Pln + 12, 203 11 1712
P k 2 k sn L)k, 2
Now, as above, we have
(7.7 1Pl < [ST IR 1Pl < \/ vt [ P,
:

and from Lemma [7.6, we get

VS UPlon oy a3y ) (2203 01 1Pl + 1122 12 1P lon + 120 205 0111
Iu,k.—}—k/’2 n k 2 k Sn 9 k 2
< COmp(MH I X o> (1 X sl Z 1 + 1213 + 12121 P2
and
2
VEIZEIPIE — 1P| <— L ||E12-2v 0P 3 — |90,
+/<7
2k—2
(HXHOOHH\\Q) miCn)D | P2,
with

D= (&2 — |HIE] X% + B2, 1X ] + 1215+ 1 2]12)
In particular for k = 1, we have |V°P| constant and so
IHIBIPIZ ~ P3| < miC(n)D || P

Let By = sup{ LA k||||i||||2 Pl | | P e HERMH)\ {0}} Then using that V0P €
sn

HFLR™ 1) and (7)), we get for 1 <i <k
2k—
By < Bt + i (X || Hll2) ™€ (n) D < C(n) Doy (| X oo 1 H l2)
We conclude using Theorem [L.4. U

2k—1

8. PROOF OF THEOREM [L.7

Under the assumption of Theorem we can use Lemma [1.9, Theorem [[.6 and
Inequality ([L4) to improve the estimate in Lemma .7

Lemma 8.1. Let ¢ > max(4,n), p > 2 and A > 0 be some reals. There exist some
constants C = C(p,q,n), a« = a(q,n) and 5 = B(q,n) such that for any isometrically
immersed hypersurface M of R™"! satisfying (Pp:) and Vol M||H|y < A, and for any

P € H¥(M), we have
IEZ*IPIS — IPlig | < e®on(CA%) || Pll5a -

This allows to prove the following estimate on AP.
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Lemma 8.2. Let k be an integer such that e®o,(CAP)* < 1 and P € H*(M), we
have

[AP — | HIZPl, < /Mg (CA%) e | HIZ|I P2
Proof. From Formula ([7.1)), we have
JAP — | H 3Pl < | (H — | H|3) Pl + (n+ 2k — || HAP(Z)|» + [V°dP(Z, 2)]

If %0y, (C AP)?* <+ we deduce from Lemma B.1 that HP||§” < 2||H||%¥||P||3. And using
Lemma [f.1] and Inequality ([.4), we have

Mimk
Vol M

i (H? = | H3) P13 < 1P]I3 /M [H? — || H 3% X[ dv

2pjmy
= Vol M

where the last inequality comes from Inequality [[.L§ and the Hélder Inequality. By
technical Lemma of Section [, we have

2k
12113 (11 211X [|oc ) /M(H2 — [ H|3)*dv < (CAP)* e ugmy|| H]I2 )| P13

5 mpk?

5" Vol M
< e (CAP Y I2my || H |13 PII3

IV0dP(Z, Z)II15 < (2, Z)5 1* |1 PlIEs < mrck ol X124 Z 3] PlIEn
< (CAPY e mpay || H 3| P|3

1HAP(Z)5 < | PlIgn Il (HZ)RI1* < [P X113 /M H?|Z[*dv

which gives the result. O

Let v > 0 and E} be the space spanned by the eigenfunctions of M associated to an
eigenvalue in the interval [(1—e®\/mC* — v)||H|3pk, (1 + % /mpC* +v) || H 3] . I
dim EY < my, then there exists P € H¥(M) \ {0} which is L?-orthogonal to EY. Let
P = Z fi be the decomposition of P in the Hilbert basis given by the eigenfunctions

7
fi of M associated respectively to A\;. Putting N :={i | f; ¢ E}}, by assumption on
P we have

2
(C*v/me® + ) H2RIIPI3 < Y (N = | HI3n) 113 = |AP — | HIZP3
1€EN
< g C* || H |36 PII3
which gives a contradiction. We then have dim E} > my. We get the result by letting
v tends to 0.

9. PROOF OF INEQUALITY [L.4

We can assume 1 < 1 and ||H||2 = 1 by a homogeneity argument. Let z € S and set
V" (s) = Vol (B(z,s) NS™). Let 8 > 0 small enough so that (1+n7/2)V"((1+28)r) <
(1+n)V™(r) and (1 — n/Z)V"((l — 25)7’) > (1—=n)V"™(r). Let f1 : S™ — [0,1] (resp.
f2 : S™ — [0,1]) be a smooth function such that f; = 1 on B(z, (1 + 8)r) NS"
(resp. fo = 1 on B(z,(1 —26)r) NS") and f; = 0 outside B(z, (1 + 26)r) NS

)
k

(resp. f2 = 0 outside B(z, (1 — B)r) N'S™). There exists a family (P})y<n such that
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Pie HF(R™) and A = supgn | fi—>pen Pi| < |I1fill3.n/18. We extend f; to R"T1\ {0}
by fi(X) = fz(\X|)' Then we have

1

‘||fz||2 IS”/ |fz|2‘ <h+1h+13

where
I _‘VIM/ (142 = (3 1X17RY) )dv(
k<N
\mM/ X o = 3 1,
k<N

and

)|

On S™ we have |f2 — (3 p<n Pi)?| < A(2supgn [fi] + A) < || fill2.n/6 and on M we

have

b= | [ (R -

k<N

- (X X ROO) = (5 - (3 Biligy) | < Ileno

k<N k<N

Hence I1 + I3 < || fil|2.n/3. Now

1 (Pz)2
Ir < k/_ du —
2 volM/MZ x|
k<N

2 k™ k'
SR+ L Y e

X dv
k<N 1<k£k'<N

1 1 .
o fy 2 | e~ 11|
1 o
Yoo e — IHIE™ | PP dv
k+k' H kK
VOIM /M 1<k;£k/<N‘ X
) 19 ‘HHIH_k,
+ 3 [IEIBENRLE — 1Pl + | PR
Vol M
k<N 1<k;£k/<N
From ([[.4) we have W - \|H\|§+k, < NCN60‘||H||]2€+M. From this and Lemma 1),
we have

k+kE'

: o H

B NCYer S HIBIRE + e Y e R ¢ YT T
k<N k<N 1<k#K'<N

f
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and, by Lemma .9, we have

H2 _ ’ . PZAPZ/—H2 /Pi/
U= ) [ g« [ VAT - LB,
M M

Vol M Vol M
[ PR,
M Vol M

<1PLll2l| APL = 1 H 3 Pl + | P ll2 | AP — [LH |5 P
< 2y/mypunCNe® || HII3 || Pullz | P2

under the condition e*onyC?N < % Since pug — g = n when k # k', we have

1 . ) A A
o /M PiPidv| < =y /mnunCNe| Py | 2
hence

L < N°CVe ST HIBHIFS + e S onC || P2
k<N k<N

2 k‘ k‘/ . .

+ =ymyunCNe® YT HIE P o)l Pl

1<k£k/'<N
. -2
< Dne® Y |HIFIPLE + e Y o0 || PJ5,
k<N k<N

< ] Z(DN(l +€a0,kc2k) —i—O’kC2k) lezugn < DEVga
k<N

Where we have used the fact that H Z P,ngn is bounded by a constant. We infer that
k<N

o a o V(=28 _ |lfillznn
lf 9 g 6D§VV01 Sn < 6D§V 5 then we haVe

2 1 / 2 2
e — —— . < |,
1508 ~ g L, V7| < w2

Note that N depends on r and /3 but not on x since O(n + 1) acts transitively on S".
Eventually, by assumption on f; and f» and by estimate ([.4), we have

Vol (B(z, (14 B)r — Ce*) N X(M))

Vol M <Al < A +n/2))f11E
<1+ 0/2)% <1+ n)gl(gz

Vol (B(x, (1 - @;;}C&a) NX(M)) AR S (1= /2l fale
> (1 =y L =28)) o v(r)

voist = = Dyrsn

And by choosing ¢* = min <%, %) we get

Vol (B(x,r) N X (M)) B V™(r)
Vol M Vol S»

V" (r)
S orse
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10. SOME EXAMPLES

We set I. = [¢, 5] for e > 0 and let ¢ : . — (—1,400) be a function continuous on
I. and smooth on (g, 5]. For any 0 < k < n — 2, we consider the map

D, S"HF xSk x . — R =RFgRE
x=(y,z,7r) — (1+ w(r))((sinr)y + (cos r)z)

which is an embedding onto a manifold X, C R+, We denote respectively by B(yp)
and H(y) the second fundamental form and the mean curvature of X,. We have

Lemma 10.1. Let x = (y,2,7) € S" 1 x Sk x I., ¢ = ®,(z) and (u,v,h) € T, X..
Then we have

nHy(p) = (¢ + (14 9)2) 2 [=(1 4+ o))" (1) + (1 + () + 207(7)]

2 2)—1/2
(¢ +1<1+;(si>) ) [_(n — k= 1) (r) cot 7 + (n — 1)(1 + (1)) + k' (7) tan T]
[By(0)| =
L+ ()" p ¥ (@)% = (1 + )"
(1+ (200 y2) 72 w1 g T bt T e U S )
©(r

PTOOf' Let (U,U, h) € T:BSE and PUt w = d((I)ap)x(u,’U, h) € TqXS@ Where SE = Sn_k_l X
Sk x I.. An easy computation shows that

w= (14 ¢(r))((sinr)u+ (cosr)v)
(10.1) + ' (r)((sinr)y + (cos7)z)h + (1 + () ((cos )y — (sinr)z)h

We set

Ny =~/ (r)((cos )y — (sinr)z) + (1 + () ((sin r)y + (cos)2)

N,
and N, = d 75 is a unit normal vector field on X,. Then we have
(¢ + (1+¢))"
By(p)(w,w) = (V4N w) = (&% + (1 +¢)?) /2 (VON, w)
n+1
(10.2) = (2 + (1 +p)2) <Z w(NH;, w>
i=1

where (9;)1<i<n+1 is the canonical basis of R"™!. A straightforward computation shows
that

Z w(NHO; = — ¢/ (r)((cos r)u — (sinr)v) 4+ (1 4+ ¢(r))((sinr)u + (cos r)v)

— @"(r)((cosr)y — (sinr)z)h + 2¢' (r)((sinr)y + (cosr)z)h
+ (14 (r))((cosr)y — (sinr)z)h
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Reporting this in ([[0.2) and using ([L0.1]) we get

= L - (r r)) sinr cos r(|ul? — |v]?
Bl (0 ) 11) = — e [/ ()1 4 (1) (luf? — [of?)

+(1 4 @(r))? (sin® rlul® + cos® ruf?) — (1 + (1))@ (r)h?* + 2" (r)h? + (1 + ¢(r))h?

Now let (u;)1<i<cn—k—1 and (v;)1<i<x be orthonormal bases of respectively Sn—k-1

and S* at z. We set g = ®%can and § = (0,0,1), then we have

at y

g(uiyug) = (L+@(r))?sinrég;,  g(vi,v5) = (14 @(r))* cos® 16y, g(ui,v5) =0,
9(£,8) = ¢ + (1 + ), 9(u;, &) = g(v;,€) = 0.

Now setting @; = d(®y)z(u;), ¥ = d(®y).(u;) and € = d(®y,),(€), the relation above
allows us to compute the trace and norm

B g, T B 0;,0)| |B 3
5] = o B8, B335 |B()EE)
i g(us, u;) j g(vj,v;) 9(&,¢)
1 / / N2 _ (1 "
= max({l— 1 cot r|, 1+Ltanr{,{1+((p22 ( —i—cp);p D
VT4 (1 +¢)? I+ T4 e+ (1+ )
of the second fundamental form. O

To prove Theorem [[.g, we set a < 1o and define the function ¢. on I by

: dt
fg(r):s/ ife<r<a+e,
B 1 A /tQ(n—k‘—l) —1
P=(r) =93 w(r) if r>a+e,
be if r > 2a+e¢,

where u, is chosen such that ¢, is smooth on (e, 5] and strictly concave on (g,2a + €],

and b, is a constant. We have f.(a+¢) — 0, fl(a+¢) = 0, f/(a+¢) — 0 and so

b — 0 as ¢ — 0. Hence b, can be chosen less than % and uz can be chosen such that

¢. tends uniformly on I. and ¢, — 0, ¢! — 0 uniformly on any compact of (e, 5].
Note that . satisfies

(n—k-1)(1+¢2) ,

(10.3) ol = — v, on (g,a+¢l.
T
Moreover we have p.(¢) = 0 and %im oL(t) = 400 = —%im @ (t). Moreover, we can
—E —E

define on (—b.,b.) an application @, so that @.(t) = o= 1(t) on [0,b.) and @.(—t) =

Pe(t)-
Now let us consider the two applications ®,_ and ®_,_ defined as above, and put
M7 = X, and M = X_,,_. Since @, satisfies the equation yy” = (n—k—1)(14(y)?)

£
with initial data @.(0) = e and @L(0) = 0, it is smooth at 0, hence on (—b.,b.),
and so M¥ = M} U M_ is a smooth submanifold of R"*!. Indeed, the function
Fo(p1,p2) = [p1]? — |p[*sin® (@< (|p| — 1)), defined on
U={p=(p1,p2) ER"FORM/p; £0,po £0, —b. +1 < |p| < b +1}
is a smooth, local equation of M¥ at the neighborhood of M7 N M. which satisfies

VEF.(p1,p2) = 2p1 cos® e — 2po sin’ e #£0



20 E. AUBRY, J.-F. GROSJEAN, J. ROTH

on M NM;.
We denote respectively by H. and B., the mean curvature and the second funda-
mental form of MF.

Theorem 10.2. ||H.|,, and ||B:|,_, remain bounded whereas |[H. — 1|y — 0 and
|1X] —1HOO — 0 when ¢ — 0.

Remark 10.3. We have ||B;||; — oo when € — 0, for any ¢ > n — k.

Proof. From the lemma and the definition of ., H. and |B.| converge uniformly
to 1 on any compact of M¥\ M* N MZ-. On the neighborhood of MF N M_", we have
n(H.); = nhE(r) and nht < hfa + h;e + hgfa, where

+ P2+ (1 +p)H)2 k ™
= < —_—
hy (r) =k TTo. - tan(r) < 0 tan 3
Pie(r) = (n = 1)(2 + (1 £ 0)*) 7/
_ n+1
e + (1 0)") PP ((1 £ 9)* +202) < T
€

and by differential Equation ([L0.3) we have

(2 + Q£ )12

hi.(r) = ((n —k—1) L cot(r) + (¢ + (1 9)?) 732 (1 £ 0e) !

1+
(P2 4+ (L+p))72 1
k1) -}
n—Fk—11(p24 (1 +¢p)%)1/2 _
+ e U ) (o (1)) 201 £ ) (1 4 o)
T 14
1
< " (——cot(r))
1—b.\r
—3/2
n (2 + (14 ¢.)?) 1o 2 2 2
1+ 0.)? - (1+¢.)2(1 ‘
T(l:l:gDE) (pe ()05 +( 906) ( 906)( +(P€)
n /1 n 2+ e '3
e (2 orr)) 4 :
0. (r cot(r) ) + r%licpg (2 + (1+ .)23/2
n 1 n  2+b
e (1 o) + R 2
1—b€(r cot(r) +r¢€1—b6
S Pe € r/e dt < r r/e dt d 1 rx _dt Inz t
IHCGT—; . tZ(n—k;—l)_l\g . \/ﬁan Efl ﬁ~+w7,wege

that hfa is bounded on MPF, hence H. is bounded on M. By the Lebesgue theorem
we have ||[H. —1|; — 0.

We now bound || B; ||, with ¢ = n — k. The volume element at the neighbourhood of
MF M- s

/
(10.4) dvg. = (1 £ )" (1 + (%)2)1/2 sin™ 1 (r) cos® (1) dvy, 1 dugdr
£
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where dv,,_j,_; and dvy, are the canonical volume element of S**~1 and S* respectively.

By Lemma and Equation ([[0.3), we have

| Be|dvg, = ! max(‘l— s cotr| |1—i—

3 tanr‘
(02 + (1 £ pc)?)2 1 e

1:|:go

2+ (n—k—1)(1x@)(1+2)pl/r \14
{1_{_ . 2 14+ . 2 s . D} dng
©g +( Spe)

Noting that m < min(1, z), it is easy to see that, if we set h, = min(1, |¢.])

A
l:lztp 1 JERER cotr
2 /2
VE2+ (1 £ pe)? \/so +(1£¢) \/7(1f25)2+11i%
1 he cotr

< +
1— e (1 - 906)2

<4<1+E>
,

Similarly for r € [e,7/5 + €] and € small enough, we have

|1 + lifag tanr|
QDIEQ + (1 + 905)

<4(1+ hotanr) < 8(1 + her) < (1+h)

And since ¢l = 0 for r > /5 + ¢, this inequality is also true for r € (g, 7/2]. Moreover

‘1 N W2+ (n—k—1(1+e)(1+ sof)so’e/r‘
QDIEQ + (1 + 306)2 ‘P:-:Q + (1 + 906)2

1 A n(14e)(1+¢2) A
Tltee (@24 (1)) @2 (T e)? (24 (1£¢c)?)l?
o2 n nhe  (1£e)(1+¢?)

Sl r(1—p) P2+ (14+p.)2

2 nhe (14 ¢c)?

EPR ro (1= ¢)?
nhe
22+ 070

It follows that

| Be|?dvg, < C(n, k)(1+ %)qdvgE

< C(n, k)(r+ he)ir? (1 + L )dvn_k_ldvkdr

1

< C(n, k)r_l(r + he)? <1 + \/(T/e)g(nfk—l) _

: ) dv,—p—1dvgdr
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Now

1
22(n—k—1) ¢
/ |Be|Tdvg. < C(n, k) (/ rl <1 + ! >dr
ME e V(r/e)2n—k=1) _ ]
2a-+¢e 1 q
+ n—k—l 1 _|_ d
/QW_lk_l)aT ( /(1 o) 2n—F-1) _ 1) r)
Qm

<o ([ (et [ vt e Ly
— 2

1 g2(n—k—1 2(n—k—1) S

-1
Since € ¢« < 2?“ + 1 for € small enough we have

-1
e a 9gn—k—1 2a/e+1
s b
/ 25"k laqu)
g

/kyBa\qdvgsgc*(n,k:)(lJr/ L ———ds+ [
ME

92(n—k—1) s4 a
< C(n,k)(1+ enh

which remains bounded when ¢ — 0. O

Since . is constant outside a neighborhood of M N M_ (given by a), MEI‘“ is
a smooth submanifold diffeomorphic to the sum of two spheres S along a (great)
subsphere S* C S™.

If we denote Mf one connected component of the points of Mek corresponding to r < 3a,
we get some pieces of hypersurfaces

that can be glued together along pieces of spheres of constant curvature to get a smooth
submanifold M., diffeomorphic to p spheres S™ glued each other along [ subspheres S;,
and with curvature satisfying the bounds of Theorem (when all the subspheres have

dimension 0) or of Remark [[.19.

Since the surgeries are performed along subsets of capacity zero, the manifold con-
structed have a spectrum close to the spectrum of p disjoints spheres of radius close
to 1 (i.e. close to the spectrum of the standard S™ with all multiplicities multiplied
by p). More precisely, we set n € [2¢, 5], and for any subsphere S;, we set N; . the
tubular neighborhood of radius 1 of the submanifold S; = M;rl N M_; in the local
parametrization of M. given by the map ®,_, associated to the sﬁbsphefe S;. We have
M= QU UQy . UNyp U---UN;, - where §2;, . are the connected component

of M\ U;iN; 5. The §; . are diffeomorphic to some S;, (which does not depend on ¢
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and 7) open set of S™ which are complements of neighborhoods of subspheres of dimen-
sion less than n — 2 and radius 1, endowed with metrics which converge in C! topology
to standard metrics of curvature 1 on S;,. Indeed, . converge to 0 in topology C?

‘ .
on [ré’fnt, %], where [7°7 \/(1 + ¢e,i)? + (¢L;)? = n since it converges in C! topology on

any compact of [e, 7] and since we have

i+
Tem .
0> / (1= bio)dt = (riF — e)(1 —b;.)
£
iy réy dt -
N < (1+ bi,z—:) dt + - = (Te’,n —e)(1+ bi,e)
5 € \/(5)2(n7k71) -1
+oo dt
+e

1 A /t2(nfk71) -1
+

so 72, — 1 when € — 0. So the spectrum of U;{2;; . C M. for the Dirichlet problem
converges to the spectrum of I1;S; ,, C II;S™ for the Dirichlet problem as € tends to 0
(by the min-max principle). Since any subsphere of codimension at least 2 has zero
capacity in S", we have that the spectrum of I1;5; ,, C II;S™ for the Dirichlet problem
converges to the spectrum of II;S™ when 7 tends to 0 (see for instance [}] or adapt
what follows). Since the spectrum of II;S™ is the spectrum of S™ with all multiplicities
multiplied by p, by diagonal extraction we infer the existence of two sequences (g,)
and (7,,) such that €, — 0, 7,, — 0 and the spectrum of U;Q; .. ... C M, for the
Dirichlet problem converges to the spectrum of S™ with all multiplicities multiplied by
P.

Finally, note that Ay (M) < Ay(Ui€2,20) for any o by the Dirichlet principle. On
the other hand, by using functions of the distance to the S; we can easily construct on
M. a function 1. with value in [0, 1], support in U;; ., equal to 1 on U;€; 2, . and
whose gradient satisfies [dy.|, < % It readily follows that

Vol Ni727776

4
1— 2 dye|l3 < 1+ —
H wé‘”l + H wEHZ ( + n2) VOIM&-

Tp estimate ), Vol N; 29,6, note that IV; o, . corresponds to the set of points with rit g

i+

oy I the parametrization of M. given by ®,_, at the neighborhood of S;, where, as

r

b “E s given b
above, r_5, 1s given by

i /
[ i e et =
£

hence satisfies %(ri’fn —¢) < 2 (since we have 1 — ¢, ; > 3). By formula [[0.4, we have

Tn
Vol Nizne < C(")/ (1- %n‘)"fl\/(l — o)+ (L)t Nt
3

N
Tn
+C(n) / (1+ %,i)n_l\/(l + @ei)? + (go’m)?t"_k—ldt
€

<Cm)An+e)" "< Cn, k)n™ "
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where we have used that ¢.; < 2 and 2e < 7. We then have

1L = %2y + lldvell3 < C(n,k, Lp)™ ™
To end the proof of the fact that M., has a spectrum close to that of U;€;,, .. we

need the following proposition, whose proof is a classical Moser iteration (we use the
Sobolev Inequality B.1)).

Proposition 10.4. For any q > n there exists a constant C(q,n) so that if (M",g)
is any Riemannian manifold isometrically immersed in R" ™! and Ex = (fo,--- , fn)is
the space spanned by the eigenfunctions associated to Ag < --- < Ay, then for any
f € En we have

1llee < Cla,m) (VoL AV (NN + [[H]l)) I

where v = %ann

Since we already know that A\;(Mc,,) < As(Uiiy,, c.) = Ap(o/p)(S") for any o
when m — oo, we infer that for any N there exists m = m(N) large enough such that
on M., and for any f € Ey, we have (with ¢ = 2n and since |[H||o < C(n))

[flloe < Cp, N,n)[£]]2

By the previous estimates, if we set
Le, : [ € Ex = e, f € Hy (Ui, c.n)

then we have

13 = I Len (D3 = 1715 = IFIZNT = 92, e = I F15(1 = C(k, 1, p, N )i )

and

Iien (P8 = oy [, b + P

1

2 2

< (L+h)|dfll3 + (1 T

1

< <1+h)|!df|!%+<1+ -

n—k
for any h > 0. We set h = ny,2 . For m = m(k,l,p, N,n) large enough, L. : Enx —
HE(UiQ% 0 2 ) is injective and for any f € Ey, we have

M 1+ C(k,1,p, N, st M3, g0 N
TR < O OOl Ny ) g+ Clk Lp, N, )

By the min-max principle, we infer that for any o < N, we have

n—k
)‘U(MEm) < AU(UiQimmﬁm) < (1 + C(k’ lapa Na n)an)AU(M ) + C(k’ lapa Na n)an
Since Ag (Ui nyrem) — AE(o/p)(S"), this gives that A\, (Me,,) — Ag(/p) (S") for any
o < N. By diagonal extraction we get the sequence of manifolds (1;) of Theorem 9.

To construct the sequence of Theorem [L.10, we consider the sequence of embedded
submanifolds (A/;) of Theorem Ldforp=2k=n—-2 and I = 1. Each element of the
sequence admits a covering of degree d given by y — y¢ in the local charts associated
to the maps ®. We endow these covering with the pulled back metrics. Arguing as
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above, we get that the spectrum of the new sequence converge to the spectrum of two
disjoint copies of

1]
2]
3]
[4]
[5]
(6]
9
o)
[11]
[12]
[13]
[14]
[15]

[16]

(Sl x S"2 x [0, g], dr? + d* sin® rgg1 + cos? rggn—2).
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