
HAL Id: hal-00516627
https://hal.science/hal-00516627v1

Preprint submitted on 10 Sep 2010 (v1), last revised 7 Oct 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anisotropy-axis orientation effect on the magnetization
of γ-Fe2O3 frozen ferrofluid

Sawako Nakamae, Caroline Thibierge, Katsuyoshi Komatsu, Denis L’Hôte, E.
Vincent, Emmanuel Dubois, V. Dupuis, Régine Perzynski

To cite this version:
Sawako Nakamae, Caroline Thibierge, Katsuyoshi Komatsu, Denis L’Hôte, E. Vincent, et al..
Anisotropy-axis orientation effect on the magnetization of γ-Fe2O3 frozen ferrofluid. 2010. �hal-
00516627v1�

https://hal.science/hal-00516627v1
https://hal.archives-ouvertes.fr


1 

 

Anisotropy-axis orientation effect on the magnetization of -
Fe2O3 frozen ferrofluid  

 
S. Nakamae

1
, C. Crauste-Thibierge

1
, K. Komatsu

1
, D. L’Hôte

1
, E.Vincent

1
, E. Dubois

2
, 

V. Dupuis
2
 and R. Perzynski

2
 

 
1
Service de Physique de l‟Etat Condensé (CNRS URA 2464) DSM/IRAMIS, CEA Saclay  

F-91191 Gif sur Yvette, France 
2
Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques, UMR 7195, Université 

Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, France 

 

E-mail: sawako.nakamae@cea.fr 

Abstract. The effect of magnetic anisotropy-axis alignment on the superparamagnetic (SPM) 

and superspin glass (SSG) states in a frozen ferrofluid has been investigated. The ferrofluid 

studied here consists of maghemite nanoparticles (γ-Fe2O3, mean diameter = 8.6 nm) dispersed 

in glycerine at a volume fraction of ~15%. In the high temperature SPM state, the 

magnetization of aligned ferrofluid increased by a factor varying between 2 and 4 with respect 

to that in the randomly oriented state. The negative interaction energy obtained from the Curie-

Weiss fit to the high temperature susceptibility in the SPM states as well as the SSG phase 

onset temperature determined from the linear magnetization curves were found to be rather 

insensitive to the anisotropy axis alignment. The low temperature aging behaviour, explored 

via „zero-field cooled magnetization‟ (ZFCM) relaxation measurements, however, show 

distinct difference in the aging dynamics in the anisotropy-axis aligned and randomly oriented 

SSG states. 

 

 

PACS: 75.75.Fk, 75.50.Lk, 75.50.Mm 

 

1. Introduction 

Ferrofluids are composed of nanometre scale ferro- or ferrimagnetic particles such as maghemite and 

magnetite that are suspended in a fluid carrier. When diluted, these particles are small enough 

(diameter typically below 10 nm) to be dispersed uniformly within a carrier fluid and their thermal 

fluctuations contribute to the bulk superparamagnetic response of the frozen fluid at high enough 

temperatures. Soon after the discovery of ferrofluids, it was recognized that the inter-particle dipole-

dipole interactions and the polydispersity of nanoparticle sizes lead to equilibrium magnetization 

curves which cannot be approximated by an assembly of individual monodisperse superspins. 

Furthermore, when sufficiently concentrated, interparticle interactions were found to produce a 

collective state at low temperatures (usually well below the freezing point of the carrier fluid), 

showing similarities with atomic spin-glasses [1,2]. Subsequently, experimental results in support of 

such disordered collective states, called superspin glass (SSG), have been obtained [3-7]. The SSG 

state is believed to be the product of the random distributions of positions, sizes and anisotropy-axis 

orientations of magnetic nanoparticles that interact with each other via dipolar interactions. The 

dipolar field falls off as r
-3

 and therefore, it is of long range nature. Furthermore, the microscopic „flip-

time‟ of one superspin (in the order of 10
-9

 sec) is much longer than an atomic spin flip time (in the 

order of 10
-12

 sec). These features differentiate the physics of SSG phase from that of atomic spin-

glass phases. Nevertheless, theoretical models developed for atomic spin-glass have so far succeeded 

in describing many aspects of SSG dynamics. The slow dynamics of SSG‟s is of particular interest 

because a much shorter time scale becomes experimentally accessible with SSG‟s. An example that 

can illustrate the advantage of such a long flip-time is the slow growth of a dynamical correlation 

length in spin glass phases. Numerical simulations on the growth behaviour of correlation length exist 
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[8-10]; however, a direct comparison between the experimental data and these predictions is difficult 

due to a large gap between the usual time scales explored by numerical simulations and that accessible 

in laboratory experiments on atomic spin glasses [11,12]. With longer flip times one can hope to 

bridge the gap between experiments and theories [7].  

Another advantage of using concentrated frozen ferrofluids is the easy-access to key physical 

parameters that strongly influence the SSG phase, such as the interaction energy, the individual 

superspin size and the anisotropy alignment. In magnetically aligned frozen ferrofluids, not only the 

positions of all particles are fixed in space but also their magnetic easy-axes are uniformly oriented 

parallel to the external bias field direction. Therefore, the distribution of anisotropy axes is no longer 

random. The effect of anisotropy-axis alignment on the physical properties of nanoparticle assemblies 

have been studied both theoretically and experimentally in their superparamagnetic state [13-19]. 

However, little is known on its influences at low temperatures in the presence of dipole-dipole 

interactions (i.e., high concentrations) [20-23]. Due to the loss of a disorder in the anisotropy 

orientation distribution, the SSG phase of a magnetically aligned frozen ferrofluid may well behave 

differently from that of randomly oriented nanoparticles.  

In this study we have used a ferrofluid consisting of maghemite, -Fe2O3 nanoparticles dispersed in 

glycerine and aligned the easy magnetization axis of individual nanoparticles by freezing glycerine in 

the presence of high magnetic fields (H > 15 kOe). After performing a series of magnetization 

measurements (DC magnetization, ac susceptibility and low temperature magnetization relaxation) the 

ferrofluid was warmed up to above the melting temperature of glycerine to destroy the anisotropy-axis 

alignment. Then the same series of experiments were repeated on the same ferrofluid, this time with 

particle‟s anisotropy axis distributed randomly. As the anisotropy-axis alignment is the only difference 

between the two sets of measurements, the direct comparison between the two should elucidate 

exclusively its influence on their magnetic behaviour in both the SPM and the SSG states. 

This paper is organized as follows. Section 2 is devoted to the sample description and the experimental 

methods used in our study. In section 3, phenomenological models used to analyze our experimental 

data are discussed. The experimental data analysis and the discussion are given in section 4. A brief 

summary of our findings is found in the last section. 

2. -Fe2O3 ferrofluid sample and experimental methods 

2.1. Ferrofluid Sample and anisotropy axis alignment 

The ferrofluid used in the present study is composed of maghemite, -Fe2O3, nanoparticles dispersed 

in glycerine at ~15% volume fraction. The distribution of the nanoparticles’ diameters can be 

described by a log-normal distribution of characteristics; i.e., mean diameter do =8.6 nm (ln(do) = 

<ln(d)>) and dispersion  =0.23 [24]. Due to their small sizes, these nanoparticles are magnetic single-

domains with an average permanent magnetic moment of ~10
4
B. Approximately, 1.5 L of ferrofluid 

was sealed hermetically inside a small glass capillary (1mm inner diameter). The magnetization and 

the ac susceptibility measurements were performed using a commercial SQUID magnetometer 

(CRYOGENIC™ S600). 

In order to physically rotate and align nanoparticles’ anisotropy axes, an external bias field H (15 and 

30 kOe) was applied at 300K for over one hour. These values were chosen based on the birefringence 

measurements conducted on a concentrated ferrofluid similar to ours where an axis-alignment at H > 5 

kOe at room temperature was observed [25]. The ferrofluid was cooled down to 150K (< 190 K = 

freezing temperature of glycerine) before removing the strong bias field. DC magnetization was then 

measured as a function of temperature with a 1 Oe applied field. The magnetization curves obtained 

from the sample aligned under 15 and 30 kOe were found to superimpose over one another within the 
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experimental uncertainty, indicating that a uni-axial anisotropy orientation is achieved [22]. All data 

presented on the ‘aligned’ sample hereafter were taken on the ferrofluid aligned at 30 kOe. The frozen 

ferrofluid with randomly oriented nanoparticles is referred to as „random‟ sample. 

The comparison of ‘aligned’ and ‘random’ samples implies to have the knowledge of the microscopic 

structure of the samples, especially under magnetic fields. This has been widely explored in several 

previous studies [25-27]. Coupled Small Angle Scattering and magneto-optical measurements [25] 

proved that the properties of the magnetic nanoparticle dispersions are controlled by several 

parameters; the dipolar parameter /the osmotic pressure , and the volume fraction . These 

parameters define the location of the sample in the dispersion phase diagram, which mainly depends 

on the interparticle interactions. In these systems, the van der Waals attractions and the dipolar 

magnetic interactions (attractive on average) between the nanoparticles are counterbalanced by the 

electrostatic repulsion created by the surface charges; citrate molecules adsorbed on the nanoparticle 

surface. The pressure  is essentially controlled by the electrostatic interaction, and the dipolar 

interaction can be quantified by 
Tkr B

o

3

2


  , ratio between the magnetic dipolar energy and the 

thermal energy, kBT (µ: dipole moment of the particle, r: mean distance between particles). For the 

sample used here with ~15% and the salt concentration is 0.05 M, / equals 20 at 300K and this 

value grows to 32 at 190K and to 40 at 150K. In glycerine as well as in water, no aggregates are 

formed under such conditions in similar nanoparticle dispersions, even in the presence of a strong 

magnetic field [25-27]. Therefore the ferrofluid studied here is most likely to be an aggregation-free 

dispersion of individual particles even under a strong magnetic field and at low temperature. Note that 

under a strong field, the structure nevertheless becomes slightly anisotropic because the interparticle 

interactions become anisotropic due to the orientation of the magnetic dipoles. However, the mean 

distance between the nanoparticles is found to remain isotropic within the resolution of neutron 

scattering [26].  

2.2. Magnetization Measurements  

In order to understand the effect of anisotropy axis alignment on the high temperature SPM phase as 

well as on the low temperature SSG aging dynamics of a frozen ferroluid, we have carried out a series 

of measurements including: low field DC magnetization (zero-field cooled (ZFC) and field cooled 

(FC)) vs. temperature, ac magnetic susceptibility vs. temperature (with an excitation field of 1Oe 

oscillated at frequencies between 0.04 and 8Hz) and the zero-field cooled magnetization (ZFCM) 

relaxation at temperatures below Tg. The experimental procedure for ZFCM relaxation measurements 

is as follows. First, the samples are cooled from a temperature (140 K) well above the superspin-glass 

transition temperature, Tg ~70 K (for both SSG states) to the measuring temperature, Tm = 49K (~ 0.7 

Tg) in zero field. After waiting for a period of tw (waiting time ranging between 3 and 24 ks), a small 

probing field (0.15 Oe < H < 8 Oe) is applied at t = 0. The magnetization relaxation toward a final 

value, MFC (field cooled magnetization) is measured over a long period time, t, during which the 

relaxation rate also evolves, continuously changing the slope of the ZFCM response function. In the 

case of aligned SSG, measurements at 59.5 K (~ 0.84 Tg) were also performed.  

3. Phenomenological models and data analysis methods 

3.1. Magnetization relaxation scaling 

Key physical phenomena of interest here related to the aging in the SSG states are the time dependent 

magnetization relaxation and the associated relaxation rates. In atomic spin glasses, both the 

thermoremanent magnetization (TRM) and the zero-field cooled magnetization after a temperature 

quench in the spin-glass phase can be expressed as a sum of a stationary equilibrium term, meq(t), and 

an aging term, mag(t, tw).  
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where A is a prefactor which takes a positive value in the case of TRM and a negative value for ZFCM, 

o is a microscopic „spin-flip‟ time,  and  are scaling exponents. /tw

 with  = tw[(1+t/tw)

1-
-1]/[1-

] is an effective time variable which takes in account the tw dependent evolution of the magnetization 

relaxation [28,29]. When fitting parameters (,  and A) are properly chosen, mag(t,tw) of spin-glass 

magnetization; i.e., M/MFC - meq at different tw„s all collapse onto a single master curve function of 

/tw

. Values of  ≠ 1 indicate by how much the „effective age‟ of a spin glass deviates from its 

„nominal age‟; that is, experimental waiting time, tw. 

In the magnetization relaxation of superspin glasses made of interacting fine magnetic nanoparticles, 

an additional non-aging, time-logarithmic term has been identified [6,30]. This relaxation term, 

Blog(to) is believed to stem from superparamagnetic moments that do not participate in the superspin 

glass aging dynamics and must be treated independently.  The scaling of low temperature ZFCM 

curves would serve as an additional indication of a SSG phase in frozen ferrofluids with or without the 

anisotropy-axis alignment. 

3.2. Magnetization relaxation rate, effective age of a (super)spin glass and dynamic spin correlations  

In a spin glass, the magnetization relaxation rate (S) after an external field change is often expressed as 

a log-derivative of M/MFC, i.e., S = d(M/MFC)/dlog(t). S(log(t)) contains a maximum reached at a 

characteristic time, tw
eff

 that corresponds to the time at which the relaxation rate becomes the fastest, 

Smax. The quantity S(log(t)) is equivalent to the relaxation time distribution of dynamically correlated 

(super)spin zones [31], and thus tw
eff

 is commonly referred to as the effective age of the system since 

the temperature quench time. A wide spread of S(log(t))is indicative of the slow and non-exponential 

relaxation of the response function in a (super)spin glass state.  

One can extract both qualitative and quantitative information on the dynamics of (super)spin 

correlations (number and length) in the glassy phase by studying the tw
eff

 position shift in response to 

the changes in experimental control parameters, tw and H via ZFCM measurements. This experimental 

approach relies on the assumption that the observed reduction in the effective age of the system upon 

the change in an external magnetic field is due to the Zeeman energy (EZ(H)) coupling to many subsets 

of dynamically correlated (super)spins [11,12,32]. At t = tw after a temperature quench in zero field, a 

typical size of the correlated spins has grown to Ns(tw) with an associated free energy barrier of EB(tw). 

The relaxing of Ns(tw) dynamically correlated (super)spins toward their final state requires a 

cooperative flip of all Ns(tw). Therefore, in response to a vanishingly small external field, such a 

cooperative flipping should equally require an amount of time ~ tw:  

tw (H~0) = τ0 exp(EB(tw) /kBT)    (2), 

where o is, once again, a microscopic flipping time of a single (super)spin. Indeed in atomic spin 

glasses and in one randomly oriented superspin glass, Smax occurs at a characteristic time t ~ tw at very 

low fields. In the presence of a small but non-negligible H, however, EZ(H) acts to reduce the barrier 

energy to a new value, EB(tw)-EZ(tw, H) by coupling to Ns(tw) correlated spins.  Therefore, one expects a 

shift of the Smax position to shorter times t
eff

w(H) < tw.; 

t
eff

w (H) = τ0 exp{(EB(tw)−EZ(H,tw)/kBT)}  (3). 
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By combining the expressions (2) and (3), the relationship between the relative decrease in tw
eff

 

(effective age) with respect to tw (nominal age) of the system and the Zeeman energy exerted onto the 

Ns correlated (super)spins can be written as, 

   
  
   

  
  -

         

   
     (4). 

EZ(H,tw) depends on both the external field and the number of correlated spins, Ns(tw). Once EZ(H) is 

determined, Ns may be extracted knowing that EZ(H) = M(Ns)H. The exact form of EZ is not readily 

known and therefore it is often speculated from the experimental observations [11,12]. In the case of 

Ising-type spin glasses EZ(H) was found to grow linearly with H, while in Heisenberg spin glasses, a 

quadratic dependence on H was reported. These experimental observations were interpreted to reflect 

EZ(H)= √NsμH in Ising spin glasses (with relatively small values of Ns, see [11] for more detail) and EZ 

= NsFCH
2
 in the case of Heisenberg-like spins (with macroscopically large values of Ns) where  is 

the magnetic moment of one spin and FC is the field cooled susceptibility per (super)spin. The ZFCM 

method has been used successfully in atomic spin-glasses [11,12] and lately in a randomly oriented 

superspin glass by our group [7]. Our previous ZFCM experiments performed on a random SSG 

system exhibited closer to a quadratic dependence on H, and the Ns values were extracted based on 

Heisenberg spin glass model accordingly. 

3. Results and Discussion 

3.1. Anisotropy axis alignment effect on the superparamagnetic behaviour 

In figure 1, the Zero-Field Cooled (ZFC)/Field Cooled (FC) DC susceptibility curves (M/H) of the 

frozen ferrofluid with and without anisotropy axis alignment are presented. 1 Oe probing field was 

used in both measurements. Here, we have taken in account the demagnetization factor ~0.3 due to a 

short cylindrical shape of our sample [33]. Notice that due to the melting of glycerine starting around 

200 K and above, the (T) of the aligned sample approaches that of the random sample. Below 200 K 

where superspins are physically blocked, the  of aligned sample becomes considerably larger than 

that in the random state.  

 

Figure 1. ZFC and FC DC magnetic susceptibility curves of -Fe2O3 ferrofluid in aligned and random 

states. An external field of 1 Oe was used in both measurements. Note that M(T) at T > 150 K in the 

aligned sample were taken at the end of all other magnetization measurements presented in this study.  
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In the case of „non-interacting‟ and monodisperse superparamagnetic particles, M//, magnetization in 

the direction of an external field of a randomly aligned ferrofluid at high T follows the Langevin 

function [34], M//()=Ms[coth()-1/] where Ms is the saturation magnetization of the magnetic 

material and = /kBT (VpMs is the magnetic moment of each particle with Vp being the volume 

of one nanoparticle). In a weak field, high temperature limit M//() becomes N2
H/3VkBT (Curie Law). 

If all particles‟ magnetic anisotropy axes are oriented parallel to an externally applied field, 

magnetization is no longer given by the Langevin law. In the extreme limit where anisotropy energy 

Ea → ∞ and without interactions, M// = Ms tanh() which becomes N2
H/VkBT in the weak field limit 

[35]. The anisotropy energy of our maghemite nanoparticles, Ea/kB = 2x300K [36] is much greater than 

the magnetic energy T ~ 1 K (for H in the order of 1 G). 

In the presence of dipole-dipole interactions, each nanoparticle responds to its total local field, HT 

which is a sum of applied magnetic field and the dipolar fields exerted by the surrounding superspins 

near and far. Therefore for the total local field for a nanoparticle located at xi, one has HT(xi) = Hext + 

Hdiople(xi). Jönsson and Garcia-Palacios have calculated the linear equilibrium susceptibility  in 

weakly interacting superparamagnets.[4,37] In their work,  is expressed in the form of an expansion 

with coefficients that depend on dipolar interactions as well as on anisotropy effects. The results 

indicated that (in the absence of an external bias field) all traces of anisotropy are erased in the linear 

susceptibility of a superparamagnetic system with randomly distributed anisotropy axes and the 

expression for isotropic spins (N2
/3VkBT) is recovered. For systems with parallel aligned axes, the 

dipolar interactions were found to be stronger and the corresponding low temperature susceptibility 

approaches that of Ising spins; i.e., N2
/VkBT. As seen in figure 1, the ratio between the (T) of the 

aligned frozen ferrofluid to that of the randomly oriented ferrofluid is approximately 2 at 200 K and 

this value grows to about 4 at the ZFC maximum temperature. The ratio between the two susceptibility 

values in the SPM regime that exceeds 3 may indicate that the dipole-dipole interactions in the present 

ferrofluid are beyond the weak interaction limit. The interparticle dipolar interactions are known to 

play an important role in concentrated magnetic nanoparticle systems and can lead to an increase > 3 

of the linear susceptibility from the Langevin value [38,39]. Therefore, a change in dipolar interaction 

energy due to the anisotropy axis alignment may explain the apparent increase in the linear  observed 

here. However, the transition temperature, loosely defined here as the temperature at which the ZFC 

and FC curves separate, is found at ~70K in both systems. As the Tg is known to depend strongly on 

the dipolar interactions (i.e., concentrations) the insensibility of Tg to the anisotropy alignment 

disproves a significant change in dipolar interaction energy speculated above. 

To further elucidate the change in the interaction strength, we have plotted 1/ of the high temperature 

SPM phase as a function of temperature in order to extract the (negative) interaction energy appearing 

in the form of the Curie-Weiss law; (T)   (T - To)
-1

. The value of To in the aligned ferrofluid = -15 K 

± 10 is not very different from that found in the random state = -25K ± 3. Note that an arbitrary and 

temperature independent (diamagnetic) contribution needed to be subtracted from the raw data to 

perform these fits. Additionally, the upper bound of the experimentally accessible SPM temperature 

range is limited by the melting of glycerine near 200 K. These facts contributed to large uncertainties 

in To. It is nevertheless interesting to consider the ratio between the susceptibilities in the aligned and 

random samples (~3.5 between 200 and 100 K, see figure 2). As a function of (T - To) with their 

respective To values (Inset figure 2), the ratio becomes 3.15, approaching the theoretical value of 3. In 

disordered systems such as ferrofluids studied here, the physical meaning of the negative interaction 

energy is not easily understood. It has been previously demonstrated by Chantrell et al., [40] that the 

negative interaction energy (extracted from high temperature SPM simulation on interacting 

nanoparticle systems) depends strongly on the packing density of fine magnetic particles as well as on 

the system geometry; i.e., long-range interactions. Therefore, the lack of a discernible change in To 

suggests dipolar interaction remains rather constant under the anisotropy alignment change. 
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Figure 2. 1/ vs. temperature in the high temperature SPM region. The x-axis intercepts indicate the 

values of To. A diamagnetic and temperature independent contribution Mo, presumably due to the 

sample holder (glass capillary) needed to be subtracted from the raw data for this analysis. The inset 

shows the same 1/ plotted against T - To (To = -15 and -25 K are used for the aligned and the random 

states, respectively) 

3.2. Persistence of SSG state in an aligned ferrofluid at low temperature 

In order to differentiate the SSG transition from the SPM blocking behaviour, frequency () 

dependence of AC susceptibility was measured and the peak temperature Tg() at which the real part 

of susceptibility reaches its maximum value was analyzed. If the frozen ferrofluid in either form is an 

ensemble of independent superparamgnetic centres, Tg() can be fitted to the Arrhenius law: 

 )(/exp
1


gBao

TkE


, with a physically reasonable value of o (in the order of 10
-9

~10
-10

 s for 

the types of magnetic particles studied here). The fits to the Arrhenius law give unphysical values of o 

~10
-19

~10
-20

 s in both cases indicating possible phase transitions at taking place at Tg(). A second 

order phase transition (divergence of a correlation length) toward a disordered state exhibits a critical 

behaviour [41] that is described by 







 






g

gg

z

T

TT )(
*

0

1






    (6). 

Our data can be fitted (figure 3) with plausible critical exponent values, z= 8.5±0.3 and o
*
 = 1±0.5 

sec in the aligned ferrofluid and z≈ 7.5 ±0.3 and o
*
 ≈ 1 ± 0.5 sec in the random one. The large 

value of o
*
 (~1 sec) can be easily explained in terms of the Arrhenius-Néel law: 

o
*
(T)~oexp{Ea/kBT}. With o ~10

-9
 s and Ea/kB = 2 x 300 K, o

*
 at Tg = 70 K reaches the order of 

microseconds. Thus, it appears that the superspin glass transition is not lost by the anisotropy-axis 

alignment of the ferrofluid but with the critical exponent that is slightly higher than its randomly 

oriented counterpart. Also, unlike the glass transition determined from static susceptibility, Tg( ≠ 0) 

values are found to behave differently in the aligned and the randomly oriented states. It may be worth 

noting that in atomic spin glasses, the observed critical exponent (z) is larger in Ising spin glasses 

than in Heisenberg-like spin glasses [9]. 
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Figure 3. Displacement of transition temperature with frequency determined from in-phase ac 

susceptibility in a ferrofluid with and without anisotropy-axis alignment. The critical exponent, 

appearing as the slope on the log-log scale is slighter larger in the aligned ferrofluid. 

3.3.  SSG Aging in the very low field limit 

We now discuss the effect of anisotropy axis alignment on the aging behaviour in the low temperature 

superspin glass states. Let us start by comparing the relaxation rate distribution spectra, S(t) = 

dM/dlog(t) between the two systems. Examples of S spectra taken at 0.7 Tg with tw= 3 ks in both 

systems are presented in figure 4 (top panel). As can be seen from the graph, the peak (Smax) width of 

relaxation rate in the aligned SSG state is considerably narrower than that in the random SSG state. 

This may not come as a surprise considering that the anisotropy energy distribution of a uni-axial, 

single-domain nanoparticle system depends on the distribution of angles between the constituting 

particles‟ magnetization and the external field directions. Thus, the distribution of energy barriers of 

correlated superspin domains should be concentrated about a common value in the aligned SSG state.  

In Figure 4 (bottom panel), the Smax(t) locations, tw
eff

, obtained from the ZFCM relaxation rate curves 

are plotted against the experimental waiting time, tw, on a log-log scale for both SSG states. These 

measurements were performed at Tm = 49K (~0.7Tg) with the excitation field H = 0.5 Oe and tw was 

varied between 3 and 24 ks. As discussed in section 3.3, in the low field limit, one expects to obtain 

log(tw
eff

) = log(tw). As can be seen from the figure, tw
eff

 is ≈ tw in the random SSG state. On the other 

hand, the values of tw
eff

 of the aligned SSG state are larger than the experimental tw by approximately 

1500 sec. By adding an extra time, tini, to tw; tw → tw + tini, with tini ≈ 1500 s, the tw
eff

 plot of the aligned 

SSG state coincides with that of the random state. The presence of tini may indicate that the aging had 

started during the cooling, i.e., ~1500 s prior to the experimentally defined quench time, but only in 

the aligned SSG state despite the identical cooling rate used in both experiments.  

Similarly in atomic spin glasses, an enhanced sensitivity to cooling rates, also known as a „cumulative 

aging‟ effect; that is, a tendency for aging to pile up from one temperature to another, have been 

observed in Ising systems [42,43]. The effective age of an Ising spin glass increased after slower 

cooling, while Heisenberg spin glasses remained nearly insensitive to the same cooling-rate variations 

[9]. This analogy is particularly appealing as the anisotropy axis alignment should qualitatively drive 

the system toward an Ising-like magnetic state. Is is also consistent with the critical exponent analysis 

in the previous section where the critical exponent, z, associated with the aligned SSG transition was 

found to be larger than in the random case.  
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Figure 4. (Top) Relaxation rate of ZFCM, S, vs. log(t) in anisotropy-axis aligned and random SSG 

states with an external field of 0.5 Oe and the waiting time (tw) of 3 ks. The arrows indicate the 

positions of Smax. (Bottom) tw
eff

 vs. tw found in the ZFCM relaxation curves at 0.5 Oe and with tw = 3, 6, 

12 and 24 ks on a log-log scale. 

3.4. Magnetization scaling  

Next, we examine the ZFCM scaling of aligned and randomly oriented ferrofluids with tw values 

ranging from 3 to 24ks and under 0.5Oe. As mentioned above, the subtraction of the 

superparamagnetic (mSPM) and the equilibrium (meq) components is necessary in order to achieve a 

good scaling [6,30]. These contributions follow the forms; B(log(t/o
*
)) and –A(t/o

*
)

-
, respectively, 

where B and A are prefactors and  is a scaling exponent. The value of o
*
 is fixed according to the 

Arrhenius-Néel law as described in section 3.2. The corresponding o
*
 values at 49 and 59.5 K are, 200 

and 26s, respectively. The fitting parameters used to scale the ZFCM curves are summarized in table 

1 and the corresponding scaling curves are shown in figure 5. 

The most remarkable difference between the two scaling curves at 49 K is the critical exponent “” in 

the scaling variable /tw

(see section 1).  = 0.91 found in the random SSG is close to the values 

found in atomic spin glasses [28]
 
as well as the results obtained in more concentrated maghemite 

ferrofluids [6]. On the other hand, in the aligned SSG state  has been shifted to a dramatically smaller 

value, 0.61. In atomic spin glasses; if  =1 (tw
eff

 = tw) then the system is termed fully aging, if  =0 then 

there is no aging (i.e., magnetization relaxation does not depend on tw) and in-between values of  

reflect „subaging‟ [44,45]. Therefore, the  value close to unity found in the randomly oriented SSG 

confirms the earlier observation tw
eff

   tw. The results also agrees with the smaller slope found in 

Figure 4 (bottom panel) for the aligned SSG state and it may also reflect, partly, the cooling rate effect 

as discussed above.  
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Table 1. Fitting parameters used for the ZFCM scaling. Note that due to a multiple number of fitting 

parameters, slightly different solutions to A, B and  can equally produce reasonable scaling. However, 

 is the most influential on the overall scaling quality and it must be close to the values indicated 

below. 

 

Random 

49K 

Aligned 

49K 

Aligned 

59.5K 

A 0.26 0.26 0.25 

 0.22 0.07 0.09 

B 0.001 0.005 0.015 

 0.91 0.61 0.29 

o* 200 s 200 s 26 s 

 

Figure 5. Scaling of ZFCM relaxation curves obtained at 49 K in random (top) and aligned (middle) 

SSG states and at 59.5 K in aligned SSG state (bottom) with tw = 3~24 ks. A superparamagnetic 

contribution [Blog(t/o
*
)] and an equilibrium contribution [-A(t/o

*
)

-
] are subtracted from the total 

ZFCM. See text for details. 

 

We have also attempted to scale the ZFCM data obtained at 59.5K (0.84 Tg) in the aligned SSG phase 

(figure 5, bottom panel). Due to the higher temperature toward Tg, a larger proportion of the total 

magnetization grew within the first few seconds immediately following the external field application, 

before we could perform our first measurement with our current experimental set-up. Consequently, 

the range of magnetization change became much smaller than those probed during the measurements 

at 49 K.  Nevertheless, we were still able to achieve scaling using the same data treatment but with 

two marked differences. First, the B-term corresponding to the contribution from time-logarithmic 

superparamagnetic particles grew larger; B(59.5K) ~ 0.015 as opposed to B(49K) ~ 0.005. Second, the 

scaling exponent  is further reduced to 0.29! In Heisenberg spin glasses, the value of (T) has a 

plateau like structure around  ~ 0.9 across a wide range of temperature between 0.5 and 0.9 Tg. (T) 



11 

 

then falls off rapidly as the system approaches the critical region near the glass transition temperature; 

T > 0.9 Tg [46]. In an Ising spin glass, the cumulative aging effect, which pushes  towards smaller 

values in isothermal aging experiments, was tentatively attributed to its more extended critical region 

compared to conventional Heisenberg spin glasses [42]. A similar phenomenology akin to the 

cumulative aging is perhaps present in an aligned frozen ferrofluid system. Additional magnetization 

relaxation measurements (ZFCM or TRM) are needed to test if the (T) drop-off occurs at a lower 

temperature (in Tg) in a frozen ferrofluid superspin glass phase.  

3.5 Zeeman Energy 

Lastly, we focus our attention on the effective age (tw
eff

) change due to the application of H; that is, the 

Zeeman energy coupled to dynamically correlated superspins. In figure 6, the effective times, tw
eff

 

measured at different tw values are plotted as functions of magnetic field. As ln(tw
eff

) ~ EZ/kBT, a semi-

log plot of tw
eff

 vs. H depicts equivalently the Zeeman energy dependence on H.  The difference in the 

tw
eff

 dependence on H between the two SSG states is very clear. For a randomly oriented ferrofluid, we 

confirm our previous observation that tw
eff

 shows a near quadratic field dependence. In a stark contrast 

to this, tw
eff

 of an aligned ferrofluid shows a close-to-linear dependence. Even at the 59.5 K where the 

relaxation was found to be much faster than at 49 K, the linear dependence of tw
eff

 is still clear (see 

figure 7). Once again, the Zeeman energy dependence of H in a random and an aligned SSG states 

resembles that of Heisenberg (H
2
) and Ising (H) spin glasses, respectively [11,12].  

 

Figure 6: Effective age of the sample dependence on external magnetic field at 49 K. tw
eff

 was found 

to depend linearly in the aligned SSG state (top) while in the random SSG state, it exhibited near H
2
 

dependence. 
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In order to extract the typical number of dynamically correlated spins, Ns(tw), a more careful 

examination on the forms of EZ and their interpretations is required. For example, although the tw
eff

 vs 

H curves of the random SSG state on the log-log scale show near H
2
 dependence, it is not purely so. In 

Heisenberg spin-glasses, the quadratic dependence of Ez has been phenomenologically associated to 

NsFCH
2
. While this interpretation may very well be valid in atomic spin glasses whose field range of 

investigation exceeds 1000G [11], it may not be adequate for a superspin glass because the low field 

range (where the ZFCM approach is valid) is limited to H < 10 G due to a large magnetic moment of 

nanoparticles. The effective local field due to dipolar interactions, e.g., from near-by large 

nanoparticles that are too large to relax within a laboratory time scale, may significantly alter the Ns 

value to be determined. Furthermore, the possibility of another entirely different aging mechanism 

specific to slowly interacting dipolar fine magnetic particles should also be considered [21,22]. These 

analysis are currently underway to extract realistic Ns values. 

 

Figure 7. Effective age of the aligned sample vs. H
2
 and H at 59.5 K. Linear relationship between tw

eff
 

and H is clearly observed. 

IV. CONCLUSION 

We have investigated the effect of the magnetic anisotropy-axis alignment in the superparamagnetic 

and the superspin glass states of a frozen ferrofluid. The anisotropy axis alignment was achieved by 

means of strong (> 15 kOe) magnetic field applied to a ferrofluid in its liquid state. In the high 

temperature SPM state, the linear susceptibility of aligned ferrofluid increased by a factor of 2 ~ 4 

with respect to that measured in the randomly oriented state. The SSG transition temperature extracted 

from the linear magnetic susceptibility curves, (T), remained insensitive to the anisotropy axis 

alignment. Additionally, (T) fit to the Curie-Weiss law in the high temperature SPM regime revealed 

the negative interaction energy to be similar in both states. 
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The low temperature superspin glass dynamics explored via ac susceptibility and „zero-field cooled 

magnetization‟ (ZFCM) relaxation measurements, however, show distinct differences in the out-of-

equilibrium dynamics of SSG phase due to the anisotropy-axis alignment. These changes are:  

a) Larger critical exponent in an aligned ferrofluid. Tg() was also found to be larger in the aligned 

system for all  values explored. 

b) Subaging-like behaviour in the aligned SSG state. The effect appeared only in the aligned sample 

as an initial age and as a smaller scaling exponent, μ (~0.9 in the random SSG state to ~ 0.6 in the 

aligned SSG state at 0.7 Tg). 

c) Zeeman energy dependence on H. EZ depends linearly in the aligned SSG state, while near-

quadratic dependence was observed in the random SSG state. 

Interestingly many of these above listed differences between the anisotropy-axis aligned and the 

randomly oriented SSG states resemble those found in Ising-like and Heisbenberg spin glasses. 
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