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A Majorize-Minimize Strategy for Subspace

Optimization Applied to Image Restoration

Emilie Chouzenoux, &ome Idier and Sa Moussaoui

Abstract

This paper proposes accelerated subspace optimizatidideein the context of image restoration.
Subspace optimization methods belong to the class of iiteralescent algorithms for unconstrained
optimization. At each iteration of such methods, a stepsietor allowing the best combination of
several search directions is computed through a multi-dgiomal search. It is usually obtained by an
inner iterative second-order method ruled by a stoppingroin that guarantees the convergence of the
outer algorithm. As an alternative, we propose an originaltirdimensional search strategy based on the
majorize-minimize principle. It leads to a closed-formpstige formula that ensures the convergence of
the subspace algorithm whatever the number of inner itarstiThe practical efficiency of the proposed

scheme is illustrated in the context of edge-preservingyamn@storation.

Index Terms

Subspace optimization, memory gradient, conjugate gnadggiadratic majorization, stepsize strat-

egy, image restoration.

. INTRODUCTION

This work addresses a wide class of problems where an inpujemé ¢ R” is estimated from

degraded datg € R”. A typical model of image degradation is
y=Hzx’+¢€

where H is a linear operator, described ag'ax N matrix, that models the image degradation process,
ande is an additive noise vector. This simple formalism covers ynaal situations such as deblurring,

denoising, inverse-Radon transform in tomography andasigmerpolation.

E. Chouzenoux, J. Idier and S. Moussaoui are with IRCCyN (CNRSRUdB97), Ecole Centrale Nantes, France. E-mail:
{emilie.chouzenoux, jerome.idier, said.moussa@irccyn.ec-nantes.fr.
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Two main strategies emerge in the literature for the restoraf x° [1]. The first one uses aanalysis-

basedapproach, solving the following problem [2, 3]:

min (F(z) = |Hz —y|* + \¥(z)). 1)

xeRN
In section V, we will consider an image deconvolution prabléhat calls for the minimization of this
criterion form.
The second one employssgnthesis-basedpproach, looking for a decompositienof the image in

some dictionaryK € RT*% [4, 5]:

min (F(z) = |[HKz — y|> + \¥(z)). @)

ZERR
This method is applied to a set of image reconstruction problgg] in section IV.

In both cases, the penalization ten whose weight is set through the regularization paramgter
aims at guaranteeing the robustness of the solution to theradtion noise and at favorizing its fidelity
to a priori assumptions [7].

From the mathematical point a view, problems (1) and (2) shaxemmon structure. In this paper, we
will focus on the resolution of the first problem (1), but we lveilso provide numerical results regarding

the second one. On the other hand, we restrict ourselvegtdarezation terms of the form

C
V() =Y o(|[Viw - wel])
c=1

whereV, ¢ RPN w. € RY for ¢ = 1,...,C and||.|| stands for the Euclidian norm. In the analysis-
based approachV, is typically a linear operator yielding either the diffeoes between neighboring
pixels (.g.,in the Markovian regularization approach), or the localtighayradient vector €.g.,in the
total variation framework), or wavelet decomposition diwéfnts in some recent works such as [1]. In
the synthesis-based approadf, usually identifies with the identity matrix.

The strategy used for solving the penalized least squares (Pht8himation problem (1) strongly
depends on the objective function properties (differdnilityr, convexity). Moreover, these mathematical
properties contribute to the quality of the reconstructedge. In that respect, we particularly focus on
differentiable, coercive, edge-preserving functianse.g., ¢, norm with1 < p < 2, Huber, hyperbolic,
or Geman and McClure functions [8-10], since they give rizdocally smooth images [11-13]. In
contrast, some restoration methods rely on non differblgisegularizing functions to introduce priors
such as sparsity of the decomposition coefficients [5] andepiese constant patterns in the images [14].

As emphasized in [6], the non differentiable penalizatiernt can be replaced by a smoothed version
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without altering the reconstruction quality. Moreovere thse of a smoother penalty can reduce the
staircase effect that appears in the case of total variaéigolarization [15].

In the case of large scale non linear optimization problesmeraountered in image restoration, direct
resolution is impossible. Instead, iterative optimizatadgorithms are used to solve (1). Starting from an
initial guessx, they generate a sequence of updated estinfatgsuntil sufficient accuracy is obtained.
A fundamental update strategy is to produce a decrease aflileetive function at each iteration: from

the current valuery, x, is obtained according to
Tp1 = Tp + ogdy, (3)

where oy, > 0 is the stepsizeand d;, is a descent direction i.e.a vector such thag,{dk < 0, where
gr = VF(x;) denotes the gradient df' at ;. The determination oy is called theline search It is
usually obtained by partially minimizing the scalar fuoctif (a) = F(x; + ady) until the fulfillment
of some sufficient conditions related to the overall algonitbonvergence [16].

In the context of the minimization of PLS criteria, the detaration of the descent directiod, is
customarily addressed using a half-quadratic (HQ) apprabat exploits the PLS structure [11, 12,17,
18]. A constant stepsize is then used whilg results from the minimization of a quadratic majorizing
approximation of the criterion [13], either resulting frad&eman and Reynolds (GR) or from Geman and
Yang (GY) constructions [2, 3].

Another effective approach for solving (1) is to considebspace acceleration [6,19]. As emphasized
in [20], some descent algorithms (3) have a specific subspzateireé: they produce search directions
spanned in a low dimension subspace. For example,

« the nonlinear conjugate gradient (NLCG) method [21] usesaachedirection in a two-dimensional

(2D) space spanned by the opposite gradient and the preglicecgion.
» the L-BFGS quasi-Newton method [22] generates updates in spaab of siz&m + 1, wherem

is the limited memory parameter.

Subspace acceleration consists in relying on iterations ragplicitly aimed at solving the optimization
problem within such low dimension subspaces [23—-27]. Thelacation is obtained by defining; .,

as the approximate minimizer of the criterion over the sabspspanned by a set 8f directions
Dy =1[d},...,dY]
with 1 < M <« N. More precisely, the iterates are given by
Tr41 = g + Dysy (4)

September 10, 2010 DRAFT



RAPPORT TECHNIQUE IRCCYN 4

where sy, is a multi-dimensional stepsize that aims at partially mizing
f(s) = F(zy + Dgs). (5)

The prototype scheme (4) defines itarative subspace optimizatialgorithm that can be viewed as an
extension of (3) to a search subspace of dimension larger dha. The subspace algorithm has been
shown to outperforms standard descent algorithms, suclh.@&Nind L-BFGS, in terms of computational
cost and iteration number before convergence, over a set ofmithinization problems [6, 19].

The implementation of subspace algorithms requires a gyrate determine the stepsize, that
guarantees the convergence of the recurrence (4). Howieverdifficult to design a practical multi-
dimensional stepsize search algorithm gathering suitedstwergence properties and low computational
time [26, 28]. Recently, GY and GR HQ approximations havet¢ean efficient majorization-minimization
(MM) line search strategy for the computation®@f whend,, is the NLCG direction [29] (see also [30]
for a general reference on MM algorithms). In this paper, vemegalize this strategy to define the
multi-dimensional stepsizg;, in (4). We prove the mathematical convergence of the regulubspace
algorithm under mild conditions o;.. We illustrate its efficiency on four image restoration peshs.

The rest of the paper is organized as follows: Section Il givesogerview of existing subspace
constructions and multi-dimensional search proceduneSecttion Ill, we introduce the proposed HQ/MM
strategy for the stepsize calculation and we establish rgerm®nvergence properties for the overall
subspace algorithm. Finally, Sections IV and V give sometilat®ons and a discussion of the algorithm

performances by means of a set of experiments in image atistor

Il. SUBSPACE OPTIMIZATION METHODS

The first subspace optimization algorithm is the memory gradigethod, proposed in the late 1960’s
by Miele and Cantrell [23]. It corresponds to

D), = [—gi, dji—1]

and the stepsize;, results from the exact minimization ¢f(s). When F' is quadratic, it is equivalent to
the nonlinear conjugate gradient algorithm [31].

More recently, several other subspace algorithms have pegmosed. Some of them are briefly
reviewed in this section. We first focus on the subspace awt&in, and then we describe several

existing stepsize strategies.
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A. Subspace construction

Choosing subspaceB,. of dimensions larger than one may allow faster convergenctrms of
iteration number. However, it requires a multi-dimensilostapsize strategy, which can be substantially
more complex (and computationaly costly) than the usueldigarch. Therefore, the choice of the subspace
must achieve a tradeoff between the iteration number tdhreanvergence and the cost per iteration. Let
us review some existing iterative subspace optimizatigoréghms and their associated set of directions.
For the sake of compactness, their main features are sumedarn Tab. I. Two families of algorithms
are distinguished.

1) Memory gradient algorithmsin the first seven algorithmd); mainly gathers successive gradient
and direction vectors.

The third one, introduced in [32] as supermemory descent (Skhie)hod, generalizes SMG by
replacing the steepest descent direction by any diregtipmon orthogonal togy i.e., gipr # 0.
PCD-SESOP and SSF-SESOP algorithms from [6, 19] identify with SMD algoriwhenp, equals
respectively the parallel coordinate descent (PCD) dwaciind the separable surrogate functional (SSF)
direction, both described in [19].

Although the fourth algorithm was introduced in [33—35] asug@ermemory gradient method, we rather
refer to it as agradient subspac€GS) algorithm in order to make the distinction with the supemory
gradient (SMG) algorithm introduced in [24].

The orthogonal subspace (ORTH) algorithm was introduced8h\8th the aim to obtain a first order
algorithm with an optimal worst case convergence rate. Th&éHDBubspace corresponds to the opposite
gradient augmented with the two so-called Nemirovski dioes, ¢, — x and Zf:o w;g;, Wherew; are

pre-specified, recursively defined weights:

1 ifi =0,
w; = (6)

% + \/i + w?fl otherwise.

In [26], the Nemirovski subspace is augmented with previdusctions, leading to the SESOP algo-
rithm whose efficiency over ORTH is illustrated on a set of imageonstruction problems. Moreover,
experimental tests showed that the use of Nemirovski dinestin SESOP does not improve practical
convergence speed. Therefore, in their recent paper [6],|&ibky et al. do not use these additionnal
vectors so that their modified SESOP algorithm actually reduzéset SMG algorithm from [24].

2) Newton type subspace algorithm$he last two algorithms introduce additional directions ludé t

Newton type.
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Acronym Algorithm Set of directionsD, Subspace size
MG Memory gradient [23, 31] [—gk, di—1] 2
SMG Supermemory gradient [24] [—gr,di—1,...,di_m] m+1
SMD Supermemory descent [32] [P, di—1, ..., dr—m] m+1
GS Gradient subspace [33, 34, 37] =9k, k-1, —Gh—m] m+1
ORTH Orthogonal subspace [36] [—gi, 2k — o, o1y wigi] 3
SESOP | Sequential Subspace Optimization [26][—gi, Tk — To, > r_ wigi, di—1, - . . , dk—m) m+3
QNS Quasi-Newton subspace [20,25,38]  [~gk, 0k—1,---,0k—m,dk-1,...,dr_m] 2m+1
SESOP-TN Truncated Newton subspace [27] | [di, Qi(dL),di —d} ' di—1, ..., dk—m] m+3
TABLE |

SET OF DIRECTIONS CORRESPONDING TO THE MAIN EXISTING ITERAVIE SUBSPACE ALGORITHMS THE WEIGHTSw; AND
THE VECTORS®; ARE DEFINED BY (6) AND (7), RESPECTIVELY Q} IS DEFINED BY (8), AND dY IS THE {TH OUTPUT OF A

CG ALGORITHM TO SOLVE Qi (d) = 0.

In the Quasi-Newton subspace (QNS) algorithm proposed if) [P3 is augmented with
Ok—i = Gk—it1 — Gr—ir 1 =1,...,m. (7)

This proposal is reminiscent from the L-BFGS algorithm [22hcsi the latter produces directions in the
space spanned by the resulting $2.

SESOP-TN has been proposed in [27] to solve the problem of setysitvan early break of conjugate
gradient (CG) iterations in the truncated Newton (TN) altjon. Let dﬁ denote the current value @f

after ¢ iterations of CG to solve the Gauss-Newton sys@pid) = 0, where
Qi(d) = V*F(z}) d + gy (8)

In the standard TN algorithmjf; defines the search direction [39]. In SESOP-TN, it is only the first
component ofDy, while the second and third componentsaf also result from the CG iterations.
Finally, to accelerate optimization algorithms, a commoacfice is to use a preconditioning matrix.
The principle is to introduce a linear transform on the o@givariables, so that the new variables have
a Hessian matrix with more clustered eigenvalues. Predondi versions of subspace algorithms are

easily defined by usind’.g;. instead ofg, in the previous direction sets [26].

September 10, 2010 DRAFT



RAPPORT TECHNIQUE IRCCYN 7

B. Stepsize strategies

The aim of the multi-dimensional stepsize search is to deters), that ensures a sufficient decrease
of function f defined by (5) in order to guarantee the convergence of rameré4). In the scalar
case, typical line search procedures generate a seriespsizt values until the fulfillment of sufficient
convergence conditions such as Armijo, Wolfe and Goldsié®}. An extension of these conditions to
the multi-dimensional case can easily be obtained.(the multi-dimensional Goldstein rule in [28]).
However, it is difficult to design practical multi-dimensglrstepsize search algorithms allowing to check
these conditions [28].

Instead, in several subspace algorithms, the stepsizksésum an iterative descent algorithm applied
to function f, stopped before convergence. In SESOP and SESOP-TN, the minimimperformed by
a Newton method. However, unless the minimizer is found tikabe resulting subspace algorithms are
not proved to converge. In the QNS and GS algorithms, thesgiepesults from a trust region recurrence
on f. It is shown to ensure the convergence of the iterates unddraonditions onD,, [25, 34, 35].
However, except when the quadratic approximation of thieoin in the trust region is separable [34],
the trust region search requires to solve a non-trivial taimed quadratic programming problem at each
inner iteration.

In the particular case of modern SMG algorithms [41—44]is computed in two steps. First, a descent
direction is constructed by combining the vectdfswith some predefined weights. Then a scalar stepsize
is calculated through an iterative line search. This styategds to the recurrence

m
Tl = Tp + <—5ggk + Zﬂi%-z) :
=1
Different expressions for the weight have been proposed. To our knowledge, their extension to the
preconditioned version of SMG or to other subspaces is an ggele. Moreover, since the computation
of (ak,ﬁ,i) does not aim at minimizingf in the SMG subspace, the resulting schemes are not true
subspace algorithms.

In the next section, we propose an original strategy to defipenulti-dimensional stepsizg, in (4).

The proposed stepsize search is proved to ensure the congergé the whole algorithm, under low

assumptions on the subspace, and to require low computaticost.
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IIl. PROPOSED MULTFDIMENSIONAL STEPSIZE STRATEGY
A. GR and GY majorizing approximations

Let us first introduce Geman & Yang [3] and Geman & Reynolds [2jrioes Agy and Agr, which

play a central role in the multi-dimensional stepsize stygtproposed in this paper:

o A
QY — 2HTH + EVVT, (9)
Acr(x) = 2HTH + \VTDiag {b(x)} V, (10)

whereVT = [V{T|..|[VZ], a > 0 is a free parameter, arti{x) is aCP x 1 vector with entries

()~ DVer )

Ve — well
Both GY and GR matrices allow the construction of majorizagproximation forF'. More precisely,

let us introduce the following second order approximatiérfoin the neighborhood ok,
1
Q(x, xy) = F(ay) + VF ()" (2 — a)) + Jl@ - )" A(wy) (@ — x). (11)

Let us also introduce the following assumptions on the fuomcti:

(H1) v is C' and coercive,
Y is L-Lipschitz.

(H2) v is C!, even and coercive,
¥(,/~) is concave orR ™",
0<(t)/t < oo, VteR.

Then, the following lemma holds.

Lemma 1. [13]
Let I defined by(1) and =), € RY. If Assumption H1 holds anél = A%, with a € (0,1/L) (resp.
Assumption H2 holds and = AgR), then for allx, (11) is a tangent majoranfor F' at x;, i.e., for all
x € R",

Qx,xy) > F(x),

(12)
Q(zg, ) = F(zk).
The majorizing property (12) ensures that the MM recurrence
Tp41 = argmin Q(z, zy) (13)
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produces a nonincreasing sequelié&x;)) that converges to a stationnary point Bf[30, 45]. Half-

guadratic algorithms [2, 3] are based on the relaxed form
Tpy1 = T + Q(ik+1 — mk) (14)

wherex 1 is obtained by (13). The convergence properties of recuerébd) are analysed in [12,13,

46).

B. Majorize-Minimize line search

In [29], x).1 is defined as (3) wherd,, is the NLCG direction and the stepsize valug results
from J > 1 successive minimizations of quadratic tangent majoranttfans for the scalar function

f(a) = F(xy + ady,), expressed as

q(a,af) = f(aq) + (@ — a}) f(ag) + Sbi(a —af)?

at o The scalar parametéf. is defined as
b,i = dzA(ZEk + Oé?gdk)dk

where A(.) is either the GY or the GR matrix, respectively defined by () é10). The stepsize values

are produced by the relaxed MM recurrence

ap =20 (15)
aiﬂ :ai—ﬁf(a{c)/bj, j=0,...,J-1

and the stepsizey, corresponds to the last valugg. The distinctive feature of the MM line search is

to yield the convergence of standard descent algorithmBowitany stopping condition whatever the

recurrence lengthy and relaxation parametér< (0,2) [29]. Here, we propose to extend this strategy

to the determination of the multi-dimensional stepsizeand we prove the convergence of the resulting

family of subspace algorithms.

C. MM multi-dimensional search

Let us define the\l x M symmetric positive definite (SPD) matrix
B] = DI A Dy,
with Ai 2 Az + Dksi) and A is either the GY matrix or the GR matrix. According to Lemma 1,

a(s,5) = f(s]) + VI ()7 (s — s]) + 5 (s — s)T Bl(s — 5]) (16)
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is quadratic tangent majorant fgi(s) at si,. Then, let us define the MM multi-dimensional stepsize by

S = sg, with

s, = 0,
§i+1 = argming q(s,si), j=0,...,J—1. (17)

sﬁl = si + 9(&?1 — s?{)
Given (16), we obtain an explicit stepsize formula
sit =8l —0(B])"'Vf(s]).
Moreover, according to [13], the update rule (17) producesatonically decreasing valués‘(si)) if

0 € (0,2). Let us emphasize that this stepsize procedure identifiesthéthHQ/MM iteration (14) when
span(Dy) = RV, and to the HQ/MM line search (15) whely, = dy.

D. Convergence analysis

This section establishes the convergence of the iteratibepsice algorithm (4) wheg, is chosen
according to the MM strategy (17).
We introduce the following assumption, which is a necessandition to ensure that the penalization
term ¥ (x) regularizes the problem of estimatiagfrom y in a proper way
(H3) H andV are such that
ker(HTH) Nker(VTV) = {0}.

Lemma 2. [13]
Let ' be defined by{1), where H and V' satisfy Assumption H3. If Assumption H1 or H2 hol#sis
continuously differentiable and bounded below. Moreoiféior all %,j, A = A¢y with0 < a < 1/L

(resp.,A = Acr), then(Ai) has apositive bounded spectryme., there existg; € R such that

0 < v Alv < vi|v|%, V&, j € N,Vv € RN,

Let us also assume that the set of directidps fulfills the following condition:
(H4) for all k£ > 0, the matrix of directiondDy, is of size N x M with 1 < M < N and the first subspace

directiond}. fulfills
gidi < —llgxll?, (18)

il < nllgel, (19)
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with ~g,v1 > 0.

Then, the convergence of the MM subspace scheme holds aegdadihe following theorem.

Theorem 1. Let F' defined by(1), where H and V' satisfy Assumption H3. Lat, defined by(4)-(17)
where D, satisfies Assumption H4, > 1, 6 € (0,2) and Bi = D,{A%YDk with 0 < a < 1/L (resp.,
Bi = DI Agr(zk + Dksi)Dk). If Assumption H1 (resp., Assumption H2) holds, then

F(zpi1) < F(zg). (20)
Moreover, we have convergence in the following sense:

I = 0.
i gl

Proof: See Appendix A. [ ]

Remark 1. Assumption H4 is fulfilled by a large family of descent di@utsi. In particular, the following
results hold.

« Let(Py) be a series of SPD matrices with eigenvalues that are bounelesvtand above, respectively
by v1 and~, > 0. Then, according to [16, Sec. 1.2], Assumption H4 hold$}if= —Pg.

« According to [47], Assumption H4 also holdsdf, results from any fixed positive number of CG
iterations on the linear systevf,d = —g, provided that(Mj,) is a matrix series with a positive
bounded spectrum.

« Finally, Lemma 3 in Appendix B ensures that Assumption H4 hdldg iis the PCD direction,

provided thatF' is strongly convex and has a Lipschitz gradient.

Remark 2. For a preconditioned NLCG algorithm with a variable precotimler P, the generated
iterates belong to the subspace spanned#).g;, and d;_,. Whereas the convergence of the PNLCG
scheme with a variable preconditioner is still an open pesbl[21, 48], the preconditioned MG algorithm
using Dy, = [—Pigy, d;—1] and the proposed MM stepsize is guaranteed to converge famdesl SPD

matrices P, according to Theorem 1.

E. Implementation issues

In the proposed MM multi-dimensional search, the main caoemmnal burden originates from the

need to multiply the spanning directions with linear oparstd and V/, in order to computéVf(si)
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Acronym Recursive form ofD Ny, Wy

MG [=9k, Di—15k—1] —9k Sk—1

SMG [=9k, Dip—18k—1,D—1(2: m)] —9k [sk—1,T2:m]

GS [=9k, D—1(1:m)] —9k Iim

ORTH [—gk, T —®o, wipgr + Dg—1(3)] [=9k, @k — 0, wrgk] I3

QNS [=9k,9k + Dp—1(1), D —1(2:m),Dy_18_1, Dp—1(m + 2 : 2m)] [=9k, 9] 1, I2:ms Sk—1: Im4-2:2m]
SESOP-TN [df, Qu(dy), df —di ', Dj_1(4: m+2)] [df,, Qu(df), df, — di '] Ly 2

TABLE I

RECURSIVE MEMORY FEATURE AND DECOMPOSITIOI\{Zl)OF SEVERAL ITERATIVE SUBSPACE ALGORITHMS HERE,
D(’L : j) DENOTES THE SUBMATRIX OFD MADE OF COLUMNS? TO 7, AND Ii;j DENOTES THE MATRIX SUCH THAT
DIi;j = D(’L j)

and Bi. When the problem is large scale, these products becomegi¥peand may counterbalance the
efficiency obtained when using a subset of larger dimensiothis section, we give a strategy to reduce
the computational cost of the produdf;,, £ AD;, when A = H or V. This generalizes the strategy
proposed in [26, Sec. 3] for the computation Gff(s) and V2 f(s) during the Newton search of the
SESOP algorithm.

For all subspace algorithms, the 98}, can be expressed as the sum of a new matrix and a weighted
version of the previous set:

Dy, = [Ni|0] + [0| Dy W] . (21)

The obtained expressions f@y¥,, and W, are given in Tab. Il. According to (21}, can be obtained
by the recurrence
M, = [AN|0] + [0| M1 Wy].

Assuming thatM}, is stored at each iteration, the computationnal burdenceslto the produciA V.
This strategy is efficient as far @9, has a small number of columns. Moreover, the cost of therlatte

product does not depend on the subspace dimension, by sonith the direct computation abfy.

IV. APPLICATION TO THE SET OF IMAGE PROCESSING PROBLEMS FRO|%]

In this section, we consider three image processing prafleamely image deblurring, tomography and
compressive sensing, generated with M. Zibulevsky’s coaelable at http://iew3.technion.ac:ihcib.
For all problems, the synthesis-based approach is usedhdoreconstruction. The image is assumed to

be well described ag® = K z° with a known dictionaryK and a sparse vectat’. The restored image
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is then defined ag* = K z* wherez* minimizes the PLS criterion

N
F(z) = [|[HKz —y|* + A)_v(2),
=1
with ¢ the logarithmic smooth version of thle norm

P(u) = [u] = 5log(1 + [u[/6)

that aims at sparsifying the solution.

In [6], several subspace algorithms are compared in ordenitomize F'. In all cases, the multi-
dimensional stepsize results from a fixed number of Newtaatitms. The aim of this section is to test
the convergence speed of the algorithms when the Newtoreguoe is replaced by the proposed MM

stepsize strategy.

A. Subspace algorithm settings

SESOP [26] and PCD-SESOP [19] direction sets are considered herdatldreuses SMD vectors
with p; defined as the PCD direction

pikr = argmin F(xy, + ae;), 1 = 1,..., N, (22)
o

where e; stands for theith elementary unit vector. Following [6], the memory paréends tuned to
m =7 (i.e., M = 8). Moreover, the Nemirovski directions are discarded, sa SESOP identifies with
the SMG subspace.

Let us define SESOP-MM and PCD-SESOP-MM algorithms by associating SESOP &8n8ES0OP
subspaces with the multi-dimensional MM stepsize strat@gy. The latter is fully specified b;Aj, J
andé. For all k, 7, we defineAi = Agr(zk + Dks{:) where Agg(.) is given by (10), and/ = 0 = 1.
Function ) is strictly convex and fulfills both Assumptions H1 and H2. Téfere, Lemma 1 applies.
Matrix V' identifies with the identity matrix, so Assumption H3 holdsldremma 2 applies. Moreover,
according to Lemma 3, Assumption H4 holds and Theorem 1 ensiieesonvergence of SESOP-MM
and PCD-SESOP-MM schemes.

MM versions of SESOP and PCD-SESOP are compared to the originaitafgerfrom [6], where the

inner minimization uses Newton iterations with backtragkiine search, until the tight stopping criterion
IVf(s)]| < 1071

is met, or seven Newton updates are achieved.
For each test problem, the results were plotted as functbmrither iteration numbers, or of compu-
tational times in seconds, on an Intel Pentium 4 PC (3.2 GHz CRIU3aGB RAM).
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B. Results and discussion

1) Choice between subspace strategiéscording to Figs. 1, 2 and 3, the PCD-SESOP subspace
leads to the best results in terms of objective function e&se per iteration, while the SESOP subspace
leads to the largest decrease of the gradient norm, indepégdrom the stepsize strategy. Moreover,
when considering the computational time, it appears that SES8@FPCD-SESOP algorithms have quite
similar performances.

2) Choice between stepsize strategi@$te impact of the stepsize strategy is the central issue & thi
paper. According to a visual comparison between thin ancktpiots in Figs. 1, 2 and 3, the MM
stepsize strategy always leads to significantly faster ghgns compared to the original versions based
on Newton search, mainly because of a reduced computatiomalper iteration.

Moreover, let us emphasize that the theoretical conveggehSESOP-MM and PCD-SESOP-MM is
ensured according to Theorem 1. In contrast, unless the Mesdarch reaches the exact minimizer of

f(s), the convergence of SESOP and PCD-SESOP is not guaranteed tfadigretic

V. APPLICATION TO EDGE-PRESERVINGIMAGE RESTORATION

The problem considered here is the restoration of the wealikknimagesoat , | ena andpepper s
of size N = 512 x 512. These images are firstly convolved with a Gaussian point dpi@action of

standard deviatio.24 and of sizel7 x 17. Secondly, a white Gaussian noise is added with a variance

— SESOP — SESOP
—— SESOP-MM —— SESOP-MM
10° - - -PCD-SESOP 10° - - -PCD-SESOP
- - -PCD-SESOP-MM - - - PCD-SESOP-MM

107 SN 107

'
0 20 40 60 80 100 0 20 40 60 80

Iteration CPU time, Sec
—SESOP —SESOP
100 1 ——SESOP-MM 10° —— SESOP-MM
A - - -PCD-SESOP - - - PCD-SESOP
A - - -PCD-SESOP-MM - - - PCD-SESOP-MM
V !

1D Fl
[0 FIl

0 20 40 60 80 100 0 20 40 60 80
Iteration CPU time, Sec

Fig. 1. Deblurring problem taken from [6]28 x 128 pixels): The objective function and the gradient norm value as a function

of iteration number (left) and CPU time in seconds (right) for the four teatgdrithms.
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10° —SESOP 10° —SESOP
SESOP-MM - - - SESOP-MM
- --PCD-SESOP PCD-SESOP
- - -~ PCD-SESOP-MM B - - - PCD-SESOP-MM
7 7
g g
LIL" 107 I-lL” 107
w w
107 Y 107
0 20 40 60 80 100 120 0 4 6 8
Iteration CPU time, Sec
10° 10°
—SESOP —SESOP
SESOP-MM SESOP-MM
- --PCD-SESOP - - -PCD-SESOP
1 - -~ PCD-SESOP-MM y - -~ PCD-SESOP-MM
_ 10 _ 10
T T
=] g
107 107

Fig. 2. Tomography problem taken from [6]2A x 32 pixels): The objective function and the gradient norm value as a function

0 20 40 60 80 100 120
Iteration

4 6 8
CPU time, Sec

of iteration number (left) and CPU time in seconds (right) for the four teatgdrithms.

10° 10°
— SESOP — SESOP
SESOP-MM SESOP-MM
o ---PCD-SESOP o - --PCD-SESOP
_ 10 - - -PCD-SESOP-MM _ 10 - - - PCD-SESOP-MM
w w
I 1
w = w =
10° < > 10° .
10710 10710 [
0 200 400 600 800 1000 0 5 10 15
Iteration CPU time, Sec
—SESOP — SESOP
o SESOP-MM o SESOP-MM
10 - - - PCD-SESOP 10 - - - PCD-SESOP
- - -PCD-SESOP-MM - - - PCD-SESOP-MM
T
=4

0 200 400 600 800 1000
Iteration

10 15
CPU time, Sec

15

Fig. 3. Compressed sensing problem taken from §8] X 64 pixels): The objective function and the gradient norm value as

a function of iteration number (left) and CPU time in seconds (right) for the fested algorithms.

adjusted to get a signal-to-noise ratio (SNR)40f dB. The following analysis-based PLS criterion is

considered

F(z)=||Hz —y|* + 1) _ /0 + [Va]?
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Fig. 4. Noisy, blurredoepper s image,40 dB (left) and restored image (right).

whereV is the first-order difference matrix. This criterion dependstlee parameterd andd. They are
assessed to maximize the peak signal to noise ratio (PSNRgbeteach image® and its reconstruction

versionz. Tab. lll gives the resulting values of PSNR and relative megrage error (RMSE), defined

by

maXi(fL‘@')
PSNR(z, 2°) = 201
(z, z°) 0g10 <\/1/Nzi(xi _x?)g)
and
|z — x°?
RMSE(z, 2°) = 12— % 17
@29 = e

The purpose of this section is to test the convergence spedteahulti-dimensional MM stepsize
strategy (17) for different subspace constructions. Fumbee, these performances are compared with

standard iterative descent algorithms associated witlivilleline search described in Subsection 111-B.

boat | ena peppers
A 0.2 0.2 0.2
6 13 13 8
PSNR 28.4 30.8 31.6
RMSE | 5-107% | 3.3-107* | 2.107?

TABLE 11l

VALUES OF HYPERPARAMETERS), § AND RECONSTRUCTION QUALITY IN TERMS OFPSNRAND RMSE.
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A. Subspace algorithm settings

The MM stepsize search is used with the Geman & Reynolds HQibmatd # = 1. Since the
hyperbolic functiony is a strictly convex function that fulfills both Assumptiond lnd H2, Lemma 1
applies. Furthermore, Assumption H3 holds [29] so Lemma 2iegppl

Our study deals with the preconditioned form of the follogvidirection sets: SMG, GS, QNS and
SESOP-TN. The preconditioné#? is a SPD matrix based on the 2D Cosine Transform. Thus, Assumptio
H4 holds and Theorem 1 ensures the convergence of the propokethe for allJ > 1. Moreover, the
implementation strategy described in Subsection IlI-E Wl used.

For each subspace, we first consider the reconstructigepper s, illustrated in Fig. 4, allowing us
to discuss the tuning of the memory parameterrelated to the size of the subspatkas described in
Tab. |, and the performances of the MM search. The latter isnag@mpared with the Newton search
from [6].

Then, we compare the subspace algorithms with iterativeetesoethods in association with the MM
scalar line search.

The global stopping rulégx||/v/N < 10~ is considered. For each tested scheme, the performance
results are displayed under the fordyT where K is the number of global iterations afidis the global

minimization time in seconds.

B. Gradient and memory gradient subspaces

The aim of this section is to analyze the performances of SMGG&dlgorithms.

SMG(m) 1 2 5 10

Newton | 76/578 | 75/630 | 76/701 | 74/886
1 | 67/119 | 68/125 | 67/140 | 67/163
2 | 66/141 | 66/147 | 67/172 | 67/206
5 | 74/211 | 72/225 | 71/255 | 72/323
10 | 76/297 | 74/319 | 73/394 | 74/508

S
=
=

TABLE IV
RECONSTRUCTION ORpepper s: COMPARISON BETWEENMM AND NEWTON STRATEGIES FOR THE MULTIDIMENSIONAL
SEARCH INSMG ALGORITHM, IN TERMS OF ITERATION NUMBER AND TIME BEFORE CONVERGENCEIN SECONDS.

1) Influence of tuning parametergsccording to Tables IV-V, the algorithms perform better wtbe

stepsize is obtained with the MM search. Furthermore, it appthat/ = 1 leads to the best results in
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GS(m) 1 5 10 15

Newton | 458/3110 | 150/1304 | 96/1050 | 81/1044
1 | 315/534 | 128/258 | 76/180 | 67/175
2 | 316/656 | 134/342 | 86/257 | 70/232
5 | 317/856 | 137/481 | 91/400 | 78/386
10 | 317/1200 | 137/709 | 92/619 | 78/598

MM (J)

TABLE V
RECONSTRUCTION ORpepper s: COMPARISON BETWEENMM AND NEWTON STRATEGIES FOR THE MULTIDIMENSIONAL

SEARCH INGSALGORITHM.

terms of computation time which indicates that the besttexjsacorresponds to a rough minimization
of f(s). Such a conclusion meets that of [29].

The effect of the memaory size differs according to the subspace construction. For the SM&ithm,
an increase of the size of the memoanydoes not accelerate the convergence. On the contrary, éaapp
that the number of iterations for GS decreases when mordegitadare saved and the best tradeoff is
obtained withm = 15.

2) Comparison with conjugate gradient algorithmket us compare the MG algorithm.€., SMG
with m = 1) with the NLCG algorithm making use of the MM line search sgyt proposed in [29].

The latter is based on the following descent recurrence:

Tpt1 = T + o (—gr + Brpdi—1)

where 3, is the conjugacy parameter. Tab. VI summarizes the perfocesmof NLCG for five different
conjugacy strategies described in [21]. The stepaizén NLCG results from.J iterations of (15) with
A = Aggr andd = 1. According to Tab. VI, the convergence speed of the congugaadient method is
very sensitive to the conjugacy strategy. The last line of TAlreproduces the first column of Tab. IV.
The five tested NLCG methods are outperformed by the MG subsplgogithm with J = 1, both in
terms of iteration number and computational time.

The two other caselsena andboat lead to the same conclusion, as reported in Tab. VII.

C. Quasi-Newton subspace

Dealing with the QNS algorithm, the best results were olenwith J = 1 iteration of the MM

stepsize strategy and the memory parameter 1. For this setting, th@pepper s image is restored

September 10, 2010 DRAFT



RAPPORT TECHNIQUE IRCCYN 19

J 1 2 5 10
NLCG-FR | 145/270 | 137/279 | 143/379 | 143/515
NLCG-DY | 234/447 | 159/338 | 144/387 | 143/516
NLCG-PRP| 77/137 | 69/139 | 75/202 | 77/273
NLCG-HS | 68/122 | 67/134 | 75/191 | 77/289
NLCG-LS | 82/149 | 67/135 | 74/190 | 76/266

MG 67/119 | 66/141 | 74/211 | 76/297

TABLE VI
RECONSTRUCTION oepper s: COMPARISON BETWEENMG AND NLCG FOR DIFFERENT CONJUGACY STRATEGIESIN

ALL CASES, THE STEPSIZE RESULTS FROM ITERATIONS OF THEMM RECURRENCE

boat | ena peppers
NLCG-FR 77/141 | 98/179 145/270
NLCG-DY 86/161 | 127/240 234/447
NLCG-PRP| 40/74 | 55/99 77/137
NLCG-HS 39/71 50/93 68/122
NLCG-LS | 42/81 | 57/103 | 82/149
MG 37/67 | 47/85 | 67/119

TABLE VII
COMPARISON BETWEENMG AND NLCG ALGORITHMS. IN ALL CASES, THE NUMBER OFMM SUBITERATIONS IS SET TO
J=1.

after 68 iterations, which take$24s. As a comparison, when the Newton search is usedrardl, the
QNS algorithm require§5 iterations that take more thar00 s.

Let us now compare the QNS algorithm with the standard L-BFGS8rigtgn from [22]. Both algo-
rithms require the tuning of the memory size Fig. 5 illustrates the performances of the two algorithms.
In both cases, the stepsize results froriteration of MM recurrence. Contrary to L-BFGS, QNS is not
sensitive to the size of the memony. Moreover, according to Tab. VIII, the QNS algorithm oufipems

the standard L-BFGS algorithm with its best memory settingtlier three restoration problems.

D. Truncated Newton subspace

Now, let us focus on the second order subspace method SESOP-TN. §theofitponent oD}, dy,

is computed by applying iterations of the preconditioned CG method to the Newtonagqgaos. Akin
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250 500
—-O-L-BFGS —-O-L-BFGS]
-0 QNS —o-QNs

200 400

< 150| £~ 300
100 200

501 3 100 I
m

3
m

Fig. 5. Reconstruction gbepper s: Influence of memoryn for algorithms L-BFGS and QNS in terms of iteration number

K and computation timé” in seconds. In all cases, the number of MM subiterations is sdt+o1.

boat | ena | peppers
L-BFGS (m=3) | 45/94 | 62/119 83/164
QNS (m =1) 38/83 | 48/107 | 68/124

TABLE VI

COMPARISON BETWEENQNSAND L-BFGSALGORITHMS FORJ = 1.

to the standard TN algorithnt, is chosen according to the following convergence test

lgr. + Hidy||/|lgxl < n.

wheren > 0 is a threshold parameter. Here, the setting 0.5 has been adopted since it leads to lowest
computation time for the standard TN algorithm.

In Tables IX and X, the results are reported in the fokfji7" where K denotes the total number of
CG steps.

According to Tab. IX, SESOP-TN-MM behaves differently from theypous algorithms. A quite large
value of J is necessary to obtain the fastest version. In this exartipeMM search is still more efficient
than the Newton search, provided that we chodse 5. Concerning the memory parameter, the best
results are obtained fon = 2.

Finally, Tab. X summarizes the results for the three test asagh comparison with the standard TN
(not fully standard, though, since the MM line search hashesed). Our conclusion is that the subspace
version of TN does not seem to bring a significant accelerattonpared to the standard version. Again,

this contrasts with the results obtained for the other testéspace methods.
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SESOP-TNm) 0 1 2 5
Newton | 159/436 | 155/427 | 128/382 | 151/423
1 415/870 | 410/864 | 482/979 | 387/840
S 2 253/532 | 232/506 | 239/525 | 345/731
s 5 158/380 | 132/316 | 143/359 | 139/351
= 10 122/322 | 134/323 | 119/301 | 128/334
15 114/320 | 134/365 | 117/337 | 127/389

TABLE IX
RECONSTRUCTION Opepper s: COMPARISON BETWEENMM AND NEWTON STEPSIZE STRATEGIES ISESOP-TN
ALGORITHM.
boat | ena | peppers
TN 65/192 | 74/199 | 137/322
SESOP-TN2) | 55/180 | 76/218 | 119/301

TABLE X
COMPARISON BETWEENSESOP-TNAND TN ALGORITHMS FOR7 = 0.5 AND J = 10.

VI. CONCLUSION

This paper explored the minimization of penalized least szpi&riteria in the context of image
restoration, using the subspace algorithm approach. Watgmbiout that the existing strategies for
computing the multi-dimensional stepsize suffer eithentfra lack of convergence resulis.q., Newton
search) or from a high computational costd., trust region method). As an alternative, we proposed
an original stepsize strategy based on a MM recurrence. Hmsige results from the minimization of
a half-quadratic approximation over the subspace. Our odebenefits from mathematical convergence
results, whatever the number of MM iterations. Moreovegah be implemented efficiently by taking
advantage of the recursive structure of the subspace.

On practical restoration problems, the proposed seardgrifisantly faster than the Newton minimiza-
tion used in [6, 26, 27], in terms of computational time befaonvergence. Quite remarkably, the best
performances have almost always been obtained when onlWwdhéteration was performed.f = 1),
and when the size of the memory was reduced to one storetkifeta= 1), which means that simplicity

and efficiency meet in our context. In particular, the resgltalgorithmic structure contains no nested
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iterations.

Finally, among all the tested variants of subspace methbe@sphést results were obtained with the
memory gradient subspacee(, where the only stored vector is the previous directionipgig single
MM iteration for the stepsize. The resulting algorithm canvimwved as a new form of preconditioned,
nonlinear conjugate gradient algorithm, where the corgugemrameter and the step-size are jointly given

by a closed-form formula that amounts to solvé a 2 linear system.

APPENDIX
A. Proof of Theorem 1

Let us introduce the scalar function
h(a) £ ¢([e,0,...,0]T,0), Va € R. (23)

According to the expression @f.,0), h reads

h(a) = £(0) + agldl + %a2d,{:TA2d}€. (24)
Its minimizer &y, is given by
: 9; (25)
A = ——7———.
diTAVd}
Therefore,
. 1,
h(é) = f(0) + 5 dkgy dy. (26)

Moreover, according to the expression &f
(51,0) = £(0) + SV (0)75. @)
8} minimizesgq(s,0) henceg(s;,0) < h(dy). Thus, using (26)-(27),
argi di, > V(0)"3;. (28)
According to (24) and (25), the relaxed stepsige= 6d; fulfills
h(ay) = f(0) + 6 dngf dy, (29)
whereé = 6(1 — 6/2). Moreover,
4(s3,0) = f(0) + 5 VF(0)" 5. (30)
Thus, using (28)-(29)-(30), we obtaifs},0) < h(ax) and
£(0) — q(sy,, 0) > —déngy di. (31)
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Furthermoreg(si,0) > f(si) > f(si) according to Lemma 1 and [13, Prop.5]. Thus,
£(0) = f(sk) > —ddngf dj
According to Lemma 2,

_ gid;
~ unlld}|]?

Hence, according to (32), (33) and Assumption H4,
o2
F0) = f(sk) = —5llgnl®
V171

which also reads

F F > % 2
(x)) — F(Tp11) > ” 5|9k
1

23

(32)

(33)

(34)

(35)

Thus, (20) holds. Moreovet:' is bounded below according to Lemma 2. Therefdiey, .., F'(xy) is

finite. Thus,

2
V1ivi

e\ .
o > < Y0 > (F(.’Bo) — kh—{EO F(Cck)> > Z ”ng27
k
and finally

I = 0.
i gl

B. Relations between the PCD and the gradient directions

Lemma 3. Let the PCD direction be defined hy= (p;), with

p; = argmin F'(x + «e;), i =1,..., N,

«

wheree; stands for theth elementary unit vector. If is gradient Lipschitz and strongly convex B,

then there existy,y; > 0 such thatp fulfills
g'p < —llgl?
1Pl < mligll;
for all = € RV.
Proof: Let us introduce the scalar functiorfga) £ F(x + ae;), so that
p; = argmin f;(a).
F is gradient Lipschitz, so there exisis> 0 such that for all;,
|fi(a) = fi(b)] < Lla—b|, Va,beR.

September 10, 2010

(36)

37)

(38)

DRAFT



RAPPORT TECHNIQUE IRCCYN 24

In particular, fora = 0 andb = p;, we obtain
il = 1fi(0)I/L,
given thatf;(p;) = 0 according to (38). According to the expressionjof
N .
g"p=>_fi(0)p:.
=1

Moreover,p; minimizes the convex functiori; on R so

pzfz(o) <0, 2=1,..., V. (39)
Therefore,
N . 1
g'p==>_IfiO)lnl < 7l (40)
=1

I is strongly convex, so there exists> 0 such that for all;,
(fi(a) — f}-(b))(a —b) > v(a— b)Q, Va,b € R.

In particular,a = 0 andb = p; give

—fi(O)pi > l/p?, i=1,...,N. (41)
Using (39) we obtain
i <vIfi()? /v i=1,. N (42)
Therefore,
al 1
Il = _pf < 5l (43)
=1
Thus, (36)-(37) hold fory =1/L and~; = 1/v. [ |
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