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A Majorize-Minimize Strategy for Subspace

Optimization Applied to Image Restoration
Emilie Chouzenoux, J́erôme Idier and Säıd Moussaoui

Abstract

This paper proposes accelerated subspace optimization methods in the context of image restoration.

Subspace optimization methods belong to the class of iterative descent algorithms for unconstrained

optimization. At each iteration of such methods, a stepsizevector allowing the best combination of

several search directions is computed through a multi-dimensional search. It is usually obtained by an

inner iterative second-order method ruled by a stopping criterion that guarantees the convergence of the

outer algorithm. As an alternative, we propose an original multi-dimensional search strategy based on the

majorize-minimize principle. It leads to a closed-form stepsize formula that ensures the convergence of

the subspace algorithm whatever the number of inner iterations. The practical efficiency of the proposed

scheme is illustrated in the context of edge-preserving image restoration.

Index Terms

Subspace optimization, memory gradient, conjugate gradient, quadratic majorization, stepsize strat-

egy, image restoration.

I. I NTRODUCTION

This work addresses a wide class of problems where an input image xo ∈ R
N is estimated from

degraded datay ∈ R
T . A typical model of image degradation is

y = Hxo + ǫ

whereH is a linear operator, described as aT ×N matrix, that models the image degradation process,

andǫ is an additive noise vector. This simple formalism covers many real situations such as deblurring,

denoising, inverse-Radon transform in tomography and signal interpolation.

E. Chouzenoux, J. Idier and S. Moussaoui are with IRCCyN (CNRS UMR 6597), Ecole Centrale Nantes, France. E-mail:

{emilie.chouzenoux, jerome.idier, said.moussaoui}@irccyn.ec-nantes.fr.
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Two main strategies emerge in the literature for the restoration of xo [1]. The first one uses ananalysis-

basedapproach, solving the following problem [2, 3]:

min
x∈RN

(

F (x) = ‖Hx − y‖2 + λΨ(x)
)

. (1)

In section V, we will consider an image deconvolution problem that calls for the minimization of this

criterion form.

The second one employs asynthesis-basedapproach, looking for a decompositionz of the image in

some dictionaryK ∈ R
T×R [4, 5]:

min
z∈RR

(

F (z) = ‖HKz − y‖2 + λΨ(z)
)

. (2)

This method is applied to a set of image reconstruction problems [6] in section IV.

In both cases, the penalization termΨ, whose weight is set through the regularization parameterλ,

aims at guaranteeing the robustness of the solution to the observation noise and at favorizing its fidelity

to a priori assumptions [7].

From the mathematical point a view, problems (1) and (2) sharea common structure. In this paper, we

will focus on the resolution of the first problem (1), but we will also provide numerical results regarding

the second one. On the other hand, we restrict ourselves to regularization terms of the form

Ψ(x) =
C
∑

c=1

ψ(‖Vcx − ωc‖)

whereVc ∈ R
P×N , ωc ∈ R

P for c = 1, ..., C and ‖.‖ stands for the Euclidian norm. In the analysis-

based approach,Vc is typically a linear operator yielding either the differences between neighboring

pixels (e.g., in the Markovian regularization approach), or the local spatial gradient vector (e.g., in the

total variation framework), or wavelet decomposition coefficients in some recent works such as [1]. In

the synthesis-based approach,Vc usually identifies with the identity matrix.

The strategy used for solving the penalized least squares (PLS) optimization problem (1) strongly

depends on the objective function properties (differentiability, convexity). Moreover, these mathematical

properties contribute to the quality of the reconstructed image. In that respect, we particularly focus on

differentiable, coercive, edge-preserving functionsψ, e.g., ℓp norm with 1 < p < 2, Huber, hyperbolic,

or Geman and McClure functions [8–10], since they give rise to locally smooth images [11–13]. In

contrast, some restoration methods rely on non differentiable regularizing functions to introduce priors

such as sparsity of the decomposition coefficients [5] and piecewise constant patterns in the images [14].

As emphasized in [6], the non differentiable penalization term can be replaced by a smoothed version
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without altering the reconstruction quality. Moreover, the use of a smoother penalty can reduce the

staircase effect that appears in the case of total variationregularization [15].

In the case of large scale non linear optimization problems as encountered in image restoration, direct

resolution is impossible. Instead, iterative optimization algorithms are used to solve (1). Starting from an

initial guessx0, they generate a sequence of updated estimates(xk) until sufficient accuracy is obtained.

A fundamental update strategy is to produce a decrease of theobjective function at each iteration: from

the current valuexk, xk+1 is obtained according to

xk+1 = xk + αkdk, (3)

whereαk > 0 is the stepsizeand dk is a descent direction i.e., a vector such thatgT
k dk < 0, where

gk = ∇F (xk) denotes the gradient ofF at xk. The determination ofαk is called theline search. It is

usually obtained by partially minimizing the scalar function f(α) = F (xk + αdk) until the fulfillment

of some sufficient conditions related to the overall algorithm convergence [16].

In the context of the minimization of PLS criteria, the determination of the descent directiondk is

customarily addressed using a half-quadratic (HQ) approach that exploits the PLS structure [11, 12, 17,

18]. A constant stepsize is then used whiledk results from the minimization of a quadratic majorizing

approximation of the criterion [13], either resulting fromGeman and Reynolds (GR) or from Geman and

Yang (GY) constructions [2, 3].

Another effective approach for solving (1) is to consider subspace acceleration [6, 19]. As emphasized

in [20], some descent algorithms (3) have a specific subspace feature: they produce search directions

spanned in a low dimension subspace. For example,

• the nonlinear conjugate gradient (NLCG) method [21] uses a search direction in a two-dimensional

(2D) space spanned by the opposite gradient and the previousdirection.

• the L-BFGS quasi-Newton method [22] generates updates in a subspace of size2m+ 1, wherem

is the limited memory parameter.

Subspace acceleration consists in relying on iterations more explicitly aimed at solving the optimization

problem within such low dimension subspaces [23–27]. The acceleration is obtained by definingxk+1

as the approximate minimizer of the criterion over the subspace spanned by a set ofM directions

Dk = [d1
k, . . . ,d

M
k ]

with 1 ≤M ≪ N . More precisely, the iterates are given by

xk+1 = xk + Dksk (4)
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wheresk is a multi-dimensional stepsize that aims at partially minimizing

f(s) = F (xk + Dks). (5)

The prototype scheme (4) defines aniterative subspace optimizationalgorithm that can be viewed as an

extension of (3) to a search subspace of dimension larger than one. The subspace algorithm has been

shown to outperforms standard descent algorithms, such as NLCG and L-BFGS, in terms of computational

cost and iteration number before convergence, over a set of PLSminimization problems [6, 19].

The implementation of subspace algorithms requires a strategy to determine the stepsizesk that

guarantees the convergence of the recurrence (4). However,it is difficult to design a practical multi-

dimensional stepsize search algorithm gathering suitableconvergence properties and low computational

time [26, 28]. Recently, GY and GR HQ approximations have ledto an efficient majorization-minimization

(MM) line search strategy for the computation ofαk whendk is the NLCG direction [29] (see also [30]

for a general reference on MM algorithms). In this paper, we generalize this strategy to define the

multi-dimensional stepsizesk in (4). We prove the mathematical convergence of the resulting subspace

algorithm under mild conditions onDk. We illustrate its efficiency on four image restoration problems.

The rest of the paper is organized as follows: Section II gives an overview of existing subspace

constructions and multi-dimensional search procedures. In Section III, we introduce the proposed HQ/MM

strategy for the stepsize calculation and we establish general convergence properties for the overall

subspace algorithm. Finally, Sections IV and V give some illustrations and a discussion of the algorithm

performances by means of a set of experiments in image restoration.

II. SUBSPACE OPTIMIZATION METHODS

The first subspace optimization algorithm is the memory gradient method, proposed in the late 1960’s

by Miele and Cantrell [23]. It corresponds to

Dk = [−gk,dk−1]

and the stepsizesk results from the exact minimization off(s). WhenF is quadratic, it is equivalent to

the nonlinear conjugate gradient algorithm [31].

More recently, several other subspace algorithms have beenproposed. Some of them are briefly

reviewed in this section. We first focus on the subspace construction, and then we describe several

existing stepsize strategies.
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A. Subspace construction

Choosing subspacesDk of dimensions larger than one may allow faster convergence in terms of

iteration number. However, it requires a multi-dimensional stepsize strategy, which can be substantially

more complex (and computationaly costly) than the usual line search. Therefore, the choice of the subspace

must achieve a tradeoff between the iteration number to reach convergence and the cost per iteration. Let

us review some existing iterative subspace optimization algorithms and their associated set of directions.

For the sake of compactness, their main features are summarized in Tab. I. Two families of algorithms

are distinguished.

1) Memory gradient algorithms:In the first seven algorithms,Dk mainly gathers successive gradient

and direction vectors.

The third one, introduced in [32] as supermemory descent (SMD)method, generalizes SMG by

replacing the steepest descent direction by any directionpk non orthogonal togk i.e., gT
k pk 6= 0.

PCD-SESOP and SSF-SESOP algorithms from [6, 19] identify with SMD algorithm, whenpk equals

respectively the parallel coordinate descent (PCD) direction and the separable surrogate functional (SSF)

direction, both described in [19].

Although the fourth algorithm was introduced in [33–35] as asupermemory gradient method, we rather

refer to it as agradient subspace(GS) algorithm in order to make the distinction with the supermemory

gradient (SMG) algorithm introduced in [24].

The orthogonal subspace (ORTH) algorithm was introduced in [36] with the aim to obtain a first order

algorithm with an optimal worst case convergence rate. The ORTH subspace corresponds to the opposite

gradient augmented with the two so-called Nemirovski directions,xk −x0 and
∑k

i=0
wigi, wherewi are

pre-specified, recursively defined weights:

wi =











1 if i = 0,

1

2
+
√

1

4
+ w2

i−1
otherwise.

(6)

In [26], the Nemirovski subspace is augmented with previousdirections, leading to the SESOP algo-

rithm whose efficiency over ORTH is illustrated on a set of imagereconstruction problems. Moreover,

experimental tests showed that the use of Nemirovski directions in SESOP does not improve practical

convergence speed. Therefore, in their recent paper [6], Zibulevsky et al. do not use these additionnal

vectors so that their modified SESOP algorithm actually reduces to the SMG algorithm from [24].

2) Newton type subspace algorithms:The last two algorithms introduce additional directions of the

Newton type.
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Acronym Algorithm Set of directionsDk Subspace size

MG Memory gradient [23, 31]
ˆ

−gk, dk−1

˜

2

SMG Supermemory gradient [24]
ˆ

−gk, dk−1, . . . , dk−m

˜

m + 1

SMD Supermemory descent [32]
ˆ

pk, dk−1, . . . , dk−m

˜

m + 1

GS Gradient subspace [33, 34, 37]
ˆ

−gk,−gk−1, . . . ,−gk−m

˜

m + 1

ORTH Orthogonal subspace [36]
ˆ

−gk, xk − x0,
Pk

i=0 wigi

˜

3

SESOP Sequential Subspace Optimization [26]
ˆ

−gk, xk − x0,
Pk

i=0 wigi, dk−1, . . . , dk−m

˜

m + 3

QNS Quasi-Newton subspace [20, 25, 38]
ˆ

−gk, δk−1, . . . , δk−m, dk−1, . . . , dk−m

˜

2m + 1

SESOP-TN Truncated Newton subspace [27]
ˆ

dℓ
k, Qk(dℓ

k), dℓ
k − dℓ−1

k , dk−1, . . . , dk−m

˜

m + 3

TABLE I

SET OF DIRECTIONS CORRESPONDING TO THE MAIN EXISTING ITERATIVE SUBSPACE ALGORITHMS. THE WEIGHTSwi AND

THE VECTORSδi ARE DEFINED BY (6) AND (7), RESPECTIVELY. Qk IS DEFINED BY (8), AND dℓ
k IS THE ℓTH OUTPUT OF A

CG ALGORITHM TO SOLVE Qk(d) = 0.

In the Quasi-Newton subspace (QNS) algorithm proposed in [25], Dk is augmented with

δk−i = gk−i+1 − gk−i, i = 1, . . . ,m. (7)

This proposal is reminiscent from the L-BFGS algorithm [22], since the latter produces directions in the

space spanned by the resulting setDk.

SESOP-TN has been proposed in [27] to solve the problem of sensitivity to an early break of conjugate

gradient (CG) iterations in the truncated Newton (TN) algorithm. Let dℓ
k denote the current value ofd

after ℓ iterations of CG to solve the Gauss-Newton systemQk(d) = 0, where

Qk(d) = ∇2F (xk)d + gk. (8)

In the standard TN algorithm,dℓ
k defines the search direction [39]. In SESOP-TN, it is only the first

component ofDk, while the second and third components ofDk also result from the CG iterations.

Finally, to accelerate optimization algorithms, a common practice is to use a preconditioning matrix.

The principle is to introduce a linear transform on the original variables, so that the new variables have

a Hessian matrix with more clustered eigenvalues. Preconditioned versions of subspace algorithms are

easily defined by usingPkgk instead ofgk in the previous direction sets [26].
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B. Stepsize strategies

The aim of the multi-dimensional stepsize search is to determine sk that ensures a sufficient decrease

of function f defined by (5) in order to guarantee the convergence of recurrence (4). In the scalar

case, typical line search procedures generate a series of stepsize values until the fulfillment of sufficient

convergence conditions such as Armijo, Wolfe and Goldstein[40]. An extension of these conditions to

the multi-dimensional case can easily be obtained (e.g., the multi-dimensional Goldstein rule in [28]).

However, it is difficult to design practical multi-dimensional stepsize search algorithms allowing to check

these conditions [28].

Instead, in several subspace algorithms, the stepsize results from an iterative descent algorithm applied

to functionf , stopped before convergence. In SESOP and SESOP-TN, the minimization is performed by

a Newton method. However, unless the minimizer is found exactly, the resulting subspace algorithms are

not proved to converge. In the QNS and GS algorithms, the stepsize results from a trust region recurrence

on f . It is shown to ensure the convergence of the iterates under mild conditions onDk [25, 34, 35].

However, except when the quadratic approximation of the criterion in the trust region is separable [34],

the trust region search requires to solve a non-trivial constrained quadratic programming problem at each

inner iteration.

In the particular case of modern SMG algorithms [41–44],sk is computed in two steps. First, a descent

direction is constructed by combining the vectorsdi
k with some predefined weights. Then a scalar stepsize

is calculated through an iterative line search. This strategy leads to the recurrence

xk+1 = xk + αk

(

−β0
kgk +

m
∑

i=1

βi
kdk−i

)

.

Different expressions for the weightsβi
k have been proposed. To our knowledge, their extension to the

preconditioned version of SMG or to other subspaces is an openissue. Moreover, since the computation

of (αk, β
i
k) does not aim at minimizingf in the SMG subspace, the resulting schemes are not true

subspace algorithms.

In the next section, we propose an original strategy to define the multi-dimensional stepsizesk in (4).

The proposed stepsize search is proved to ensure the convergence of the whole algorithm, under low

assumptions on the subspace, and to require low computationnal cost.
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III. PROPOSED MULTI-DIMENSIONAL STEPSIZE STRATEGY

A. GR and GY majorizing approximations

Let us first introduce Geman & Yang [3] and Geman & Reynolds [2] matricesAGY andAGR, which

play a central role in the multi-dimensional stepsize strategy proposed in this paper:

Aa
GY = 2HT H +

λ

a
V V T , (9)

AGR(x) = 2HT H + λV T Diag {b(x)}V , (10)

whereV T =
[

V T
1 |...|V T

C

]

, a > 0 is a free parameter, andb(x) is aCP × 1 vector with entries

bcp(x) =
ψ̇(‖Vcx − ωc‖)
‖Vcx − ωc‖

.

Both GY and GR matrices allow the construction of majorizingapproximation forF . More precisely,

let us introduce the following second order approximation of F in the neighborhood ofxk

Q(x,xk) = F (xk) + ∇F (xk)
T (x − xk) +

1

2
(x − xk)

T A(xk)(x − xk). (11)

Let us also introduce the following assumptions on the function ψ:

(H1) ψ is C1 and coercive,

ψ̇ is L-Lipschitz.

(H2) ψ is C1, even and coercive,

ψ(
√
.) is concave onR+,

0 < ψ̇(t)/t <∞, ∀t ∈ R.

Then, the following lemma holds.

Lemma 1. [13]

Let F defined by(1) and xk ∈ R
N . If Assumption H1 holds andA = Aa

GY
with a ∈ (0, 1/L) (resp.

Assumption H2 holds andA = AGR), then for allx, (11) is a tangent majorantfor F at xk i.e., for all

x ∈ R
n,











Q(x,xk) ≥ F (x),

Q(xk,xk) = F (xk).

(12)

The majorizing property (12) ensures that the MM recurrence

xk+1 = arg min
x

Q(x,xk) (13)
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produces a nonincreasing sequence(F (xk)) that converges to a stationnary point ofF [30, 45]. Half-

quadratic algorithms [2, 3] are based on the relaxed form

xk+1 = xk + θ(x̂k+1 − xk). (14)

wherex̂k+1 is obtained by (13). The convergence properties of recurrence (14) are analysed in [12, 13,

46].

B. Majorize-Minimize line search

In [29], xk+1 is defined as (3) wheredk is the NLCG direction and the stepsize valueαk results

from J ≥ 1 successive minimizations of quadratic tangent majorant functions for the scalar function

f(α) = F (xk + αdk), expressed as

q(α, αj
k) = f(αj

k) + (α− αj
k)ḟ(αj

k) +
1

2
bjk(α− αj

k)
2

at αj
k. The scalar parameterbjk is defined as

bjk = dT
k A(xk + αj

kdk)dk.

whereA(.) is either the GY or the GR matrix, respectively defined by (9) and (10). The stepsize values

are produced by the relaxed MM recurrence










α0

k = 0

αj+1

k = αj
k − θḟ(αj

k)/b
j
k, j = 0, . . . , J − 1

(15)

and the stepsizeαk corresponds to the last valueαJ
k . The distinctive feature of the MM line search is

to yield the convergence of standard descent algorithms without any stopping condition whatever the

recurrence lengthJ and relaxation parameterθ ∈ (0, 2) [29]. Here, we propose to extend this strategy

to the determination of the multi-dimensional stepsizesk, and we prove the convergence of the resulting

family of subspace algorithms.

C. MM multi-dimensional search

Let us define theM ×M symmetric positive definite (SPD) matrix

Bj
k = DT

k A
j
kDk

with A
j
k , A(xk + Dks

j
k) andA is either the GY matrix or the GR matrix. According to Lemma 1,

q(s, sj
k) = f(sj

k) + ∇f(sj
k)

T (s − s
j
k) +

1

2
(s − s

j
k)

T B
j
k(s − s

j
k) (16)
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is quadratic tangent majorant forf(s) at s
j
k. Then, let us define the MM multi-dimensional stepsize by

sk = sJ
k , with



























s0

k = 0,

ŝ
j+1

k = arg mins q(s, s
j
k), j = 0, . . . , J − 1.

s
j+1

k = s
j
k + θ(ŝj+1

k − s
j
k)

(17)

Given (16), we obtain an explicit stepsize formula

s
j+1

k = s
j
k − θ (Bj

k)
−1∇f(sj

k).

Moreover, according to [13], the update rule (17) produces monotonically decreasing values(f(sj
k)) if

θ ∈ (0, 2). Let us emphasize that this stepsize procedure identifies withthe HQ/MM iteration (14) when

span(Dk) = R
N , and to the HQ/MM line search (15) whenDk = dk.

D. Convergence analysis

This section establishes the convergence of the iterative subspace algorithm (4) whensk is chosen

according to the MM strategy (17).

We introduce the following assumption, which is a necessarycondition to ensure that the penalization

term Ψ(x) regularizes the problem of estimatingx from y in a proper way

(H3) H andV are such that

ker(HT H) ∩ ker(V T V ) = {0} .

Lemma 2. [13]

Let F be defined by(1), whereH and V satisfy Assumption H3. If Assumption H1 or H2 holds,F is

continuously differentiable and bounded below. Moreover,if for all k, j, A = Aa
GY

with 0 < a < 1/L

(resp.,A = AGR), then(Aj
k) has apositive bounded spectrum, i.e., there existsν1 ∈ R such that

0 < vT A
j
kv ≤ ν1‖v‖2, ∀k, j ∈ N,∀v ∈ R

N .

Let us also assume that the set of directionsDk fulfills the following condition:

(H4) for all k ≥ 0, the matrix of directionsDk is of sizeN ×M with 1 ≤M ≤ N and the first subspace

directiond1
k fulfills

gT
k d1

k ≤ −γ0‖gk‖2, (18)

‖d1
k‖ ≤ γ1‖gk‖, (19)
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with γ0, γ1 > 0.

Then, the convergence of the MM subspace scheme holds according to the following theorem.

Theorem 1. Let F defined by(1), whereH and V satisfy Assumption H3. Letxk defined by(4)-(17)

whereDk satisfies Assumption H4,J ≥ 1, θ ∈ (0, 2) and B
j
k = DT

k Aa
GY

Dk with 0 < a < 1/L (resp.,

B
j
k = DT

k AGR(xk + Dks
j
k)Dk). If Assumption H1 (resp., Assumption H2) holds, then

F (xk+1) ≤ F (xk). (20)

Moreover, we have convergence in the following sense:

lim
k→∞

‖gk‖ = 0.

Proof: See Appendix A.

Remark 1. Assumption H4 is fulfilled by a large family of descent directions. In particular, the following

results hold.

• Let (Pk) be a series of SPD matrices with eigenvalues that are bounded below and above, respectively

by γ1 and γ0 > 0. Then, according to [16, Sec. 1.2], Assumption H4 holds ifd1
k = −Pkgk.

• According to [47], Assumption H4 also holds ifd1
k results from any fixed positive number of CG

iterations on the linear systemMkd = −gk, provided that(Mk) is a matrix series with a positive

bounded spectrum.

• Finally, Lemma 3 in Appendix B ensures that Assumption H4 holds if d1
k is the PCD direction,

provided thatF is strongly convex and has a Lipschitz gradient.

Remark 2. For a preconditioned NLCG algorithm with a variable preconditioner Pk, the generated

iterates belong to the subspace spanned by−Pkgk and dk−1. Whereas the convergence of the PNLCG

scheme with a variable preconditioner is still an open problem [21, 48], the preconditioned MG algorithm

usingDk = [−Pkgk,dk−1] and the proposed MM stepsize is guaranteed to converge for bounded SPD

matricesPk, according to Theorem 1.

E. Implementation issues

In the proposed MM multi-dimensional search, the main computational burden originates from the

need to multiply the spanning directions with linear operators H and V , in order to compute∇f(sj
k)
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Acronym Recursive form ofDk Nk Wk

MG [−gk, Dk−1sk−1] −gk sk−1

SMG [−gk, Dk−1sk−1, Dk−1(2 : m)] −gk [sk−1, I2:m]

GS [−gk, Dk−1(1 : m)] −gk I1:m

ORTH [−gk, xk − x0, ωkgk + Dk−1(3)] [−gk, xk − x0, ωkgk] I3

QNS [−gk, gk + Dk−1(1), Dk−1(2 : m), Dk−1sk−1, Dk−1(m + 2 : 2m)] [−gk, gk] [I1, I2:m, sk−1, Im+2:2m]

SESOP-TN [dℓ

k
, Qk(dℓ

k
), dℓ

k
− d

ℓ−1

k
, Dk−1(4 : m + 2)] [dℓ

k
, Qk(dℓ

k
), dℓ

k
− d

ℓ−1

k
] I4:m+2

TABLE II

RECURSIVE MEMORY FEATURE AND DECOMPOSITION(21) OF SEVERAL ITERATIVE SUBSPACE ALGORITHMS. HERE,

D(i : j) DENOTES THE SUBMATRIX OFD MADE OF COLUMNS i TO j, AND Ii:j DENOTES THE MATRIX SUCH THAT

D Ii:j = D(i : j).

andB
j
k. When the problem is large scale, these products become expensive and may counterbalance the

efficiency obtained when using a subset of larger dimension. In this section, we give a strategy to reduce

the computational cost of the productMk , ∆Dk when∆ = H or V . This generalizes the strategy

proposed in [26, Sec. 3] for the computation of∇f(s) and ∇2f(s) during the Newton search of the

SESOP algorithm.

For all subspace algorithms, the setDk can be expressed as the sum of a new matrix and a weighted

version of the previous set:

Dk = [Nk|0] + [0|Dk−1Wk] . (21)

The obtained expressions forNk andWk are given in Tab. II. According to (21),Mk can be obtained

by the recurrence

Mk = [∆Nk|0] + [0|Mk−1Wk] .

Assuming thatMk is stored at each iteration, the computationnal burden reduces to the product∆Nk.

This strategy is efficient as far asNk has a small number of columns. Moreover, the cost of the latter

product does not depend on the subspace dimension, by contrast with the direct computation ofMk.

IV. A PPLICATION TO THE SET OF IMAGE PROCESSING PROBLEMS FROM[6]

In this section, we consider three image processing problems, namely image deblurring, tomography and

compressive sensing, generated with M. Zibulevsky’s code available at http://iew3.technion.ac.il/∼mcib.

For all problems, the synthesis-based approach is used for the reconstruction. The image is assumed to

be well described asxo = Kzo with a known dictionaryK and a sparse vectorzo. The restored image
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is then defined asx∗ = Kz∗ wherez∗ minimizes the PLS criterion

F (z) = ‖HKz − y‖2 + λ
N
∑

i=1

ψ(zi),

with ψ the logarithmic smooth version of theℓ1 norm

ψ(u) = |u| − δ log(1 + |u|/δ)

that aims at sparsifying the solution.

In [6], several subspace algorithms are compared in order tominimize F . In all cases, the multi-

dimensional stepsize results from a fixed number of Newton iterations. The aim of this section is to test

the convergence speed of the algorithms when the Newton procedure is replaced by the proposed MM

stepsize strategy.

A. Subspace algorithm settings

SESOP [26] and PCD-SESOP [19] direction sets are considered here. Thelatter uses SMD vectors

with pk defined as the PCD direction

pi,k = arg min
α

F (xk + αei), i = 1, ..., N, (22)

where ei stands for theith elementary unit vector. Following [6], the memory parameter is tuned to

m = 7 (i.e., M = 8). Moreover, the Nemirovski directions are discarded, so that SESOP identifies with

the SMG subspace.

Let us define SESOP-MM and PCD-SESOP-MM algorithms by associating SESOP and PCD-SESOP

subspaces with the multi-dimensional MM stepsize strategy(17). The latter is fully specified byAj
k, J

andθ. For all k, j, we defineA
j
k = AGR(xk + Dks

j
k) whereAGR(.) is given by (10), andJ = θ = 1.

Functionψ is strictly convex and fulfills both Assumptions H1 and H2. Therefore, Lemma 1 applies.

Matrix V identifies with the identity matrix, so Assumption H3 holds and Lemma 2 applies. Moreover,

according to Lemma 3, Assumption H4 holds and Theorem 1 ensuresthe convergence of SESOP-MM

and PCD-SESOP-MM schemes.

MM versions of SESOP and PCD-SESOP are compared to the original algorithms from [6], where the

inner minimization uses Newton iterations with backtracking line search, until the tight stopping criterion

‖∇f(s)‖ < 10−10

is met, or seven Newton updates are achieved.

For each test problem, the results were plotted as functionsof either iteration numbers, or of compu-

tational times in seconds, on an Intel Pentium 4 PC (3.2 GHz CPU and 3 GB RAM).
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B. Results and discussion

1) Choice between subspace strategies:According to Figs. 1, 2 and 3, the PCD-SESOP subspace

leads to the best results in terms of objective function decrease per iteration, while the SESOP subspace

leads to the largest decrease of the gradient norm, independently from the stepsize strategy. Moreover,

when considering the computational time, it appears that SESOPand PCD-SESOP algorithms have quite

similar performances.

2) Choice between stepsize strategies:The impact of the stepsize strategy is the central issue in this

paper. According to a visual comparison between thin and thick plots in Figs. 1, 2 and 3, the MM

stepsize strategy always leads to significantly faster algorithms compared to the original versions based

on Newton search, mainly because of a reduced computationaltime per iteration.

Moreover, let us emphasize that the theoretical convergence of SESOP-MM and PCD-SESOP-MM is

ensured according to Theorem 1. In contrast, unless the Newton search reaches the exact minimizer of

f(s), the convergence of SESOP and PCD-SESOP is not guaranteed theoretically.

V. A PPLICATION TO EDGE-PRESERVINGIMAGE RESTORATION

The problem considered here is the restoration of the well-known imagesboat, lena andpeppers

of sizeN = 512 × 512. These images are firstly convolved with a Gaussian point spread function of

standard deviation2.24 and of size17 × 17. Secondly, a white Gaussian noise is added with a variance
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Fig. 1. Deblurring problem taken from [6] (128×128 pixels): The objective function and the gradient norm value as a function

of iteration number (left) and CPU time in seconds (right) for the four testedalgorithms.
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Fig. 2. Tomography problem taken from [6] (32×32 pixels): The objective function and the gradient norm value as a function

of iteration number (left) and CPU time in seconds (right) for the four testedalgorithms.
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Fig. 3. Compressed sensing problem taken from [6] (64 × 64 pixels): The objective function and the gradient norm value as

a function of iteration number (left) and CPU time in seconds (right) for the four tested algorithms.

adjusted to get a signal-to-noise ratio (SNR) of40 dB. The following analysis-based PLS criterion is

considered

F (x) = ‖Hx − y‖2 + λ
∑

c

√

δ2 + [V x]2c
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Fig. 4. Noisy, blurredpeppers image,40 dB (left) and restored image (right).

whereV is the first-order difference matrix. This criterion depends on the parametersλ andδ. They are

assessed to maximize the peak signal to noise ratio (PSNR) between each imagexo and its reconstruction

versionx. Tab. III gives the resulting values of PSNR and relative mean square error (RMSE), defined

by

PSNR(x,xo) = 20 log10

(

maxi(xi)
√

1/N
∑

i(xi − xo
i )

2

)

and

RMSE(x,xo) =
‖x − xo‖2

‖x‖2
.

The purpose of this section is to test the convergence speed ofthe multi-dimensional MM stepsize

strategy (17) for different subspace constructions. Furthermore, these performances are compared with

standard iterative descent algorithms associated with theMM line search described in Subsection III-B.

boat lena peppers

λ 0.2 0.2 0.2

δ 13 13 8

PSNR 28.4 30.8 31.6

RMSE 5 · 10−3 3.3 · 10−3 2 · 10−3

TABLE III

VALUES OF HYPERPARAMETERSλ, δ AND RECONSTRUCTION QUALITY IN TERMS OFPSNRAND RMSE.
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A. Subspace algorithm settings

The MM stepsize search is used with the Geman & Reynolds HQ matrix and θ = 1. Since the

hyperbolic functionψ is a strictly convex function that fulfills both Assumptions H1 and H2, Lemma 1

applies. Furthermore, Assumption H3 holds [29] so Lemma 2 applies.

Our study deals with the preconditioned form of the following direction sets: SMG, GS, QNS and

SESOP-TN. The preconditionerP is a SPD matrix based on the 2D Cosine Transform. Thus, Assumption

H4 holds and Theorem 1 ensures the convergence of the proposedscheme for allJ ≥ 1. Moreover, the

implementation strategy described in Subsection III-E willbe used.

For each subspace, we first consider the reconstruction ofpeppers, illustrated in Fig. 4, allowing us

to discuss the tuning of the memory parameterm, related to the size of the subspaceM as described in

Tab. I, and the performances of the MM search. The latter is again compared with the Newton search

from [6].

Then, we compare the subspace algorithms with iterative descent methods in association with the MM

scalar line search.

The global stopping rule‖gk‖/
√
N < 10−4 is considered. For each tested scheme, the performance

results are displayed under the formK/T whereK is the number of global iterations andT is the global

minimization time in seconds.

B. Gradient and memory gradient subspaces

The aim of this section is to analyze the performances of SMG andGS algorithms.

SMG(m) 1 2 5 10

Newton 76/578 75/630 76/701 74/886

M
M

(J
)

1 67/119 68/125 67/140 67/163

2 66/141 66/147 67/172 67/206

5 74/211 72/225 71/255 72/323

10 76/297 74/319 73/394 74/508

TABLE IV

RECONSTRUCTION OFpeppers: COMPARISON BETWEENMM AND NEWTON STRATEGIES FOR THE MULTI-DIMENSIONAL

SEARCH IN SMG ALGORITHM , IN TERMS OF ITERATION NUMBER AND TIME BEFORE CONVERGENCE(IN SECONDS).

1) Influence of tuning parameters:According to Tables IV-V, the algorithms perform better when the

stepsize is obtained with the MM search. Furthermore, it appears thatJ = 1 leads to the best results in
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GS(m) 1 5 10 15

Newton 458/3110 150/1304 96/1050 81/1044

M
M

(J
)

1 315/534 128/258 76/180 67/175

2 316/656 134/342 86/257 70/232

5 317/856 137/481 91/400 78/386

10 317/1200 137/709 92/619 78/598

TABLE V

RECONSTRUCTION OFpeppers: COMPARISON BETWEENMM AND NEWTON STRATEGIES FOR THE MULTI-DIMENSIONAL

SEARCH IN GS ALGORITHM .

terms of computation time which indicates that the best strategy corresponds to a rough minimization

of f(s). Such a conclusion meets that of [29].

The effect of the memory sizem differs according to the subspace construction. For the SMG algorithm,

an increase of the size of the memorym does not accelerate the convergence. On the contrary, it appears

that the number of iterations for GS decreases when more gradients are saved and the best tradeoff is

obtained withm = 15.

2) Comparison with conjugate gradient algorithms:Let us compare the MG algorithm (i.e., SMG

with m = 1) with the NLCG algorithm making use of the MM line search strategy proposed in [29].

The latter is based on the following descent recurrence:

xk+1 = xk + αk(−gk + βkdk−1)

whereβk is the conjugacy parameter. Tab. VI summarizes the performances of NLCG for five different

conjugacy strategies described in [21]. The stepsizeαk in NLCG results fromJ iterations of (15) with

A = AGR andθ = 1. According to Tab. VI, the convergence speed of the conjugate gradient method is

very sensitive to the conjugacy strategy. The last line of Tab. VI reproduces the first column of Tab. IV.

The five tested NLCG methods are outperformed by the MG subspacealgorithm with J = 1, both in

terms of iteration number and computational time.

The two other caseslena andboat lead to the same conclusion, as reported in Tab. VII.

C. Quasi-Newton subspace

Dealing with the QNS algorithm, the best results were observed with J = 1 iteration of the MM

stepsize strategy and the memory parameterm = 1. For this setting, thepeppers image is restored
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J 1 2 5 10

NLCG-FR 145/270 137/279 143/379 143/515

NLCG-DY 234/447 159/338 144/387 143/516

NLCG-PRP 77/137 69/139 75/202 77/273

NLCG-HS 68/122 67/134 75/191 77/289

NLCG-LS 82/149 67/135 74/190 76/266

MG 67/119 66/141 74/211 76/297

TABLE VI

RECONSTRUCTION OFpeppers: COMPARISON BETWEENMG AND NLCG FOR DIFFERENT CONJUGACY STRATEGIES. IN

ALL CASES, THE STEPSIZE RESULTS FROMJ ITERATIONS OF THEMM RECURRENCE.

boat lena peppers

NLCG-FR 77/141 98/179 145/270

NLCG-DY 86/161 127/240 234/447

NLCG-PRP 40/74 55/99 77/137

NLCG-HS 39/71 50/93 68/122

NLCG-LS 42/81 57/103 82/149

MG 37/67 47/85 67/119

TABLE VII

COMPARISON BETWEENMG AND NLCG ALGORITHMS. IN ALL CASES, THE NUMBER OFMM SUBITERATIONS IS SET TO

J = 1.

after 68 iterations, which takes124 s. As a comparison, when the Newton search is used andm = 1, the

QNS algorithm requires75 iterations that take more than1000 s.

Let us now compare the QNS algorithm with the standard L-BFGS algorithm from [22]. Both algo-

rithms require the tuning of the memory sizem. Fig. 5 illustrates the performances of the two algorithms.

In both cases, the stepsize results from1 iteration of MM recurrence. Contrary to L-BFGS, QNS is not

sensitive to the size of the memorym. Moreover, according to Tab. VIII, the QNS algorithm outperforms

the standard L-BFGS algorithm with its best memory setting forthe three restoration problems.

D. Truncated Newton subspace

Now, let us focus on the second order subspace method SESOP-TN. The first component ofDℓ
k, dℓ

k,

is computed by applyingℓ iterations of the preconditioned CG method to the Newton equations. Akin
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Fig. 5. Reconstruction ofpeppers: Influence of memorym for algorithms L-BFGS and QNS in terms of iteration number

K and computation timeT in seconds. In all cases, the number of MM subiterations is set toJ = 1.

boat lena peppers

L-BFGS (m = 3) 45/94 62/119 83/164

QNS (m = 1) 38/83 48/107 68/124

TABLE VIII

COMPARISON BETWEENQNS AND L-BFGS ALGORITHMS FORJ = 1.

to the standard TN algorithm,ℓ is chosen according to the following convergence test

‖gk + Hkd
ℓ
k‖/‖gk‖ < η,

whereη > 0 is a threshold parameter. Here, the settingη = 0.5 has been adopted since it leads to lowest

computation time for the standard TN algorithm.

In Tables IX and X, the results are reported in the formK/T whereK denotes the total number of

CG steps.

According to Tab. IX, SESOP-TN-MM behaves differently from the previous algorithms. A quite large

value ofJ is necessary to obtain the fastest version. In this example,the MM search is still more efficient

than the Newton search, provided that we chooseJ ≥ 5. Concerning the memory parameter, the best

results are obtained form = 2.

Finally, Tab. X summarizes the results for the three test images, in comparison with the standard TN

(not fully standard, though, since the MM line search has been used). Our conclusion is that the subspace

version of TN does not seem to bring a significant acceleration compared to the standard version. Again,

this contrasts with the results obtained for the other tested subspace methods.
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SESOP-TN(m) 0 1 2 5

Newton 159/436 155/427 128/382 151/423

M
M

(J
)

1 415/870 410/864 482/979 387/840

2 253/532 232/506 239/525 345/731

5 158/380 132/316 143/359 139/351

10 122/322 134/323 119/301 128/334

15 114/320 134/365 117/337 127/389

TABLE IX

RECONSTRUCTION OFpeppers: COMPARISON BETWEENMM AND NEWTON STEPSIZE STRATEGIES INSESOP-TN

ALGORITHM .

boat lena peppers

TN 65/192 74/199 137/322

SESOP-TN(2) 55/180 76/218 119/301

TABLE X

COMPARISON BETWEENSESOP-TNAND TN ALGORITHMS FORη = 0.5 AND J = 10.

VI. CONCLUSION

This paper explored the minimization of penalized least squares criteria in the context of image

restoration, using the subspace algorithm approach. We pointed out that the existing strategies for

computing the multi-dimensional stepsize suffer either from a lack of convergence results (e.g.,Newton

search) or from a high computational cost (e.g., trust region method). As an alternative, we proposed

an original stepsize strategy based on a MM recurrence. The stepsize results from the minimization of

a half-quadratic approximation over the subspace. Our method benefits from mathematical convergence

results, whatever the number of MM iterations. Moreover, itcan be implemented efficiently by taking

advantage of the recursive structure of the subspace.

On practical restoration problems, the proposed search is significantly faster than the Newton minimiza-

tion used in [6, 26, 27], in terms of computational time before convergence. Quite remarkably, the best

performances have almost always been obtained when only oneMM iteration was performed (J = 1),

and when the size of the memory was reduced to one stored iterate (m = 1), which means that simplicity

and efficiency meet in our context. In particular, the resulting algorithmic structure contains no nested
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iterations.

Finally, among all the tested variants of subspace methods, the best results were obtained with the

memory gradient subspace (i.e., where the only stored vector is the previous direction), using a single

MM iteration for the stepsize. The resulting algorithm can beviewed as a new form of preconditioned,

nonlinear conjugate gradient algorithm, where the conjugacy parameter and the step-size are jointly given

by a closed-form formula that amounts to solve a2 × 2 linear system.

APPENDIX

A. Proof of Theorem 1

Let us introduce the scalar function

h(α) , q([α, 0, . . . , 0]T ,0), ∀α ∈ R. (23)

According to the expression ofq(.,0), h reads

h(α) = f(0) + αgT
k d1

k +
1

2
α2d1T

k A0
kd

1
k. (24)

Its minimizer α̂k is given by

α̂k = − gT
k d1

k

d1T
k A0

kd
1
k

. (25)

Therefore,

h(α̂k) = f(0) +
1

2
α̂kg

T
k d1

k. (26)

Moreover, according to the expression ofŝ1
k,

q(ŝ1
k,0) = f(0) +

1

2
∇f(0)T ŝ1

k. (27)

ŝ1
k minimizesq(s,0) henceq(ŝ1

k,0) ≤ h(α̂k). Thus, using (26)-(27),

α̂kg
T
k d1

k ≥ ∇f(0)T ŝ1
k. (28)

According to (24) and (25), the relaxed stepsizeαk = θα̂k fulfills

h(αk) = f(0) + δ α̂kg
T
k d1

k, (29)

whereδ = θ(1 − θ/2). Moreover,

q(s1
k,0) = f(0) + δ∇f(0)T ŝ1

k. (30)

Thus, using (28)-(29)-(30), we obtainq(s1
k,0) ≤ h(αk) and

f(0) − q(s1
k,0) ≥ −δα̂kg

T
k d1

k. (31)
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Furthermore,q(s1
k,0) ≥ f(s1

k) ≥ f(sk) according to Lemma 1 and [13, Prop.5]. Thus,

f(0) − f(sk) ≥ −δα̂kg
T
k d1

k (32)

According to Lemma 2,

α̂k ≥ − gT
k d1

k

ν1‖d1
k‖2

(33)

Hence, according to (32), (33) and Assumption H4,

f(0) − f(sk) ≥
δγ2

0

ν1γ2
1

‖gk‖2 (34)

which also reads

F (xk) − F (xk+1) ≥
δγ2

0

ν1γ2
1

‖gk‖2 (35)

Thus, (20) holds. Moreover,F is bounded below according to Lemma 2. Therefore,limk→∞ F (xk) is

finite. Thus,

∞ >

(

δγ2
0

ν1γ2
1

)−1(

F (x0) − lim
k→∞

F (xk)

)

≥
∑

k

‖gk‖2,

and finally

lim
k→∞

‖gk‖ = 0.

B. Relations between the PCD and the gradient directions

Lemma 3. Let the PCD direction be defined byp = (pi), with

pi = arg min
α

F (x + αei), i = 1, ..., N,

whereei stands for theith elementary unit vector. IfF is gradient Lipschitz and strongly convex onR
N ,

then there existγ0, γ1 > 0 such thatp fulfills

gT p ≤ −γ0‖g‖2, (36)

‖p‖ ≤ γ1‖g‖, (37)

for all x ∈ R
N .

Proof: Let us introduce the scalar functionsfi(α) , F (x + αei), so that

pi = arg min
α

fi(α). (38)

F is gradient Lipschitz, so there existsL > 0 such that for alli,

|ḟi(a) − ḟi(b)| 6 L|a− b|, ∀a, b ∈ R.
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In particular, fora = 0 andb = pi, we obtain

|pi| > |ḟi(0)|/L,

given thatḟi(pi) = 0 according to (38). According to the expression offi,

gT p =
N
∑

i=1

ḟi(0)pi.

Moreover,pi minimizes the convex functionfi on R so

piḟi(0) 6 0, i = 1, ..., N. (39)

Therefore,

gT p = −
N
∑

i=1

|ḟi(0)||pi| 6
1

L
‖g‖2. (40)

F is strongly convex, so there existsν > 0 such that for alli,

(ḟi(a) − ḟi(b))(a− b) > ν(a− b)2, ∀a, b ∈ R.

In particular,a = 0 andb = pi give

−ḟi(0)pi > νp2
i , i = 1, ..., N. (41)

Using (39) we obtain

p2
i 6 ν|ḟi(0)|2/ν2, i = 1, ..., N. (42)

Therefore,

‖p‖2 =
N
∑

i=1

p2
i 6

1

ν2
‖g‖2 (43)

Thus, (36)-(37) hold forγ0 = 1/L andγ1 = 1/ν.
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