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Abstract. Methanol (CH3OH) and formic acid (HCOOH)
are among the most abundant volatile organic compounds
present in the atmosphere. In this work, we derive the
global distributions of these two organic species using for the
first time the Infrared Atmospheric Sounding Interferometer
(IASI) launched onboard the MetOp-A satellite in 2006. This
paper describes the method used and provides a first criti-
cal analysis of the retrieved products. The retrieval process
follows a two-step approach in which global distributions
are first obtained on the basis of a simple radiance indexing
(transformed into brightness temperatures), and then mapped
onto column abundances using suitable conversion factors.
For methanol, the factors were calculated using a complete
retrieval approach in selected regions. In the case of formic
acid, a different approach, which uses a set of forward sim-
ulations for representative atmospheres, has been used. In
both cases, the main error sources are carefully determined:
the average relative error on the column for both species is
estimated to be about 50%, increasing to about 100% for
the least favorable conditions. The distributions for the year
2009 are discussed in terms of seasonality and source iden-
tification. Time series comparing methanol, formic acid and
carbon monoxide in different regions are also presented.

Correspondence to:A. Razavi
(arazavi@ulb.ac.be)

1 Introduction

Volatile Organic Compounds (VOCs) includes thousands of
different carbon-containing gases present in our atmosphere
at concentrations ranging from less than a pptv to more than a
ppmv (only methane exceeds 1 ppmv and is usually excluded
from the VOC definition). Emitted from a large variety of
processes (biogenic or anthropogenic) at the Earth’s surface,
they have an important influence on the atmospheric com-
position and climate. VOCs are precursors to tropospheric
ozone (Houweling et al., 1998), they play an important role
on the oxidizing capacity of the troposphere (Atkinson and
Arey, 2003; Monks, 2005), they lead to the formation of sec-
ondary organic aerosols (Tsigaridis and Kanakidou, 2007;
Heald et al., 2008) and they impact on climate change in
different indirect ways (Meinshausen et al., 2006; Feingold
et al., 2003; Charlson et al., 1987). In order to better under-
stand and quantify their emissions and the role they play in
the Earth’s system, it is important to assess their atmospheric
distribution at the global scale.

1.1 Observation of VOCs from space

The first steps in measuring volatile organic compounds
by infrared satellite sounders were made during the last
years, mostly using high-sensitive limb-viewing instruments.
Methanol and formic acid, along with a series of other com-
pounds, have been observed in young or aged biomass burn-
ing plumes with the ACE-FTS instrument (Rinsland et al.,
2004; Dufour et al., 2006; Coheur et al., 2007; Rinsland et al.,
2007; Herbin et al., 2009). Large datasets of that sounder,
covering several years, have been gathered to provide quasi-
global distributions of these two species and to study their
seasonal variability (Rinsland et al., 2006; Dufour et al.,
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2007; Abad et al., 2009). Similarly the observations of the
MIPAS limb emission sounder have enabled mapping upper
tropospheric distributions of several organic species such as
PAN (Glatthor et al., 2007; Moore and Remedios, 2010), ace-
tone (Moore et al., 2010) as well as HCN and C2H6 (Glatthor
et al., 2009); very recently global distributions of formic acid
have also been gathered and analyzed (Grutter et al., 2010).
The possibility of probing these VOCs lower in the atmo-
sphere using nadir infrared sounders was suggested based
on local observations, both by TES (Beer et al., 2008) and
IASI (Coheur et al., 2009), in the latter case in large biomass
burning plumes.

Other VOC observations from space have been performed
using ultraviolet (UV) sounders. The GOME and OMI in-
struments provide measurements of formaldehyde (Chance
et al., 2000; Millet et al., 2008b), providing constraints
on the emissions of isoprene (Shim et al., 2005; Palmer
et al., 2006) and other non-methane volatile organic com-
pounds (NMVOCs) (Fu et al., 2007; Stavrakou et al., 2009).
With the complementary use of SCIAMACHY (De Smedt
et al., 2008) and with the GOME follow-on instrument on-
board MetOp-A (GOME-2), a long-term dataset (14 years)
of formaldehyde observations is now available. In addi-
tion, measurements of glyoxal have also been made from the
SCIAMACHY instrument (Wittrock et al., 2006; Vrekoussis
et al., 2009).

This study provides the first global distributions of
methanol and formic acid observed by the IASI (Infrared
Atmospheric Sounding Interferometer) instrument (Phulpin
et al., 2007), briefly described in Sect.2.1. This infrared
nadir-looking sounder has already demonstrated its poten-
tial for the monitoring of different trace gases such as CO
(George et al., 2009; Turquety et al., 2009), O3 (Boynard
et al., 2009), CH4 (Razavi et al., 2009) and HNO3 (Wespes
et al., 2009). IASI has also demonstrated its high sensitivity
to weak absorbers such as NH3, for which global and local
distributions have been obtained (Clarisse et al., 2009, 2010).
The same method as the one used for retrieving global NH3,
and which relies on a simple difference of brightness temper-
atures, has been adapted to retrieve methanol and formic acid
total columns. The method is described in Sect.2.2 and a
critical analysis of the resulting methanol field is provided in
Sect.3. The latter includes a first interpretation of the global
distributions and seasonality of methanol as well as an error
analysis. Section4 provides similar analysis for formic acid.
In addition, time series comparing the two species and CO
for selected regions are presented in Sect.5.
Prior to this, a review of sources, sinks and previous mea-
surements of methanol and formic acid is provided.

1.2 Methanol

Methanol (CH3OH) is the most abundant organic species in
the Earth’s atmosphere after methane and is also the main
non-methane organic volatile compound in the mid to up-

per troposphere (Heikes et al., 2002). Because its main re-
moval process is oxidation by OH (Atkinson, 1986), CH3OH
has a noticeable impact on the oxidizing capacity of the tro-
posphere and on the global budget of tropospheric ozone
(Tie et al., 2003). Additional sinks include removal by dry
and wet deposition and uptake by the ocean (Jacob et al.,
2005; Millet et al., 2008a). Its mean lifetime is evaluated to
be about 10 days in the free troposphere. The main emis-
sion sources of methanol are biogenic processes, involving
plant growth (MacDonald and Fall, 1993; Nemecek-Marshall
et al., 1995; Harley et al., 2007; Galbally and Kirstine, 2002)
and plant decay to a lesser extent (Warneke et al., 1999).
Other sources include biomass burning (Holzinger et al.,
2005), oxidation of methane and other VOCs, as well as an-
thropogenic emissions from vehicles and industrial activities
(Singh et al., 2000). There still exists large uncertainties in
the relative source strengths, the atmospheric distribution and
budget of CH3OH (Singh et al., 2000; Tie et al., 2003; Jacob
et al., 2005).

During the past few years, coordinated measurement cam-
paigns have been conducted which provide, among other
trace species, in situ and aircraft determination of methanol
abundances, and from there information about its different
emission sources. The diurnal and seasonal cycle of CH3OH
has been studied from in situ measurement in different types
of environments such as forest (Karl et al., 2003, 2005), ru-
ral (Schade and Goldstein, 2006; Brunner et al., 2007; Jor-
dan et al., 2009) or urban areas (Filella and Peņuelas, 2006;
Nguyen et al., 2001) with a variety of techniques. The con-
centrations usually increase during daytime due to the light
induced release of methanol by plants. Moreover, CH3OH
abundances are found to be higher during spring because of
high plant growth emissions during that season. Methanol
concentrations of about 4 ppbv have been reported in the
amazonian region (Karl et al., 2007; Eerdekens et al., 2009).
Aircraft measurements were also carried out over oceans
(Singh et al., 2000, 2004) where background concentrations
of a few hundreds of pptv were found. Airborne observations
led also to the study of CH3OH in several biomass burning
plumes (Yokelson et al., 1999; Fischer et al., 2003; Yokelson
et al., 2003; Holzinger et al., 2005) where volume mixing
ratios (vmr) of up to several tens of ppbv were found. Ob-
servations of CH3OH with ground-based infrared spectrom-
eters were also recently conducted in Australia (Paton-Walsh
et al., 2008) and in Arizona (Rinsland et al., 2009). The latter
study provides an unprecedented 22 years time series of free
tropospheric CH3OH; it does not report any significant trend
over the years but shows a clear seasonality with a maximum
in early July and a minimum during January.

The quasi-global distributions obtained from ACE-FTS
(Dufour et al., 2007) have further revealed that the surface
sources of methanol have a significant impact on its up-
per tropospheric concentrations, which are mostly driven
by biogenic and biomass burning emissions in the Northern
and Southern Hemisphere, respectively.Beer et al.(2008)
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has firstly demonstrated the possibility to measure methanol
from a nadir infrared sounder and reports lower CH3OH con-
centrations in California than near Beijing, where emissions
could be caused by local sources.

The strongest absorption band of methanol in the infrared
is the ν8 CO-stretching mode centered at 1033cm−1. We
have used line parameters ofXu et al. (2004), implemented
in the HITRAN database for which a precision of 6% for line
intensities is quoted.

1.3 Formic acid

Formic acid (HCOOH) is one of the most abundant organic
acid and has a strong influence on pH-dependent chemical
reactions in clouds (Keene and Galloway, 1988). It has also
been identified as a major sink for OH reactions in cloud wa-
ter (Jacob, 1986). Although its sources and sinks are still
poorly quantified, HCOOH is known to be emitted by var-
ious processes: biomass burning (Goode et al., 2000; Wor-
den et al., 1997; Yokelson et al., 1997), biogenic emissions
from vegetation (Keene and Galloway, 1984, 1988), emis-
sions from soil (Sanhueza and Andreae, 1991), from ants
(Graedel and Eisner, 1988), as a secondary product from
organic precursors (Rasmussen and Khalil, 1988; Arlander
et al., 1990) and also from motor vehicles (Kawamura et al.,
1985; Grosjean, 1989). Formic acid can be also produced
from the aqueous oxidation of formaldehyde in cloud and
rain water (Chameides and Davis, 1983) as well as from
the oxidation of formaldehyde by HO2 radicals in the cold
tropopause region (Hermans et al., 2005). It is mainly re-
moved from the troposphere through wet and dry deposition
but also through oxidation by the OH radical to a lesser ex-
tent. The resulting lifetime of HCOOH, estimated to be a
few days in the boundary layer, increases in the free tro-
posphere because of the scarcity of precipitation (Sanhueza
et al., 1996). HCOOH has been found to be a product of the
isoprene oxidation by ozone (Jacob and Wofsy, 1988; Mar-
tin et al., 1991) and by OH radicals, in particular through the
OH-oxidation of glycolaldehyde (Butkovskaya et al., 2006a)
and hydroxyacetone (Butkovskaya et al., 2006b), which are
two important isoprene oxidation products, but also through
the OH-oxidation of isoprene nitrates (Paulot et al., 2009).

In situ measurements of formic acid in the boundary layer
have been carried out using different techniques in various
parts of the world, from rural sites (Talbot et al., 1988;
Puxbaum et al., 1988; Talbot et al., 1990; Hartmann et al.,
1991; Helas et al., 1992) to urban areas (Grosjean, 1989;
Khwaja, 1995; Granby et al., 1997; Souza et al., 1999). The
observed HCOOH volume mixing ratio in the boundary layer
ranges from 0.01 to 10 ppbv. Its diurnal cycle shows larger
concentrations in the mid- to late afternoon (Martin et al.,
1991; Hartmann et al., 1991) indicating larger sources during
daytime (biogenic emission, photochemical reactions) and
dry deposition at nighttime.

HCOOH measurements in the upper troposphere, per-
formed during several aircraft campaigns (Reiner et al.,
1999; Jaegĺe et al., 2000; Singh et al., 2000), have re-
ported mixing ratios from about 30 to 215 pptv. HCOOH
has also been probed in different biomass burning plumes
(Yokelson et al., 1999; Goode et al., 2000; Herndon et al.,
2007) with concentrations of around ten ppbv;Worden et al.
(1997) reported HCOOH total columns of 8.6 and 11.2×

1016molec cm−2 above two fire events in the USA using op-
tical measurements in the infrared. Similar spectral measure-
ments, which used the HCOOHν6 absorption band in the
IR, were performed from a balloon (Goldman et al., 1984;
Remedios et al., 2007), with mixing ratios up to 600 pptv
at about 7 km height, or from the ground (Rinsland et al.,
2004). The latter study gives insight on the seasonal vari-
ation of HCOOH, with a mean mixing ratio in the free tro-
posphere from about 300 pptv in October–December to about
800 pptv in July–September, likely resulting from higher bio-
genic emissions during the growing season. Other ground-
based measurements above Jungfraujoch were very recently
analyzed over a 22 years period and show a similar seasonal
cycle with a maximum occurring during summer as well as
significant diurnal and day-to-day variability (Zander et al.,
2010).

The first satellite observations in the upper troposphere
were reported from the ACE-FTS instrument (Rinsland et al.,
2006, 2007; Coheur et al., 2007) and were correlated to
biomass burning events. Recent work performed with ACE-
FTS on quasi-global observations of HCOOH reported an av-
erage mixing ratio of about 0.3 ppbv in the free troposphere
with hot spots of up to 0.59 ppbv in tropical regions (Abad
et al., 2009). Very recent global distributions were also as-
sessed by the MIPAS sounder (Grutter et al., 2010) over a
6 years period. They report seasonal variations that may
be associated to biogenic emissions with higher mixing ra-
tios at 8 km during summer (about 100 pptv) than in winter
(about 45 pptv). High concentrations were also observed in
biomass burning plumes in the Southern Hemisphere. The
nadir-viewing IASI sounder has also recently demonstrated
the possibility to observe the HCOOH spectral signature in
fire plumes (Coheur et al., 2009). In this study, we pro-
vide the first distributions of formic acid total columns above
land, differentiated into four seasons for the year 2009. The
retrieval method is slightly different from the one used for
methanol because the conversion factor between brightness
temperature differences and total columns is derived from a
set of forward simulation. Details and error estimation are
provided in Sect.4.1.

We have used a new set of HCOOH spectroscopic line pa-
rameters ofVander Auwera et al.(2007), implemented in
the latest versions of HITRAN and GEISA databases. The
accuracy on the absolute line intensities is evaluated to be
about 7%. The updated data set reports HCOOH line inten-
sities larger by about a factor 2 compared to previous stud-
ies (Perrin and Vander Auwera, 2007). This implies that
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concentrations obtained from infrared retrievals before 2007
were likely too high by the same factor.

2 Instrument and method

2.1 Description of IASI

The IASI instrument, launched onboard the MetOp-A plat-
form in October 2006 in a polar sun-synchronous orbit, is
a nadir-looking Fourier transform spectrometer that records
the Earth’s outgoing radiation from 645 to 2760 cm−1 with-
out gaps at an apodized resolution of 0.5 cm−1. Its field
of view is a 2×2 matrix of circular pixels which have a
12 km footprint diameter at nadir. IASI provides two global
Earth coverages per day (about 1 280 000 spectra) thanks to
the wide scans across its track (2200 km swaths). It offers
also a very good signal-to-noise ratio, with a Noise Equiv-
alent Delta Temperature (NEDT) at 280 K of about 0.2 K in
the spectral region of interest (which extends from 975 to
1150 cm−1). Moreover, with the successive launch of two
other identical instruments, the IASI mission will provide
consistent measurements over a 15 years period. A technical
description of IASI and examples of applications for chem-
istry can be found in the review ofClerbaux et al.(2009). The
IASI calibrated radiance spectra are disseminated in near-
real time by the EumetCast system along with temperature,
humidity profiles and cloud information (coverage, temper-
ature and altitude). Only cloud free observations (when the
cloud coverage for the pixel is below 2%) are taken into ac-
count for this study.

The measurement of methanol and formic acid concen-
trations from IASI is quite challenging due to their weak
absorption and the interference of other molecules in the
same spectral range (see Fig.1). CH3OH is observable
using its C−O stretching absorption band located around
1033 cm−1. The spectral range also covers theν6 absorption
band of HCOOH located near 1105 cm−1 and theν3 band
of trans−HCOOH at 1777 cm−1 (Perrin et al., 2009), which
cannot be detected in the IASI spectra because of strong wa-
ter vapor interferences.

2.2 Retrieval approach

In order to take advantage of the very good spatial coverage
of IASI we have chosen a simple, fast and robust approach
based on brightness temperature differences (1Tb), similar
to the method already used for the retrieval of sulfur dioxide
(Clarisse et al., 2008) and ammonia (Clarisse et al., 2009). It
consists in two steps: (i) the determination of1Tb globally
and (ii) the conversion of1Tb to total column amounts us-
ing one (global) or two (continental and oceanic) conversion
factors.

The1Tb corresponds to the difference between the bright-
ness temperatures measured in one or several channels se-
lected in the absorption signature of the target molecule

Fig. 1. Top panel: IASI normalized radiance spectrum in the spec-
tral region between 950 and 1200 cm−1 containing methanol and
formic acid absorption bands. Bottom panels: Contribution to the
IASI spectrum of different atmospheric species plotted in transmit-
tance. The vertical lines indicate the target channels (in red) and the
baseline channels (in blue) which are used for the1Tb determina-
tion (nine channels are used for CH3OH, and three for HCOOH).
See Sect.2.2for details.

(Tb,target) and the brightness temperature of nearby channels
selected in a spectral region where the least absorptions are
found (Tb,0). This is expressed in the following equation as

1Tb = 〈Tb,0〉−〈Tb,target〉 (1)

This quantity gives a handy estimate for the strength of
absorption and hence of the concentration. However, the
physics of the radiative transfer is not accounted for and the
conversion of1Tb to total columns requires a full radia-
tive transfer treatment. For this purpose, we have retrieved
CH3OH total columns at various locations of the world with
an inversion model based on the Optimal Estimation Method
(OEM) (Rodgers, 2000) that includes a line-by-line radia-
tive transfer model. This is implemented in the Atmosphit
software developed at the Université Libre de Bruxelles (for
more information seeClarisse et al., 2008andCoheur et al.,
2005). The method is only applied in selected regions due to
computational limitations. The conversion factor derived by
matching the retrieved columns on the corresponding1Tb is
applied globally to derive the total column distributions.

For HCOOH, we used an alternative conversion method
only based on forward simulations (see Sect.4.1).

In the next two sections we describe the different retrieval
parameters (the chosen channels, spectral intervals and a pri-
ori information) and present the resulting global distributions
for CH3OH and HCOOH, respectively.
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3 Methanol retrieval and distributions

3.1 Retrieval settings

Methanol a priori profiles and covariance matrices were de-
rived from distributions calculated by the IMAGESv2 global
chemistry-transport model (Stavrakou et al., 2009). Monthly
averaged model profiles over the whole year 2007 were used
globally, on a 4◦ ×5◦ latitude-longitude grid to account for
the seasonal and spatial variability of the model. Two dif-
ferent vertical profiles were selected: an average continental
and an average oceanic profile. This choice is justified by
the existence of strong emission over continents resulting in
enhanced concentrations in the boundary layer. These two
profiles are illustrated on Fig. 2 together with their associ-
ated covariance matrix (where the diagonal elements repre-
sent the model variability for the profile, and the off-diagonal
elements represent the correlation between values at different
altitudes). The continental a priori profile has a surface mix-
ing ratio of about 2.5 ppbv, about four times larger than in
the oceanic profile. Above 4 km, the two profiles are similar
with only slightly higher concentrations for the continental
profile. The covariance matrices both show higher variabili-
ties in the lower (0 to 2 km) and upper (14 to 18 km) tropo-
sphere. Over continental surfaces, the variabilities are larger
by about 25%. In both cases, the correlation length is large.

As can be seen from Fig.1, the methanol spectral signa-
ture is fully overlapped by the much stronger ozone band
at 10 µm. A large spectral range is therefore needed in or-
der to properly account for this strong interference in the re-
trieval process. The spectral range extending from 981.25
to 1038 cm−1 was selected after several tests. CH3OH par-
tial columns are retrieved in 4 km thick layers from the
ground to 16 km. Partial columns of O3 in 6 layers up to
42 km and the total columns of H2O and NH3 are simul-
taneously adjusted. The regions selected for the retrievals
are described in Table1. These regions/periods were se-
lected because of their high1Tb values and no significant
seasonal differences have been noticed. An example of in-
version is presented on Fig.3 (top panel) for a case where
the CH3OH signature is unambiguous. The RMS of the
residue when CH3OH is not included in the retrieval is sig-
nificantly higher (3.1×10−6 W/(m2 sr m−1)) than when it is
taken into account (2.5×10−6 W/(m2 sr m−1)), this value be-
ing very close to the theoretical noise. This specific retrieval
leads to a methanol total column of 5.57×1016 molec cm−2.
Retrieved methanol mixing ratios in the lowermost atmo-
spheric layer (0 to 4 km) range from about 0.1 to 7.0 ppb for
the different selected regions. Comparisons between model
data optimized with the IASI methanol product and previous
CH3OH measurements (in situ and aircraft) were carried out
and are detailed in the latest work byStavrakou et al.(sub-
mitted to ACP). On the bottom panel of Fig.3, representative
total column averaging kernels differentiated for continen-
tal and oceanic retrievals are illustrated. They correspond to

Fig. 2. Top panel: Illustration of the two CH3OH a priori profiles
(continental and oceanic) derived from the IMAGESv2 CTM model
for the year 2007. Open circles represent the a priori on the 4 layers
retrieval grid. Bottom panels: Plot (expressed in %) of the associ-
ated covariance matrices (left: for land, right: for ocean).

Table 1. Selected regions and periods for the retrieval of methanol
using the Optimal Estimation Method.

Localization Region Date DOFS range

Congo 0−35◦ S 20 October 2008 0.29–1.02
10−50◦ E

Chad 0−25◦ N 5 April2009 0.77–1.05
0−30◦ E

Brazil 0−20◦ S 20 October 2008 0.45–1.02
35−60◦ W

India 5−40◦ S 2 May 2009 0.50–1.06
70−90◦ E

Atlantic 30◦ S – 25◦ N 11 August 2008 0.12–0.87
10−40◦ W

the mean averaging kernels for all retrievals performed in the
selected regions. In both cases, the sensitivity is maximum
in the mid to upper troposphere from about 5 to 11 km, but
retrievals over land show much higher sensitivity near the
ground, largely due to the higher thermal contrast (Clerbaux
et al., 2009). The resulting DOFS (Degrees Of Freedom for
Signal, given by the trace of the averaging kernel matrix) for
these retrievals are given in Table1. DOFS values range from
0.29 to 1.06 over land and are found lower above the ocean
(between 0.12 and 0.87) where the dependence on the a priori
is therefore larger.
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Fig. 3. Top panel: Example of a methanol retrieval from an IASI
spectrum recorded over Namibia (20.16◦ S–21.50◦ E) on 20 Octo-
ber 2008. The observed (blue curve) spectrum is shown together
with the fit residue (in cyan) and the dashed horizontal lines de-
limit this residue by its RMS value. The dark green curve is the fit
residue when CH3OH is not taken into account in the retrieval, the
red curve represents the calculated CH3OH contribution to the spec-
trum and the dashed vertical line indicates the detectable CH3OH
absorption band. Bottom panel: Mean total column averaging ker-
nels presented for retrievals performed over land (green curve) and
over ocean (blue curve).

For the global1Tb calculation, the three target channels,
all chosen in the Q-branch of CH3OH (at 1033.25, 1033.5
and 1033.75 cm−1, see Fig.1), are also contaminated by O3.
Therefore, the baseline channels were also chosen inside the
O3 absorption band (at 1019, 1019.5, 1036.25, 1038, 1047
and 1048.5 cm−1, see Fig.1) in a way that maximizes the
sensitivity of 1Tb to the CH3OH amount. To deal with
the remaining contribution of O3, the relationship between
1Tb and O3 concentrations has been derived using a set of
forward simulations. For different columns of O3 (ranging
from 185 to 407 DU), the spectrum and1Tb were calculated
with a fixed amount of CH3OH (4×1016 molec cm−2). The
results, presented on Fig.4 assuming a typical midlatitude
summer atmosphere (1976 US standard model), show an ap-
proximately linear correlation between the total column of
ozone and the calculated1Tb. Similar results were obtained
for other typical atmospheres and an average linear depen-
dence was computed (with a slope of 9.02×10−4 K DU−1).

Fig. 4. Illustration of the influence of water vapor and ozone con-
centrations on the methanol1Tb. Simulations were performed for
the midlatitude summer model with varying concentrations of H2O
(black squares) and O3 (red squares) while the CH3OH amount was
fixed. In both cases, a linear dependence is found.

The O3 correction is assumed here to be altitude independent
although our analysis indicates a slightly different behavior
for ozone variations in the first kilometers near the surface.
For very low O3 concentrations, it is possible that the lin-
ear assumption introduces errors in the retrieved methanol
columns. However, as concentrations below 200 DU for
ozone only occur during the antarctic ozone hole period, this
will not affect the distribution discussed here.

The same type of simulations were performed to derive
the influence of water vapor on the CH3OH 1Tb (gray curve
in Fig. 4). From these relationships a corrected1Tb for
methanol which minimizes the dependence on O3 and H2O
is calculated as follows

1T ′

b = 1Tb+9.02×10−4 CO3 +8.13×10−25CH2O (2)

whereCO3 andCH2O are the total columns of O3 in Dob-
son unit and of H2O expressed in molec cm−2, respectively.
This correction is applied to all observations using the total
columns of O3 and H2O retrieved from IASI with a near-real
time algorithm based on the OEM.

The next step of the method, i.e. the determination of a
suitable conversion factor between1T ′

b and CH3OH total
columns, is performed based on the retrievals in the selected
regions and dates described in Table1. Only retrievals re-
sults with a DOFS higher than 0.75 and a RMS of the resid-
ual lower than 4× 10−6 W/(m2 sr m−1) are taken into ac-
count. This translates to a total of 5147 and 2849 observa-
tions above land and oceans, respectively. The correspond-
ing scatter plots are shown in Fig.5. In both cases, a linear
fit shows good correlation coefficient (about 0.75). The slope
for the retrievals over land is found to be much larger than
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Fig. 5. Correlation between the retrieved total columns of methanol
and the corresponding1Tb for various regions (corrected for O3
and H2O dependency, see text for details). The conversion factors
are given by the slopes of the linear fit (gray curve) separated for re-
trievals above land (Top panel) and above ocean (Bottom panel).
More details about the selected regions for the retrievals can be
found in Table1.

over oceans. Two different conversion factors are therefore
used and applied to the1T ′

b calculated globally:

C land
CH3OH = 4.482× 1T ′

b (3)

Cocean
CH3OH = 2.987× 1T ′

b (4)

where the CH3OH total columns (CCH3OH) are expressed in
1016molec cm−2. Due to its noise, the minimum methanol
total column which can be detected by IASI has been eval-
uated from simulations using the 1976 US standard atmo-
sphere to be about 1.60×1016molec cm−2. It is important
to note that for the derivation of the global distributions,
only cloud free measurements recorded during daytime were
taken into account. This is justified because daytime mea-
surements are generally characterized by a positive thermal
contrast and are therefore more sensitive to the lower tropo-
sphere.

3.2 Global distributions

The method proposed above allows to derive the first global
distributions of methanol from IASI. In order to shed light
onto seasonal variations, the four seasons have been differ-
entiated as follows: DJF (December 2008, January 2009 and
February 2009), MAM (March, April and May), JJA (June,
July and August) and SON (September, October and Novem-
ber). The resulting distributions averaged on a 0.5◦

×0.5◦

grid are shown in Fig.6. Note that measurements above sand
surfaces, which causes erroneous high CH3OH concentra-
tions due to spectrally resolved surface emissivity (Wilber
et al., 1999) have also been discarded.

Figure6 shows large seasonal variations in the methanol
columns. Higher concentrations are found in the north-
ern hemisphere during spring and summer (up to 4×

1016molec cm−2 in Central and Northern Asia) when veg-
etation is growing. In the Southern Hemisphere, the high-
est concentrations are found during the dry season (SON)
and may be related to biomass burning. CH3OH is also ob-
served over oceans (with values around 2×1016molec cm−2)
mostly between Africa and South America but also in the
whole Northern hemisphere in spring and summertime. The
presence of CH3OH in remote oceanic regions is probably
largely due to transport of continental emissions although
oceanic emissions (Millet et al., 2008a) and the ubiquitous
methane oxidation might also contribute. Methanol total
columns range from about 0.01×1016molec cm−2 above sea
surfaces to 5.40×1016molec cm−2 over large emission re-
gions.

During the northern hemispheric winter (DJF), methanol
hot spots of low intensity are found in the Southern Hemi-
sphere (South America, South Africa and Western Australia)
above vegetated areas where CH3OH emissions may be re-
lated to plant growth. When comparing the distribution
with AATSR (Arino et al., 2005) fire count maps, we find a
high degree of coincidence in Africa between 5 and 15◦ N,
suggesting a possible biomass burning contribution. Dur-
ing springtime (MAM), this specific region is subject to en-
hanced CH3OH columns which is possibly due to an in-
crease in the fire numbers and intensities. Strong enhance-
ments are also observed over India and to a lesser extent over
Burma, Manchuria and Mexico, which can be at least partly
related to biomass burning. In contrast, biomass burning
is unlikely to be a dominant source in the Northern Hemi-
sphere except in some regions (Kazakhstan, East Russia,
Alaska) during JJA. It can be seen that CH3OH concentra-
tions are progressively increasing from winter (DJF) to sum-
mertime (JJA). This can be explained by the seasonal cycle
of the vegetation source which presents a maximum in late
spring (Schade and Goldstein, 2006; Rinsland et al., 2009).
During fall (SON), CH3OH concentrations decrease again
in the Northern Hemisphere and increase in the Southern
Hemisphere. Again, biomass burning is likely responsible
for the strong enhancements in South America, Congo and
Northern Australia.

Although biomass burning is assumed to be a weak emis-
sion source of methanol (accounting for less than 5% of to-
tal emissions according to current inventoriesJacob et al.,
2005), the main hot spots in the global distributions could
possibly be related to fires. This could be caused by the fact
that methanol emitted by fire events is usually transported
higher in the troposphere where the IASI sensitivity is larger
or by the fact that a better sensitivity near the surface is in-
duced because of higher surface temperatures for burning ar-
eas. This is consistent with the fact that biomass burning has
been found to be a significant source of methanol in the up-
per troposphere (Dufour et al., 2007). The assimilation of

www.atmos-chem-phys.net/11/857/2011/ Atmos. Chem. Phys., 11, 857–872, 2011



864 A. Razavi et al.: CH3OH and HCOOH observations with IASI

Fig. 6. Seasonal distributions of methanol total columns for the year 2009. The white areas correspond to a filter for sandy scenes where
emissivity is uncertain.

IASI data into models should help determining the respec-
tive contributions of biogenic and fire emissions to the global
methanol budget.

3.3 Error assessment

One of the disadvantages of the method described above is
that it does not provide an estimate of the errors associated
with the retrieved total columns. Because we are deriving the
CH3OH columns from a weak signal, the associated error is
expected to be quite large. An estimate of the error on the
CH3OH columns derived from IASI can be based on forward
simulations. For this purpose, we used a large set of different
atmospheres compiled in an ECMWF database (Chevallier,
2001). Different input profiles are used for CH3OH, corre-
sponding to the different continental profiles taken from the
IMAGESv2 model. The total columns used as input for the
simulations are then compared to those retrieved from the
simulated spectra using the same method as described above.
The difference between the two columns gives a fair estimate
of the absolute column errors. We do not expect these errors
to be systematic on a global yearly scale but they cannot be
excluded in particular circumstances such as in the presence
of extreme values of ozone or water vapor.

It turns out that this absolute difference increases when
the amount of CH3OH in the boundary layer (between the
surface and 3 km height) increases. It follows that the high
concentrations of methanol in the boundary layer (close to

the emission sources) will not be well reproduced by the
1Tb method. This is consistent with the averaging kernel
shape and the well known limited sensitivity of the infrared
measurements toward low altitudes. Figure7 shows the his-
togram of the relative difference between the total columns
used as input in the forward simulations and the calculated
ones. Negative differences imply that the retrieved total col-
umn from1Tb is lower than the a priori value. Moreover, dif-
ferences lower than−100% are found but correspond only to
methanol total columns which are below the detection limit
of IASI (i.e. 1.60× 1016molec cm−2). The distribution is
similar to a normal distribution with a mean very close to
zero (0.6%). The standard deviation (48.9%) provides our
best estimate of the relative error on the retrieved methanol
total column. This value is, however, clearly a lower bound
for regions located close to emission sources and with low
thermal contrast. In these regions, based on our analysis, er-
rors as high as 100% are likely.

4 Formic acid retrieval and distributions

4.1 Retrieval settings and errors

In the case of formic acid, the target channel for brightness
temperature has been chosen in the Q-branch at 1105.0 cm−1

which is the strongest absorption feature detectable in the
IASI spectrum. The reference channels were chosen on both
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Fig. 7. Histogram of the relative differences between the simulated
CH3OH total columns and the total columns derived from the1Tb
calculation.

sides at 1103.0 and 1109.0 cm−1. The1Tb values computed
globally over one year range from about 0 to 5 K. As there
exist large uncertainties on the vertical profile of formic acid,
we have chosen here to rely on a composite vertical profile
for the a priori. It was built from aircraft measurements for
the low and free troposphere and from ACE-FTS for the up-
per troposphere. The a priori profile is an average of profiles
collected over the USA (25–55◦ N, 230–290◦ E) including
(i) aircraft data from the INTEX-B C-130 campaign in April
and May 2006 (Kleb et al., 2011) between 0–5 km, (ii) the
arithmetic mean between INTEX-B data and ACE-FTS data
(Abad et al., 2009) measured from March to May for alti-
tudes between 6 and 8 km, (iii) and an averaged ACE-FTS
profile between 9 and 11 km. The resulting profile, illustrated
in Fig. 8, has a surface mixing ratio of about 750 pptv, which
smoothly decreases as the altitude increases, down to less
than 100 pptv above 7 km. Concentration above 11 km have
been linearly extrapolated up to 20 km.

As in the case of methanol, conversion factors between
the1Tb and the HCOOH total columns were tentatively de-
rived based on OEM retrievals in selected regions around
the world. Because of the weak signal and the presence
of water vapor interferences, the retrievals are unstable and
lead to large errors. Forward simulations using the ECMWF
database and varying the HCOOH concentrations (by scal-
ing the profile, resulting in a variability of about 350%) were
conducted to compute the relative difference between the true
columns (input of the forward model) and those retrieved
from the1Tb. Figure9 illustrates in gray the histogram of
these relative differences. The mode of the differences is lo-
cated at about 60.0% suggesting a strong bias between the
calculated and simulated total columns. Therefore, an alter-
native method has been used to derive the conversion factor
between the1Tb and the total columns. Relying only on the

Fig. 8. HCOOH a priori profile derived from the combined aircraft
and ACE measurements. See text for details.

Fig. 9. Histograms of the relative differences between the simu-
lated total columns of HCOOH and the HCOOH total columns ob-
tained from brightness temperature differences. The gray histogram
is derived from the conversion which uses OEM retrievals and the
black one corresponds to the conversion obtained with simulated
data. The latter, which is much less biased is used to obtain the
global distributions (see Sect.4.2).

forward calculations, it minimizes also the dependence upon
the water vapor content (CH2O expressed in molec cm−2) and
accounts for the varying sensitivity of the measurement to the
local thermal contrast (τ ). The following equation is used

CHCOOH=
1Tb−b1τ −b2τ CH2O−c1CH2O−c2

a1τ +a2τ CH2O
(5)

with the parameters:

a1 = 0.024, a2 = 4×10−26,

b1 = 0.005, b2 = 1×10−26,

c1 = 0.131×10−23, c2 = 0.139,
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Fig. 10. Seasonal distributions of formic acid total columns for the year 2009. Only cloud free observations recorded during daytime above
continents along with a thermal contrast higher than 5 K were considered.

and where HCOOH total columns (CHCOOH) are expressed in
1016 molec cm−2. The thermal contrastτ corresponds to the
difference between the surface temperature and the air tem-
perature at the first retrieved altitude level, located at about
100 m (both included in the IASI level 2 data). This mapping
of 1Tb onto total columns of HCOOH provides much bet-
ter results. However a significant dependency on the thermal
contrast remains, with lower errors found for higher thermal
contrast values. We have chosen to consider only the cases
for which the thermal contrast is higher than 5 K. This con-
servative criterion excludes all retrievals above oceans. The
resulting histogram of the relative differences between the
simulated and calculated HCOOH total columns is shown
in black on Fig.9. It is similar to a normal distribution,
with its mean being equal to−0.8%. Our estimation of
the error on the formic acid total column is given by the
standard deviation of the differences, which is about 60%.
This error is only slightly higher than the error found for the
CH3OH columns, but only applies here to favorable situa-
tions with large thermal contrast. Moreover, in the same way
as methanol, the negative differences lower than−100% cor-
respond only to HCOOH total columns which are below the
detection limit of IASI (and has been evaluated to be about
0.60×1016molec cm−2).

This retrieval approach does not provide information about
the vertical sensitivity of the formic acid total column. How-
ever, the limited set of full profile retrievals performed give a
maximum sensitivity between 4 and 14 km.

4.2 Global distributions

The global distributions of formic acid for the four seasons
are illustrated in Fig.10, on a 0.5◦

×0.5◦ averaged grid. Only
cloud free observations recorded during daytime and with
a thermal contrast higher or equal to 5 K were taken into
account. The latter constraint removes unfortunately many
observations at high latitudes (no observations above about
45◦ N in winter and about 65◦ N during summer). Grid points
which include less than ten HCOOH measurements were also
filtered out. As for CH3OH, clear seasonal variations are
observed. The retrieved HCOOH total columns range from
background values of less than 0.5×1016molec cm−2 above
Europe and North America to 5×1016molec cm−2 above fire
events, mainly during summer 2009 in Africa. These high
formic acid total columns in fire plumes are in good agree-
ment with the values reported byCoheur et al.(2009) and
Worden et al.(1997) if we account for the factor 2 resulting
from the use of the improved line parameters (Vander Auw-
era et al., 2007).

The 2009 northern hemispheric winter season (DJF)
shows the lowest number of observations. Comparing with
AATSR fire counts during that period, we found that en-
hancements of HCOOH in the western-central region of
Africa and to a lesser extent in South America might be partly
due to biomass burning. During spring (MAM), we ob-
serve a decrease in the HCOOH total columns above Africa
and South America together with a fire count decrease.
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High concentrations are also found in Asia (India, Burma
and Manchuria) which are well correlated with CH3OH
hot spots. The peak of the biomass burning season in
South America and Southern Africa happens usually around
August–September whereas in Australia most of the burn-
ing occurs around October–November (Gloudemans et al.,
2006). Together with the minimal washout of HCOOH oc-
curring during the dry season, it probably largely explains
the high HCOOH total columns observed during JJA above
Congo and Brazil as well as in Northern Australia during
the SON period. The overall increase of formic acid in the
Northern Hemisphere during JJA is likely caused by the sea-
sonality of its biogenic emissions. However, according to
the AATSR fire count distributions, some regions with large
HCOOH columns may be associated with boreal fires such as
in Eastern Russia and in Alaska. Finally, the very widespread
hot spots found during SON above Amazonia and Central
Africa do not seem to be only related to fires and very
likely points also to biogenic emissions of either HCOOH
or HCOOH precursors. Throughout the year (MAM through
SON, no available data for DJF), large HCOOH columns
are observed in Eastern China which may partly be due to
anthropogenic activities. Several common patterns are also
found in the distributions of HCOOH and CH3OH columns,
probably due to their common emission sources (such as
biomass burning and plant growth). Also note that the sea-
sonality observed here is in good agreement with that re-
ported from ACE-FTS (Abad et al., 2009) and from MIPAS
(Grutter et al., 2010).

5 Seasonal variations in relation to biomass burning

In this section we compare the 2009 time series of methanol,
formic acid and carbon monoxide for three selected regions
subject to biomass burning. The vertical sensitivity profiles
of IASI for these three species are all maximum in the free
troposphere, i.e. between 4 to 14 km, 6 to 10 km and between
3 to 12 km for HCOOH, CH3OH and CO total columns, re-
spectively. The comparisons are therefore most likely to re-
flect similarities/differences in the free tropospheric columns
but fine structures in the respective profiles could be missed.
Monthly mean total columns of methanol and formic acid
are shown in Fig.11 together with the total columns of car-
bon monoxide and the AATSR fire counts for three 10◦

×10◦

regions located in Brazil (15− 5◦ S, 60− 50◦ W), Congo
(15−5◦ S, 20−30◦ E) and South-East Asia (20−30◦ N, 95−

105◦ E). For each regions, the time series of CO, CH3OH
and HCOOH are similar. An increase in the total columns
is observed for the three species just after the month with
the maximum fire counts. This delay may be induced by the
fact that the probed air masses are located in the free tro-
posphere and are therefore subject to some transport which
could result in the spreading of the species or the spatial dis-
placement of the maxima. The highest number of fires (ex-

Fig. 11. Time series of methanol (green curve), formic acid (blue
curve) and carbon monoxide (black curve) monthly mean total
columns for three different areas associated with biomass burn-
ing (Brazil, Congo and SE Asia). Carbon monoxide total columns
where divided by 100 for comparison. The left scale and gray
curves correspond to the sum of the AATSR fire counts for each
months.

ceeding 700) is found above Congo where methanol, formic
acid and carbon monoxide reach high values, with increases
of about 1.6×1016 2.5×1016 and 1.4×1018molec cm−2 in
comparison with their mean total column between January
and June, respectively. In each cases, the CH3OH maximum
lasts longer than for CO or HCOOH. This cannot be ex-
plained by its lifetime which is similar to formic acid in the
free troposphere (about one week) but suggests an additional
source or transport to this region. Overall higher concentra-
tions of CH3OH found above Brazil and Congo may also be
due to the larger biogenic source in these regions.

In addition to looking into correlations regionally, prelim-
inary global analyses were carried out. Linear correlations
(R2

= 0.7) between CH3OH and HCOOH were found during
the DJF and SON periods highlighting specific emissions or
fate of these two species.

6 Conclusions and perspectives

In this study, we have retrieved methanol and formic acid
from the data provided by the IASI sounder. Using a radi-
ance indexing method and the calculation of brightness tem-
perature differences, first global distributions are computed.
They are provided as total columns, after careful conversion
of the brightness temperature differences. The conversion
has been achieved based on a set of retrievals in selected re-
gions for methanol and on forward simulations for formic
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acid. Taking full advantage of the IASI spatial and temporal
coverage, unprecedented information on the location and ori-
gin of sources have been acquired.

The simple retrieval method used here does not allow the
determination of individual error for each observations. We
have estimated, using a large set of representative forward
calculation, global errors of about typically 50% and 60% for
the methanol and formic acid total columns, respectively. Al-
though these errors are significant, this robust method takes
advantage of the very large number of IASI measurements
at low computational cost. In this way, we provide global
observations for these two volatile organic compounds.

The global distributions shown in this study highlight
strong seasonal variations for methanol and formic acid
with maximum total column values evaluated at 5.4 and
5.0× 1016molec cm−2, respectively. The strong enhance-
ments seen in the global maps might be largely attributed
to biomass burning (mostly in tropical regions). The main
seasonal patterns, especially at mid-latitudes where we find
higher columns in spring and summer, might be explained by
variations in biogenic emissions and increased plant growth.
Anthropogenic emissions could not been clearly identified in
these distributions.

Time series of methanol, formic acid, carbon monoxide
and AATSR fire counts were also compared and found to
be fairly well correlated for three different regions (Congo,
Brazil and South-East Asia) where biomass burning is their
likely common source.

It is anticipated that the assimilation of these data in a
global chemistry model will help to improve the determi-
nation of the emission fluxes for these two species. Mean
averaging kernels for methanol (differentiated for land and
ocean) are provided in order to account for the vertical sen-
sitivity of the measurements.
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