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A SINGULAR LIMIT FOR COMPRESSIBLE ROTATING FLUIDS

We consider a singular limit problem for the Navier-Stokes system of a rotating compressible fluid, where the Rossby and Mach numbers tend simultaneously to zero. The limit problem is identified as the 2-D Navier-Stokes system in the "horizontal" variables containing an extra term that accounts for compressibility in the original system.

Introduction

Consider a scaled Navier-Stokes system in the form (1.1)

∂ t ̺ + div x (̺u) = 0, (1.2) ∂ t (̺u) + div x (̺u ⊗ u) + 1 ε (g × ̺u) + 1 ε 2 ∇ x p(̺) = div x S(∇ x u
), with the viscous stress tensor (1.3) S(∇ x u) = µ ∇ x u + ∇ t x u -2 3 div x uI , µ > 0, and g = [0, 0, 1]. Here ̺ = ̺(t, x) ≥ 0 denotes the density and u(t, x) = [u 1 , u 2 , u 3 ](t, x) denotes the velocity of the fluid. Problem (1.1 -1.2) arises in meteorological applications, modeling rotating compressible fluids with the rotation axis determined by g and the Rossby and Mach number proportional to a small parameter ε.

We consider a very simple geometry of the underlying physical space, namely an infinite slab Ω bounded above and below by two parallel planes, (1.4) Ω = R 2 × (0, 1).
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The velocity u satisfies the complete slip boundary conditions, (1.5) u

• n = u 3 | ∂Ω = 0, [Sn] × n| ∂Ω = [S 2,3 , -S 1,3 , 0]| ∂Ω = 0.
For the initial data (1.6) ̺(0, •) = ̺ 0,ε , u(0, •) = u 0,ε , our goal is to study the asymptotic behavior of the corresponding solutions ̺ ε , u ε for ε → 0. We focus on the interplay between the Coriolis force, here proportional to a singular parameter 1/ε, and the acoustic waves created in the low Mach number regime. In particular, we neglect:

• stratification due to the presence of gravitation, here assumed in equilibrium with the centrifugal force; accordingly the action of the centrifugal force is also neglected; • the effect of a boundary layer (Ekman layer), here eliminated by the choice of the complete slip boundary conditions. We consider ill-prepared initial data, specifically,

(1.7)            ̺ 0,ε = ̺ + εr 0,ε , with {r 0,ε } ε>0 bounded in L 2 ∩ L ∞ (Ω), for some positive constant ̺, {u 0,ε } ε>0 bounded in L 2 ∩ L ∞ (Ω; R 3 ).           
Because of the prominent role of the "vertical" direction g in the problem, we introduce the "horizontal" component v h = [v 1 , v 2 , 0] of a vector field v, together with the corresponding differential operators ∇ h , div h , and, notably, curl h , which is represented by the scalar

field curl h [v] = ∂ x 1 v 2 -∂ x 2 v 1 . Let ̺ ε , u ε be a solution of problem (1.1-1.6). Introducing a new quan- tity r ε = ̺ ε -̺ ε which satisfies ∂ t r ε + 1 ε div x (̺u) + div x (r ε u) = 0,
we easily check that if

r ε → r, u ε → U in some sense,
then, at least formally, the limits satisfy a diagnostic equation

(1.8) g × U + p ′ (̺) ̺ ∇ x r = 0, which in turn implies that (1.9) r = r(x 1 , x 2 ), U = [U h , 0], U h = U h (x 1 , x 2 ).
Moreover, as we will see below, div x U = div h U h = 0, and denoting ∇ ⊥ h r the vector (∂ x 2 r, -∂ x 1 r),

(1.10) ∂ t ∆ h r - 1 p ′ (̺) r + ∇ ⊥ h r • ∇ h (∆ h r) = µ ̺ ∆ 2 h r.
Thus r may be interpreted as a stream function associated to the vector field U h , therefore (1.10) can be viewed as a 2D Navier-Stokes system describing the motion of an incompressible fluid in the horizontal plane R 2 , supplemented with an extra term (1/p ′ (̺))∂ t r.

The main goal of the present paper is to provide a rigorous justification of the target system (1.10) in the framework of weak solutions to the primitive equations (1.1), (1.2). In Section 2, we introduce the weak solutions to both systems, recall their basic properties, and state our main result. In Section 3, we derive the necessary uniform bounds on the family of solutions {̺ ε , u ε } ε>0 , and pass formally to the limit when ε → 0. In Section 4, the associated wave equation describing propagation of the acoustic waves in the low Mach number regime is introduced. Using the celebrated RAGE theorem, we show that the acoustic energy tends to zero, at least locally in space. The proof of the main result is completed in Section 5.

Preliminaries

To begin, we point out that system (1.1 -1.3), endowed with the boundary conditions (1.5) can be recast as a purely periodic problem with respect to the vertical coordinate x 3 provided ̺, u 1 , u 2 were extended as even functions in the x 3 -variable defined on

Ω = R 2 × T 1 , T 1 ≡ [-1, 1]| {-1,1} ,
while u 3 is extended to be odd in x 3 on the same set. A similar convention is adopted for the initial data.

2.1. Weak solutions. We shall say that functions ̺, u represent a weak solution to problem (1.1 -1.6) in (0, T ) × Ω if:

• ̺ ≥ 0, ̺ ∈ L ∞ (0, T ; L γ (Ω)) for a certain γ > 3/2, u ∈ L 2 (0, T ; W 1,2 (Ω; R 3 )); • equation of continuity (1.1) is satisfied in the sense of renormal- ized solutions, namely (2.1) T 0 Ω (̺+ b(̺))∂ t ϕ + (̺+ b(̺))u• ∇ x ϕ + (b(̺) -b ′ (̺)̺)div x uϕ dx dt = - Ω ̺ 0,ε + b(̺ 0,ε ) ϕ(0, •) dx for any b ∈ C ∞ [0, ∞), b ′ ∈ C ∞ c [0, ∞), and any test function ϕ ∈ C ∞ c ([0, T ) × Ω); • p = p(̺) ∈ L 1 ((0, T )×Ω), momentum equation (1.2) is replaced by a family of integral identities (2.2) T 0 Ω ̺u • ∂ t ϕ + ̺(u ⊗ u) : ∇ x ϕ + 1 ε (g × ̺u) • ϕ + 1 ε 2 p(̺)div x ϕ dx dt = T 0 Ω S(∇ x u) : ∇ x ϕ dx dt - Ω ̺ 0,ε u 0,ε • ϕ(0, •) dx for any ϕ ∈ C ∞ c ([0, T ) × Ω; R 3 ); • the energy inequality (2.3) Ω 1 2 ̺|u| 2 + 1 ε 2 E(̺, ̺) (τ, •) dx + τ 0 Ω S(∇ x u) : ∇ x u dx dt ≤ Ω 1 2 ̺ 0,ε |u 0,ε | 2 + 1 ε 2 E(̺ 0,ε , ̺) dx
holds for a.a. τ ∈ (0, T ), where

E(̺, ̺) = H(̺) -H ′ (̺)(̺ -̺) -H(̺), with 
H(̺) = ̺ ̺ 1 p(z) z 2 dz.
Note that, by virtue of hypothesis (1.7), the quantity on the righthand side of (2.3) is bounded uniformly for ε → 0.

Existence of global-in-time weak solutions to problem (1.1 -1.6) can be established by the method developed by P.-L. Lions [START_REF] Lions | Mathematical topics in fluid dynamics[END_REF], with the necessary modifications introduced in [START_REF] Feireisl | On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids[END_REF] in order to accommodate a larger class of physically relevant pressure-density state equations, specifically, (2.4)

p ∈ C 1 [0, ∞), p(0) = 0, p ′ (̺) > 0 for ̺ > 0, lim ̺→∞ p ′ (̺) ̺ γ-1 = p ∞ > 0, for a certain γ > 3/2.

Main result.

The main result of the present paper can be stated as follows.

Theorem 2.1. Assume that the pressure p satisfies (2.4).

Let {̺ ε , u ε } ε>0 be a family of weak solutions to problem (1.1 -1.6) in (0, T ) × Ω, where Ω is specified through (1.4), with the initial data satisfying (1.7), where

r 0,ε → r 0 weakly in L 2 (Ω), u 0,ε → U 0 weakly in L 2 (Ω; R 3 ).
Then after taking a subsequence, the following results hold

r ε ≡ ̺ ε -̺ ε → r weakly-(*) in L ∞ (0, T ; L 2 (Ω) + L γ (Ω)), u ε → U weakly in L 2 (0, T ; W 1,2 (Ω; R 3 )), and u ε → U strongly in L 2 loc ((0, T ) × Ω; R 3
), where r and U satisfy (1.8), div x U = 0, and, moreover, the stream function r solves equation (1.10) in the sense of distributions, supplemented with the initial datum

(2.5) r(0, •) = r, where r ∈ W 1,2 (R 2 ) is the unique solution of -∆ h r + 1 p ′ (̺) r = ̺ 1 0 curl h U 0,h dx 3 + 1 0 r 0 dx 3 .
If, in addition, curl h U 0,h ∈ L 2 (Ω), then the solution r of (1.10) is uniquely determined by (2.5) and the convergence holds for the whole sequence of solutions.

The remaining part of the paper is devoted to the proof of Theorem 2.1. The crucial point of the proof is, of course, the strong (a.a. pointwise) convergence of the velocity field that enables us to carry out the limit in the convective term. Here, the desired pointwise convergence will follow from the celebrated RAGE theorem, together with the fact that the wave propagator in the associated acoustic equation commutes with the Fourier transform in both the horizontal variables (x 1 , x 2 ) and the vertical variable x 3 .

Related results.

This work is a contribution to a general research direction consisting in studying singular limits in PDEs arising in fluid mechanics. Without giving an extensive bibliography, one should refer for the first works in this line to Klainerman and Majda [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters, and the incompressible limit of compressible fluids[END_REF] and Ukai [START_REF] Ukai | The incompressible limit and the initial layer of the compressible Euler equation[END_REF] for the incompressible limit (actually [START_REF] Ukai | The incompressible limit and the initial layer of the compressible Euler equation[END_REF] is probably the first work in which dispersive estimates were established in order to prove strong convergence in the whole space), followed by Desjardins et al. [START_REF] Desjardins | Low Mach number limit of compressible flows in the whole space[END_REF] and [START_REF] Desjardins | Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions[END_REF]. In the context of rotating fluids one should mention the important work of Babin, Mahalov and Nicolaenko [START_REF] Babin | Global regularity of 3D rotating Navier-Stokes equations for resonant domains[END_REF], as well as the book [START_REF] Chemin | Basics of Mathematical Geophysics[END_REF] and references therein; one also refers to [START_REF] Gallagher | On the influence of the Earth's rotation on geophysical flows[END_REF] for a survey. Few studies combine both rotation and compressible effects. We refer to Bresch, Desjardins and Gérard-Varet [START_REF] Bresch | Rotating fluids in a cylinder[END_REF] for an analysis in a cylinder, where the well prepared case is studied precisely; the ill prepared case is also addressed but only a conditional result is proved.

Uniform bounds

We start reviewing rather standard uniform bounds that follow directly from the energy inequality (2.3). To this end, it is convenient to introduce a decomposition

h = [h] ess + [h] res , where [h] ess = ψ(̺ ε )h, ψ ∈ C ∞ c (0, ∞), 0 ≤ ψ ≤ 1, ψ ≡ 1 in
a neighborhood of ̺ for any function h defined on (0, T ) × Ω. It is understood that the essential part [h] ess is the crucial quantity that determines the asymptotic behavior of the system while the residual component [h] res "disappears" in the limit ε → 0.

As already pointed out, our choice of the initial data (1.7) guarantees that the right-hand side of energy inequality (2.3) remains bounded for ε → 0. After a straightforward manipulation, we deduce the following estimates:

(3.1) { √ ̺ ε u ε } ε>0 bounded in L ∞ (0, T ; L 2 (Ω; R 3 )), (3.2) {[r ε ] ess } ε>0 bounded in L ∞ (0, T ; L 2 (Ω)), (3.3) ess sup t∈(0,T ) [̺ ε ] res γ L γ (Ω) ≤ ε 2 c, (3.4) ess sup t∈(0,T ) [1] res L 1 (Ω) ≤ ε 2 , and (3.5) 
∇ x u ε + ∇ t x u ε - 2 3 div x u ε I ε>0 bounded in L 2 ((0, T ) × Ω; R 3×3 ).
In addition, it is easy to observe that (3.2), (3.3) yield

(3.6) ̺ ε → ̺ in L ∞ (0, T ; L γ + L 2 (Ω)),
which, together with (3.1), (3.6) and the standard Korn inequality, gives rise to

(3.7) {u ε } ε>0 bounded in L 2 (0, T ; W 1,2 (Ω; R 3 )).
In accordance with (3.2), (3.3), we may assume that

(3.8) [r ε ] ess → r weakly-(*) in L ∞ (0, T ; L 2 (Ω)),
and, taking (3.4) into account, (3.9) [r ε ] res → 0 in L ∞ (0, T ; L q (Ω)) for any 1 ≤ q < min{γ, 2}.

Moreover, by virtue of (3.7),

(3.10)

u ε → U weakly in L 2 (0, T ; W 1,2 (Ω; R 3 )),
passing to suitable subsequences as the case may be.

Letting ε → 0 in the weak formulation of the continuity equation (2.1), with b ≡ 0, we obtain (3.11) div x U = 0 a.a. in (0, T ) × Ω.

Finally, multiplying momentum balance (2.2) by ε, we recover (1.8)

(3.12) ̺ -U 2 U 1 = p ′ (̺)∇ h r, ∂ 3 r = 0,
in particular, r = r(x 1 , x 2 ) is independent of the vertical variable, and

(3.13) U h = U h (x 1 , x 2 ), div h U h = 0,
which, together with (3.11), implies U 3 is independent of x 3 . However, as U satisfies the complete-slip boundary conditions (1.5) on ∂Ω, we may infer that (3.14) U 3 ≡ 0.

Propagation of acoustic waves

Assume from now on, to simplify notation, that p ′ (̺) = 1. System (2.1), (2.2) can be written in the form (4.1)

ε∂ t r ε + div x V ε = 0, (4.2) ε∂ t V ε + (g × V ε + ∇ x r ε ) = εf ε ,
where we have set

r ε = ̺ ε -̺ ε , V ε = ̺ ε u ε , and 
f ε = div x S(∇ x u ε )-div x (̺ ε u ε ⊗u ε )- 1 ε 2 ∇ x p(̺ ε )-p ′ (̺)(̺ ε -̺)-p(̺)
. More precisely, system (4.1), (4.2) should be understood in the weak sense:

(4.3) T 0 Ω εr ε ∂ t ϕ + V ε • ∇ x ϕ dx dt = -ε Ω r 0,ε ϕ(0, •) dx for any ϕ ∈ C ∞ c ([0, T ) × Ω), (4.4) T 0 Ω εV ε •∂ t ϕ-(g ×V ε )•ϕ+r ε div x ϕ dx dt = -ε T 0 < f ε , ϕ > dt -ε Ω ̺ 0,ε u 0,ε • ϕ(0, •) dx, for any test function ϕ ∈ C ∞ c ([0, T ) × Ω; R 3 ), ϕ • n| ∂Ω = 0, where -< f ε , ϕ >= Ω S(∇ x u ε ) : ∇ x ϕ -(̺ ε u ε ⊗ u ε ) : ∇ x ϕ - 1 ε 2 p(̺ ε ) -p ′ (̺)(̺ ε -̺) -p(̺) div x ϕ dx. It follows from the uniform bounds established in (3.1 -3.7) that (4.5) < f ε , ϕ >= Ω F 1 ε : ∇ x ϕ + F 2 ε : ∇ x ϕ dx, with (4.6) {F 1 ε } ε>0 bounded in L ∞ (0, T ; L 1 (Ω; R 3×3 )), (4.7) {F 2 ε } ε>0 bounded in L 2 (0, T ; L 2 (Ω; R 3×3 )). 4.1.
Point spectrum of the acoustic propagator. Consider an operator B defined, formally, in

L 2 (Ω) × L 2 (Ω; R 3 ), B r V ≡ div x V g × V + ∇ x r .
As a matter of fact, it is more convenient to work in the frequency space, meaning, we associate to a function v its Fourier transform ṽ ṽ = ṽ(ξ h , k),

ξ h ≡ (ξ 1 , ξ 2 ) ∈ R 2 , k ∈ Z, where ṽ(ξ h , k) = 1 0 R 2 exp -i(ξ h • x h ) v(x h , x 3 ) dx h exp(-ikx 3 ) dx 3 .
We investigate the point spectrum of B, meaning, we look for solutions of the eigenvalue problem

(4.8) div x V = λr, ∇ x r + g × V = λV,
or, in the Fourier variables, i

2 j=1 ξ j Ṽj + k Ṽ3 -λr = 0, i[ξ 1 , ξ 2 , k]r -[ Ṽ2 , -Ṽ1 , 0] -λ Ṽ = 0.
After a bit tedious but straightforward manipulation, we obtain (4.9)

λ 2 = -µ, µ = 1 + |ξ| 2 + k 2 ± (1 + |ξ| 2 + k 2 ) 2 -4k 2 2 ;
whence the only eigenvalue is λ = 0, for which k = 0, and consequently, the space of eigenvectors coincides with the null-space of B, 

(4.10) Ker(B) = [r, V] r = r(x 1 , x 2 ), V = [V 1 (x 1 , x 2 ), V 2 (x 1 , x 2 ), V 3 (x 1 , x 2 )], div h V h = 0, ∇ h r = [V 2 , -V 1 ] . 4 
H = H c ⊕ cl H span{w ∈ H | w an eigenvector of A} . Then 1 τ τ 0 exp(-itA)CP c exp(itA) dt L(H) → 0 for τ → ∞.
In addition to the hypotheses of Theorem 4.1, suppose that C is non-negative and self-adjoint in H. Thus we may write

1 T T 0 exp -i t ε A C exp i t ε A P c X, Y H dt ≤ h(ε) X H Y H ,
where h(ε) → 0 as ε → 0. Taking Y = P c X we deduce

(4.11) 1 T T 0 √ C exp i t ε A P c X 2 H dt ≤ h(ε) X 2 H .
Similarly, for X ∈ L 2 (0, T ; H), we have

1 T 2 √ CP c t 0 exp i t -s ε A X(s) ds 2 L 2 (0,T ;H) (4.12) ≤ 1 T T 0 T 0 √ C exp i t -s ε A P c X(s) 2 H dt ds ≤ h(ε) T 0 exp -i s ε A X(s) 2 H ds = h(ε) T 0 X(s) 2 ds.
4.3. Application of RAGE theorem. For a fixed M > 0, we introduce a Hilbert space

H = H M ≡ {[r, V] | r(ξ h , k) = 0, Ṽ(ξ h , k) = 0 whenever |ξ h |+|k| > M}. Let P M : L 2 (Ω) × L 2 (Ω; R 3 ) → H M denote the associated orthogonal projection onto H M .
Our goal is to apply RAGE theorem to the operators

A = iB, C[v] = P M [χv], χ ∈ C ∞ c (Ω), 0 ≤ χ ≤ 1, considered on the Hilbert space H M .
Going back to system (4.3), (4.4), we obtain that

(4.13) ε d dt r ε,M V ε,M + B r ε,M V ε,M = ε 0 f ε,M , where [r ε,M , V ε,M ] = P M [r ε , V ε ], and 0 f ε,M ∈ H * M ≈ H M , 0 f ε,M , s w H M = - Ω F 1 ε : ∇ x w + F 2 ε : ∇ x w dx whenever (s, w) ∈ H M . Since w W m,∞ ∩W m,2 (Ω;R 3 ) ≤ c(m) w W m+2,2 (Ω;R 3 ) ≤ cM m+2 w L 2 (Ω;R 3 ) ,
we may use the uniform bounds (4.6), (4.7) in order to conclude that

0 f ε,M L 2 (0,T ;H M ) ≤ c(M)
uniformly for ε → 0.

Writing solutions to (4.13) by means of Duhamel's formula we get (4.14)

r ε,M V ε,M = exp(iA t ε ) r ε,M (0) V ε,M (0) + t 0 exp i t -s ε A 0 f ε,M ds;
whence a direct application of (4.11), (4.12), recalling that the only point spectrum is reduced to 0, yields (4.15)

Q ⊥ r ε,M V ε,M → 0 in L 2 ((0, T ) × K; R 4 )) as ε → 0,
for any compact K ⊂ Ω and any fixed M, where we have denoted

Q : L 2 (Ω) × L 2 (Ω; R 3 ) → Ker(B)
the orthogonal projection onto the null space of B. Indeed observe that

√ CQ ⊥ r ε,M V ε,M 2 
H M = CQ ⊥ r ε,M V ε,M , Q ⊥ r ε,M V ε,M H M = Ω χ Q ⊥ r ε,M V ε,M 2 dx,
where we have used the fact that P M and Q commute. Finally, a direct inspection of (4.14) yields

(4.16) Q r ε,M V ε,M → r M ̺U M in L 2 ((0, T ) × K; R 4 )) as ε → 0,
where r and U are the asymptotic limits identified through (3.8 -3.12).

4.4.

Strong convergence of the velocity fields. Relations (4.15), (4.16), together with (3.7 -3.10), may be used to obtain the desired conclusion (4.17)

u ε → U in L 2 ((0, T ) × K; R 3 ) for any compact K ⊂ Ω.
Indeed, by virtue of (3.8), (3.9), (4.15), (4.16), we obtain

P M [u ε ] → P M [U] in L 2 ((0, T ) × K; R 3 )
for any fixed M, which, together with (3.10) and compactness of the embedding W 1,2 (K) ֒→ L 2 (K), yields (4.17).

5. The limit system 5.1. Identifying the limit system. With the convergence established in (3.8 -3.10), and (4.17), it is not difficult to pass to the limit in the weak formulation (2.1), (2.2). To this end, we take

ϕ ≡ [∇ ⊥ h ψ, 0], ψ ∈ C ∞ c ([0, T ) × Ω) as a test function in momentum equation (2.2) to obtain (5.1) T 0 Ω ̺ ε u ε • ∂ t ϕ + ̺ ε u ε ⊗ u ε : ∇ x ϕ - 1 ε ̺ ε [u ε ] h • ∇ x ψ dx dt = - Ω ̺ 0,ε u 0,ε • ϕ(0, •) dx + T 0 Ω S(∇ x u ε ) : ∇ x ϕ dx dt.
Moreover, (4.3) yields (5.2)

T 0 Ω r ε ∂ t ψ + 1 ε ̺ ε [u ε ] h • ∇ x ψ dx = - Ω r 0,ε ψ(0, •) dx. Ý
Letting ε → 0 in (5.1), (5.2) we may infer that

T 0 Ω ̺U h • ∂ t ∇ ⊥ h ψ + ̺[U h ⊗ U h ] : ∇ x (∇ ⊥ h ψ) + r∂ t ψ dx = - Ω ̺U 0,h • ∇ ⊥ h ψ(0, •) + r 0 ψ(0, •) dx + T 0 Ω µ∇ h U h : ∇(∇ ⊥ h 
ψ) dx dt. Moreover, as the limit functions are independent of x 3 , we get,

(5.3) T 0 R 2 ̺U h • ∂ t ∇ ⊥ h ψ + ̺[U h ⊗ U h ] : ∇ h (∇ ⊥ h ψ) + r∂ t ψ dx h dt = - R 2 ̺ 1 0 U 0,h dx 3 • ∇ ⊥ h ψ(0, •) + 1 0 r 0 dx 3 ψ(0, •) dx h + T 0 R 2 µ∇ h U h : ∇ h (∇ ⊥ h ψ) dx h dt for all ψ ∈ C ∞ c ([0, T ) × R 2 )
. Finally, by virtue of (1.8), U h = ∇ ⊥ h r, and (5.3) coincides with a weak formulation of (1.10), (2.5). We have completed the proof of the convergence result, up to a subsequence, of Theorem 2.1. 5.2. Uniqueness for the limit system. In this final section we shall prove that the limit system has a unique solution provided the initial data are more regular. In order to do so we shall simply write an energy-type estimate on the difference of two solutions, called r 1 and r 2 , associated with two initial data r1 and r2 . This will provide a stability estimate, whose immediate consequence will be a uniqueness result. Notice that the diagnostic equation (1.8) implies that r should be taken in W 1,2 (R 2 ).

The limit system writes

∂ t (∆ h r -r) + ∇ ⊥ h r • ∇ h (∆ h r) = µ ̺ ∆ 2 h r
recalling that for simplicity we have chosen p ′ (̺) = 1. Multiplying (formally) this equation by ∆ h r and integrating over R 2 yields d dt

∆ h r 2 L 2 + ∇ h r 2 L 2 + µ ̺ ∇ h ∆ h r 2 L 2 = 0,
whence the estimate

∆ h r(t) 2 L 2 + ∇ h r(t) 2 L 2 + 2µ ̺ t 0 ∇ h ∆ h r(t ′ ) 2 L 2 dt ′ = ∆ h r 2 L 2 + ∇ h r 2 L 2 .
Now suppose r 1 and r 2 are two solutions as described above, and define δ := r 1 -r 2 . Then of course δ satisfies

∂ t (∆ h δ -δ) + ∇ ⊥ h δ • ∇ h (∆ h r 2 ) + ∇ ⊥ h r 1 • ∇ h (∆ h δ) = µ ̺ ∆ 2 h δ
with initial data δ 0 = r1 -r2 . Writing a similar energy estimate to the one above yields formally

d dt ∆ h δ 2 L 2 + ∇ h δ 2 L 2 + 2µ ̺ ∇ h ∆ h δ 2 L 2 = - R 2 ∇ ⊥ h δ • ∇ h (∆ h r 1 )∆ h δ dx.
Then we simply write, by Hölder's inequality followed by Gagliardo-Nirenberg's inequality

R 2 ∇ ⊥ h δ • ∇ h (∆ h r 1 )∆ h δ dx ≤ ∇ ⊥ h δ L 4 ∇ h ∆ h r 1 L 2 ∆ h δ L 4 ≤ C ∇ h δ 1 2 L 2 ∆ h δ 1 2 L 2 ∇ h ∆ h r 1 L 2 ∆ h δ 1 2 L 2 ∇ h ∆ h δ 1 2 L 2 . This implies that R 2 ∇ ⊥ h δ • ∇ h (∆ h r 1 )∆ h δ dx ≤ µ ̺ ∇ h ∆ h δ 2 L 2 + ∇ h δ 2 L 2 +C ̺ µ ∆ h δ 2 L 2 ∇ h ∆ h r 1 2 L 2 .
Finally Gronwall's inequality allows to obtain

∆ h δ(t) 2 L 2 + ∇ h δ(t) 2 L 2 + µ ̺ t 0 ∇ h ∆ h δ(t ′ ) 2 L 2 dt ′ ≤ ∆ h δ 0 2 L 2 + ∇ h δ 0 2 L 2 exp C ̺ µ t 0 ∇ h ∆ h r 1 (t ′ ) 2 L 2 dt ′ + Ct .
This allows to conclude to stability, hence uniqueness for the limit system (leaving the usual regularization procedure to make the above arguments rigorous to the reader) provided the initial datum enjoys the extra regularity stated in Theorem 2.1.

  .2. RAGE theorem. Our goal is to show that the component of the field [r ε , V ε ], orthogonal to the null space Ker(B) decays to zero on any compact subset of Ω. To this end, we use the celebrated RAGE theorem in the following form (seeCycon et al. [4, Theorem 5.8]):

	Theorem

4.1. Let H be a Hilbert space, A : D(A) ⊂ H → H a selfadjoint operator, C : H → H a compact operator, and P c the orthogonal projection onto H c , where
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