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Michael Levine∗, David R. Hunter†, Didier Chauveau‡
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Abstract

We introduce an algorithm for estimating the parameters in a fi-
nite mixture of completely unspecified multivariate components in at
least three dimensions under the assumption of conditionally indepen-
dent coordinate dimensions. We prove that this algorithm, based on a
majorization-minimization idea, possesses a desirable descent property
just as any EM algorithm does. We discuss the similarities between
our algorithm and a related one—the so-called nonlinearly smoothed
EM, or NEMS, algorithm for the non-mixture setting. We also demon-
strate via simulation studies that the new algorithm gives very similar
results to another algorithm that does not satisfy any descent algo-
rithm, thus validating the latter algorithm, which can be simpler to
program. We provide code for implementing the new algorithm in a
publicly-available R package.

Keywords: EM algorithms, MM algorithms, NEMS, nonparametric
mixtures

1 Introduction

Suppose the r-dimensional vectors X1, . . . ,Xn are a simple random sample
from a finite mixture density of m components f1, . . . , fm, with m > 1 and
known in advance. It is assumed throughout this manuscript that each one
of these densities fj is equal with probability 1 to the product of its marginal
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densities:

fj(x) =
r

∏

k=1

fjk(xk) (1)

This, in turn, means that, conditional on knowing the particular subpopu-
lation the observation Xj came from, its coordinates are independent. This
conditional independence assumption has appeared in a growing body of
literature on non- and semi-parametric multivariate mixture models; see
Benaglia et al. (2009b) for a discussion of the relevant literature.

We let θ denote the vector of parameters, including the mixing pro-
portions λ1, . . . , λm and the univariate densities fjk. Here and throughout
the article, j is the component index and k indexes the coordinate. Con-
sequently, 1 ≤ j ≤ m and 1 ≤ k ≤ r. Therefore, under the assumption
of conditional independence, the mixture density evaluated at the point
xi = (xi1, . . . , xir)

⊤ can be represented as

gθ(xi) =
m

∑

j=1

λj

r
∏

k=1

fjk(xik), (2)

where λ = (λ1, . . . , λm) must satisfy

m
∑

j=1

λj = 1 and each λj ≥ 0. (3)

The question of identifiability of the parameters in Equation (2) is of
central theoretical importance. By identifiability, we refer to the question of
when gθ uniquely determines λ and each of the fjk, at least up to so-called
“label-switching” and any changes to the densities fjk that occur on a set
of Lebesgue measure zero that do not therefore change the distributions Fjk

(here, “label-switching” refers to permuting the order of the summands, 1
through m, in equation (2)). Hall and Zhou (2003) established that when
m = 2, identifiability of parameters generally follows in r ≥ 3 dimensions
but not in fewer than three. However, a general result for more than two
components proved elusive, though several articles on the topic appeared in
the literature (e.g., Hall et al., 2005; Kasahara and Shimotsu, 2008). Then,
Allman et al. (2009) finally proved an elegant and powerful result using a
theorem of Kruskal (1977), establishing the identifiability of the parameters
in (2) whenever r ≥ 3, regardless of m, under weak conditions. To wit, the
identifiability follows as long as for each k, the density functions f1k, . . . , fmk

are linearly independent (except possibly on a set of Lebesgue measure zero,
of course).

An EM-like algorithm designed to estimate θ in model (2) was intro-
duced in Benaglia et al. (2009b). That algorithm can handle any number of
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mixture components and any number of vector coordinates of the multivari-
ate observations, unlike other existing algorithms. It also yields considerably
smaller mean integrated squared errors than an alternative algorithm (Hall
et al., 2005) in a simulation study. However, despite its empirical success,
this algorithm lacks any sort of theoretical justification; indeed, it can only
be called “EM-like” because it resembles an EM algorithm in certain as-
pects of its formulation. The current article corrects this shortcoming by
introducing a smoothed loglikelihood function and formulating an iterative
algorithm with a provable monotonicity property that happens to produce
results in that resemble those of Benaglia et al. (2009b) in practice.

The association of EM algorithms with mixture models has a long his-
tory; indeed, the original “EM algorithm” article—i.e., the article in which
the initials “EM” were coined, not the first appearance of such an algorithm—
describes a finite mixture model as one of several EM examples (Dempster
et al., 1977). Not long after, a sizable literature on “nonparametric mix-
tures” appeared (see, e.g., Lindsay, 1995), but here, “nonparametric mix-
tures” was used in a different sense: The mixing distribution, rather than
the component densities, were assumed to be unspecified (by contrast, the
current article and most of the literature we have cited so far assume the
mixing distribution to have finite support with a fixed cardinality, but the
component densities are unspecified). For this distinct concept of nonpara-
metric mixture models, Vardi et al. (1985) introduced an EM algorithm for
maximum likelihood estimation of the mixing distribution.

The Vardi et al. (1985) algorithm has an elegant convergence theory
associated with it, but unfortunately it does not deal with ill-posedness of
the problem. To overcome this difficulty, Silverman et al. (1990) proposed
the EMS (Smoothed EM) algorithm that smoothes the result of each step of
the classical EM algorithm. The practical performance of this algorithm is
excellent but, unfortunately, understanding its quantitative properties has
turned out to be a difficult issue. Eggermont (1992) first proposed the idea of
using a regularization approach to modify the EMS algorithm in such a way
that the resulting algorithm is easier to investigate theoretically. Eggermont
and LaRiccia (1995) showed that the resulting NEMS (Nonlinear EMS)
algorithm is, indeed, an EM algorithm itself and that its convergence theory
is very similar to that of the original EM algorithm introduced in the mixing
density estimation context by Shepp and Vardi (1982). Eggermont (1999)
showed that it also possesses a descent property and that the corresponding
maximum likelihood problem has a unique solution. Finally, it is known
that the practical performance of the NEMS algorithm is at least as good
as that of the EMS algorithm; again, see Eggermont (1999) for details.

In a sense, the current article unites the two different historical meanings
of “nonparametric mixture model” by introducing an NEMS-inspired algo-
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rithm that does in fact possess a descent property and that converges to a
local maximizer of a likelihood-like quantity for the finite mixture model (2)
in which the component densities are completely unspecified. As far as we
know, our article is a novel adaptation of the regularization approach to the
context of nonparametric finite mixture models. The likelihood-like function
used is similar to the one introduced in Eggermont and LaRiccia (1995) in
the case of an unspecified continuous mixing distribution: It is, essentially,
a penalized Kullback-Leibler distance between the target (mixture) density
function and the iteratively reweighted sum of smoothed component density
function estimates. However, for its optimization, we will rely on a compu-
tational tool called an MM algorithm, which may be viewed as yet another
generalization of an EM algorithm.

2 Smoothing the log-density

Let us assume that Ω is a compact subset of Rr and define the linear vector
function space

F = {f = (f1, . . . , fm)⊤ : 0 < fj ∈ L1(Ω), log fj ∈ L1(Ω), j = 1, . . . ,m}.

The assumption of compact support may appear somewhat limiting from a
theoretical point of view, but it is not problematic from a practical point
of view; it plays no role in the implementation of the algorithm we propose
here, for instance.

Take K(·) to denote some kernel density function on the real line. With
a slight abuse of notation, let us define the product kernel function K(u) =
∏r

k=1K(uk) and its rescaled version Kh(u) = h−r
∏r

k=1K(h−1uk). Fur-
thermore, we define a smoothing operator S for any function f ∈ L1(Ω)
by

Sf(x) =

∫

Ω
Kh(x − u)f(u) du.

Furthermore, we extend S to F by defining Sf = (Sf1, . . . ,Sfm)⊤. We also
define a nonlinear smoothing operator N as

N f(x) = exp {(S log f)(x)} = exp

∫

Ω
Kh(x − u) log f(u) du.

This operator is strictly concave, and it is also multiplicative in the sense
that N fj =

∏

k N fjk for fj defined as in (1). The concavity is proven
as Lemma 3.1(iii) of Eggermont (1999); we do not repeat the proof here.
The idea of smoothing the logarithm of the density function goes back to
Silverman (1982), where a penalty based on the second derivative of the
density logarithm is discussed.
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To simplify notation, we introduce the finite mixture operator

Mλf(x)
def
=

m
∑

j=1

λjfj(x),

whence we also obtain Mλf(x) = gθ(x) and

MλN f(x)
def
=

m
∑

j=1

λjN fj(x).

Let g(x) now represent a known target density function. We begin by
defining the following functional of θ (and, implicitly, g):

ℓ(θ) =

∫

Ω
g(x) log

g(x)

[MλN f ](x)
dx. (4)

Note that we will suppress the subscripted Ω on the integral sign from now
on. Our goal in Section 3 will be to find a minimizer of ℓ(θ) subject to the
assumptions that each fjk is a univariate density function and λ satisfies (3).
Remark: An immediate consequence of Equation (4) is that ℓ(θ) can be
viewed as a penalized Kullback-Leibler distance between g(x) and (MλN f)(x).
Indeed, if we define

D(a | b) =

∫
[

a(x) log
a(x)

b(x)
+ b(x) − a(x)

]

dx (5)

as usual, it follows that

ℓ(θ) = D(g |MλN f) +

∫

g(x) dx −
m

∑

j=1

λj

∫

N fj(x) dx, (6)

where −λj

∫

N fj(x) dx is a penalization term (cf. Eggermont, 1999, equa-
tion (1.12) and the discussion immediately following).

3 An MM algorithm

Our goal is to define an iterative algorithm that possesses a descent property
with respect to the functional ℓ(f ,λ); that is, we wish to ensure that the
value of ℓ(f ,λ) cannot increase from one iteration to the next. (Here, we
write ℓ(f ,λ) instead of ℓ(θ) so we may discuss f and λ separately.) Suppose
that we were to define an iteration operator G, to be applied to the vector
f = (f1, . . . , fm)⊤, as

Gfj(x) = αj

∫

Kh(x − u)
g(u)N fj(u)

MλN f(u)
du
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for each j, where αj is a proportionality constant that makesGfj(·) integrate
to one. Using an argument analogous to the proof of Lemma 1, we could
show that

ℓ(f ,λ) − ℓ(Gf ,λ) ≥
m

∑

j=1

λj

αj

∫

Gfj(x) log
Gfj(x)

fj(x)
dx

=
m

∑

j=1

λj

αj

D(Gfj | fj) ≥ 0.

Thus, the above definition evidently results in an algorithm that satisfies the
descent property. Unfortunately, however, it does not preserve the essential
conditional independence assumption (1). We must therefore use a slightly
different approach.

Let (f0,λ0) denote the current parameter values in an iterative algo-
rithm. Our strategy for minimizing ℓ(f ,λ) is based on a “majorization-
minimization” (MM) algorithm, in which we define a functional b0(f ,λ)
that, when shifted by a constant, majorizes ℓ(f ,λ)—i.e.,

b0(f ,λ) + C0 ≥ ℓ(f ,λ), with equality when (f ,λ) = (f0,λ0). (7)

Note that the superscript on b0 indicates that the definition of b0(f ,λ) will in
general depend on the parameter values (f0,λ0), which are considered fixed
constants in this context. A general introduction to MM algorithms is given
by Hunter and Lange (2004); in brief, by defining a majorizing function, we
may minimize the majorizer instead of the original function.

For j = 1, . . . ,m, let

w0
j (x)

def
=

λ0
jN f0

j (x)

Mλ0N f0(x)
. (8)

Note in particular that the “weight” functions w0
j satisfy

∑

j w
0
j (x) = 1. We

now claim that

b0(f ,λ)
def
= −

∫

g(x)

m
∑

j=1

w0
j (x) log [λjN fj(x)] dx (9)

gives the majorizing functional we seek:

Lemma 1. ℓ(f ,λ) − ℓ(f0,λ0) ≤ b0(f ,λ) − b0(f0,λ0).
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Proof:

ℓ(f ,λ) − ℓ(f0,λ0) = −

∫

g(x) log
MλN f(x)

Mλ0N f0(x)
dx

= −

∫

g(x) log

∑m
j=1 λjN fj(x)

Mλ0N f0(x)
dx

= −

∫

g(x) log
m

∑

j=1

λ0
jN f0

j (x)

Mλ0N f0(x)

λjN fj(x)

λ0
jN f0

j (x)
dx

= −

∫

g(x) log
m

∑

j=1

w0
j (x)

λjN fj(x)

λ0
jN f0

j (x)
dx

≤ −

∫

g(x)

m
∑

j=1

w0
j (x) log

λjN fj(x)

λ0
jN f0

j (x)
dx

= b0(f ,λ) − b0(f0,λ0),

where the inequality follows directly from the convexity of the negative log-
arithm function, since

∑

j w
0
j (x) = 1.

Lemma 1 verifies the majorization claim (7), where we take the constant
C0 to be ℓ(f0,λ0) − b0(f0,λ0).

Rewriting (9), we obtain

b0(f ,λ) = −
m

∑

j=1

r
∑

k=1

∫∫

Kh(xk − u)g(x)w0
j (x) log fjk(u) du dx

−
m

∑

j=1

log λj

∫

g(x)w0
j (x) dx. (10)

Note that above (and henceforth), u denotes a scalar, whereas x is an r-
dimensional vector. Also note that b0(f ,λ) separates the parameters from
each other, in the sense that it is the sum of separate functions of the
individual fjk and λj .

Subject to the constraint
∑

j λj = 1, it is not hard to minimize b0(f ,λ)
with respect to the λ parameter: For each j, the minimizer is

λ̂j =

∫

g(x)w0
j (x) dx

∑m
j=1

∫

g(x)w0
j (x) dx

=

∫

g(x)w0
j (x) dx. (11)

Next, let us focus on only the part of (10) involving fjk by defining

b0jk(fjk)
def
= −

∫∫

Kh(xk − u)g(x)w0
j (x) log fjk(t) du dx. (12)
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Lemma 2. For j = 1, . . . ,m and k = 1, . . . , r, define

f̂jk(u) = αjk

∫

Kh(xk − u)g(x)w0
j (x) dx, (13)

where αjk is a constant chosen so that
∫

f̂jk(u) dt = 1. Then f̂jk is the
unique (up to changes on a set of Lebesgue measure zero) density function
minimizing b0jk(·).

Proof: Fubini’s Theorem yields

b0jk(fjk) =
1

αjk

D(f̂jk | fjk) −
1

αjk

∫

f̂jk(u) log f̂jk(u) du,

where the second term on the right hand side does not depend on fjk. The
result follows immediately.

Let us now combine the preceding results. From Lemma 1, we conclude
that

ℓ(f̂ , λ̂) − ℓ(f0,λ0) ≤ b0(f̂ , λ̂) − b0(f0,λ0). (14)

Furthermore, we know from Lemma 2 and Equation (11) that each individ-
ual piece of the b0(·) function of Equation (10) is minimized by the corre-
sponding piece of (f̂ , λ̂). We conclude that the right side of Inequality (14)
is bounded above by zero, which proves the descent property summarized
by the following theorem.

Theorem 1. Define λ̂ as in Equation (11) and f̂ as in Lemma 2. Then

ℓ(f̂ , λ̂) ≤ ℓ(f0,λ0).

4 Inference for the parameters

We now assume that we are given a simple random sample x1, . . . ,xn dis-
tributed according to the gθ(x) density defined in Equation (2). Letting
G̃n(·) denote the empirical distribution function of the sample and ignor-
ing the term

∫

gθ(x) log gθ(x) dx that does not involve any parameters, a
discrete version of (4) is

ℓn(f ,λ)
def
=

∫

log
1

[MλN f ](x)
dG̃n(x) = −

n
∑

i=1

log[MλN f ](xi).

Note that ℓn(f ,λ) resembles a penalized loglikelihood function except for
the presence of the nonlinear smoothing operator N and the fact that with
the negative sign preceding the sum, our goal is minimization rather than
maximization of ℓn(·).
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Using an argument nearly identical to the one leading to equation (13),
we may show that the following algorithm results in an EM algorithm in
which the value of ℓn(·) decreases at each iteration:

Given initial values (f0,λ0), iterate the following three steps for t =
0, 1, . . .:

• E-step: Define, for each i and j,

wt
ij =

λt
jN f t

j (xi)

MλtN f t(xi)
=

λt
jN f t

j (xi)
∑m

a=1 λaN f t
a(xi)

. (15)

• M-step, part 1: Set

λt+1
j =

1

n

n
∑

i=1

wt
ij (16)

for j = 1, . . . ,m.

• M-step, part 2: For each j and k, let

f t+1
jk (u) =

∑n
i=1w

t
ijKh (u− xik)

∑n
i=1w

t
ij

=
1

nhλt+1
j

n
∑

i=1

wt
ijK

(

u− xik

h

)

. (17)

Note that equations (15), (16), and (17) are merely the discrete versions
of equations (8), (11), and (13), respectively. With regard to the conver-
gence properties of the algorithm we have defined here, we prove in the
Appendix that, if we hold λ fixed and repeatedly iterate equation (13), then
the sequence of f functions converges to a global minimizer of ℓ(f ,λ) for
that value of λ.

5 Implementation and numerical examples

Here, we test our algorithm on several examples from the recent literature
on nonparametric finite mixtures. In order to do this, it is first necessary
to introduce a slight extension of the basic model (2) in order to allow
for “block structure” in which some blocks of the coordinates might be
identically distributed in addition to being independent.

5.1 Blocks of identically distributed coordinates

As in Benaglia et al. (2009b), we can extend the model of conditional in-
dependence to a more general model: We will allow that the coordinates of
Xi are conditionally independent and that there exist blocks of coordinates
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that are also identically distributed. If we let bk denote the block index of
the kth coordinate, where 1 ≤ bk ≤ B and B is the total number of such
blocks, then equation (2) is replaced by

gθ(xi) =
m

∑

j=1

λj

r
∏

k=1

fjbk
(xik). (18)

These blocks may all be of size one (bk = k, k = 1, . . . r), which coincides
with equation (2), or there may exist only a single block (bk = B = 1,
k = 1, . . . , r), which is the conditional i.i.d. case. The non-linear smoothing
operator N applied to fj is simply N fj =

∏r
k=1 N fjbk

, and definitions of
Mλf and MλN f are unchanged.

The algorithm of section 4 can easily be adapted for handling the block
structure. In fact, both the E-step (15) and the first part of the M-step (16)
remain unchanged. The second part of the M-step (17) becomes

• M-step, part 2: For each component j and block ℓ ∈ {1, . . . , B},
let

f t+1
jℓ (u) =

∑r
k=1

∑n
i=1w

t
ijI{bk=ℓ}Kh (u− xik)

∑r
k=1

∑n
i=1w

t
ijI{bk=ℓ}

=
1

nhλt+1
j Cℓ

r
∑

k=1

n
∑

i=1

wt
ijI{bk=ℓ}K

(

u− xik

h

)

, (19)

where Cℓ =
∑r

k=1 I{bk=ℓ} is the number of coordinates in the ℓth block.
This algorithm is implemented in the latest version of the publicly-

available R (R Development Core Team, 2008) package called mixtools (Young
et al., 2009; Benaglia et al., 2009c).

5.2 Simulated Examples

This simulation study compares the nonparametric “EM-like” algorithm
from Benaglia et al. (2009b), which we refer to as npEM here, with the
new algorithm using the same examples for which Hall et al. (2005) tested
their estimation technique based on inverting the mixture model. The three
simulated models, described below, are trivariate two-component mixtures
(m = 2, r = 3) with independent but not identically distributed repeated
measures, i.e., bk = k for k = 1, 2, 3. We ran S = 300 replications of n = 500
observations each and computed the errors in terms of the square root of
the Mean Integrated Squared Error (MISE) for the densities, where

MISEjk =
1

S

S
∑

s=1

∫

(

f̂
(s)
jk (u) − fjk(u)

)2
du, j = 1, 2 and k = 1, 2, 3;
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Figure 1: Square roots of Mean Integrated Squared Errors (MISE) as a
function of λ1, the proportion of component 1, for all fjk, j = 1, 2 and
k = 1, 2, 3, for the three benchmark models from Hall et al. (2005). Some
points are coincident with others and are therefore not visible.

and the integral is computed numerically (using an appropriate function

defined in mixtools). Each density f̂
(s)
jk is computed using the weighted

kernel density estimate (17) together with the final values of the posterior
probabilities pt

ij after convergence of the algorithm.
The first example is a normal model, for which the individual densities fjℓ

are the pdf’s of N (µjℓ, 1), with component means µ1 = (0, 0, 0) and µ2 =
(3, 4, 5). The second example uses double exponential distributions with
densities fjℓ(t) = exp{−|t− µjℓ|}/2, where µ1 = (0, 0, 0) and µ2 = (3, 3, 3).
In the third example, the first component has a central t(10) distribution
and thus µ1 = (0, 0, 0), whereas the second component’s coordinates are
noncentral t(10) distributions with noncentrality parameters 3, 4, and 5.
Thus, the mean of the third component is µ2 = (3, 4, 5)× 1.0837. Note that
both algorithms assume only the general model of conditional independence,
with bk = k for all k.

Since it has already been shown in Benaglia et al. (2009b) that the
npEM dramatically outperforms the inversion method of Hall et al. (2005)
for the three test cases, Figure 1 only compares the npEM against the new
algorithm, which is labeled “smoothed” in the figure. This figure shows that
the two algorithms provide nearly identical efficiency (in terms of MISE) and
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that there is no clear winner for the models and the various settings (λ1)
considered.

5.3 The water-level experiment

We consider in this section a dataset from an experiment involving n = 405
children aged 11 to 16 years subjected to a water-level task as initially de-
scribed by Thomas et al. (1993). In this experiment, each child is presented
with eight rectangular vessels on a sheet of paper, each tilted to one of r = 8
clock-hour orientations: in order of presentation to the subjects, these ori-
entations are 11, 4, 2, 7, 10, 5, 1, and 8 o’clock. The children’s task was
to draw a line representing the surface of still liquid in the closed, tilted
vessel in each picture. Each such line describes two points of intersection
with the sides of the vessel; the acute angle, in degrees, formed between the
horizontal and the line passing through these two points was measured for
each response. The sign of each such measurement was taken to be the sign
of the slope of the line. The water-level dataset is available in the mixtools

package (Young et al., 2009; Benaglia et al., 2009c). This dataset has been
analyzed previously by Hettmansperger and Thomas (2000) and Elmore
et al. (2004), who assume that the r = 8 coordinates are all conditionally
identically distributed and then bin the data to produce multinomial vectors
(these authors call this a “cutpoint” approach).

However, because of the experimental methodology used to collect the
data, it seems reasonable to weaken the assumption that each orientation’s
measurements are identically distributed; instead, we only assume that op-
posite clock-face orientations lead to conditionally independent and identi-
cally distributed responses, so that the eight coordinates may be organized
into four blocks of two each, where the densities within each block are iden-
tical, which is model (18).

Benaglia et al. (2009b) apply the npEM algorithm to model (18) with
B = 4 and blocks of coordinates defined by

b = (b1, . . . , b8) = (4, 3, 2, 1, 3, 4, 1, 2),

which means, e.g., that b4 = b7 = 1, i.e., block 1 relates to coordinates 4
and 7, corresponding to clock orientations 1:00 and 7:00.

Figure 2 compares, for m = 3 components, the npEM solution with the
solution given by the new algorithm (Section 5.1), which we refer to as the
“smoothed” algorithm. The two solutions are evidently quite similar; each
appears to detect one component of children who understand the task (the
component peaked around the correct answer of zero degrees), another group
who appear to complete the task correctly when the vessel is near vertical
but who do not do as well in the “sideways” orientations of blocks 2 and 3,
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and a third group who appear to draw the line perpendicular to the sides
of the vessel. The estimated proportions of these three components for the
smoothed algorithm (and the corresponding npEM estimates in parenthe-
ses) are, respectively, 0.471 (0.492), 0.465 (0.431), and 0.064 (0.077). This
observed slight difference between the two algorithms’ estimates of these
proportions suggests that it might be wise to compute confidence intervals
for these parameters.

λ1 λ2 λ3

npEM 0.446 0.552 0.337 0.469 0.0542 0.1506
Smoothed 0.420 0.527 0.361 0.496 0.0515 0.1594

Table 1: 95% Confidence Intervals for λ, based on 10, 000 bootstrap repli-
cations, for the Water-level data example.

The confidence intervals for the λj , seen in Table 1, were computed
using a nonparametric bootstrap approach by repeatedly resampling with
replacement from the empirical distribution defined by the n observed r-
dimensional vectors and carefully checking for label-switching occurrences
in the resulting estimates. Here, “label-switching” refers to permuting the
three labels on λ̂1, λ̂2, and λ̂3, which in this example is easy to detect by
examining standard deviations of the estimated densities in combination
with the λ̂ estimates obtained. Boxplots of all the λ̂ estimates are given
in Figure 3. The two algorithms took a comparable number of iterations
to converge—69 on average for the smoothed algorithm versus 71 for the
npEM, using the same convergence criterion—although each iteration of the
smoothed algorithm took slightly longer (roughly 1/3 longer) due to the
numerical convolution involved. Overall, despite the small differences in the
estimates obtained by the two algorithms, we do not notice a systematic
pattern in these differences and the results are really quite close.

6 Discussion

The algorithm we propose in this article is an important refinement of the
algorithm first proposed in Benaglia et al. (2009b). That earlier algorithm
is, to the best of our knowledge, the first algorithm that can deal easily with
Model (2) in its full generality. It also renders itself to fairly easy coding and
produces error rates that are considerably lower than those of the inversion
method (easily applicable only when m = 2) of Hall et al. (2005) for a set of
standard test cases. However, it does not appear to minimize any particular
objective function and therefore cannot be viewed as a true EM algorithm.
The new algorithm introduced in this article has a provable descent property
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with respect to a loglikelihood-like quantity. That quantity is, essentially,
a penalized Kullback-Leibler distance between the true target density and
the iteratively reweighted sum of smoothed estimated component densities.

We obtain our new algorithm by combining the so-called regularization
approach with the earlier algorithm of Benaglia et al. (2009b). This ap-
proach was used by Eggermont and LaRiccia (1995) and Eggermont (1999)
in the context of indirect measurements, where it was applied to an earlier
EMS (Smoothed EM) algorithm of Silverman et al. (1990) that does not
have an easy interpretation. The result of the regularization approach there
is a new algorithm, closely related to EMS, called NEMS (Nonlinear EMS).
That algorithm has empirical performance almost identical to that of EMS;
however, it is a true EM algorithm. In the mixture-model setting, additional
computational tools based on a majorization-minimization (MM) theory are
necessary in order to produce an algorithm with a descent property.

The MM device used in our algorithm, namely, the convexity of the neg-
ative logarithm in the proof of Lemma 1, is exactly the same as used by
a classical EM algorithm. However, the question of whether our algorithm
represents a true EM algorithm—i.e., whether the right side of Equation (9)
is actually the expectation of a loglikelihood function for some idea of “com-
plete data”—is largely academic; one feature of this article is that it demon-
strates in a practical case how a direct MM approach can produce the same
theoretical advantages as an EM approach.

A future practitioner will have a choice of algorithms when estimating
the nonparametric multivariate finite mixture model of Equation (2). The
algorithm we propose in the current paper is the wise choice if a descent
property and the convergence properties associated with it (e.g., see Lange
et al., 2000) are needed. On the other hand, our experimental results vali-
date the use of the earlier algorithm of Benaglia et al. (2009b) if only good
empirical performance is desired, since the earlier algorithm appears to pro-
duce very similar results to the new, theoretically sound one. Note that our
new algorithm is generally the slower of the two since it involves numerical
convolutions.

The basic algorithm presented in this article may be generalized in sev-
eral directions. In addition to the blocking structure introduced in Equa-
tion (18), one might posit various location and/or scale models that link
the component densities while still allowing the overall parametric form of
the density functions to be unspecified. A thorough discussion of such gen-
eralizations is given in Section 4 of Benaglia et al. (2009b), where even a
univariate application of these algorithms to the case in which the den-
sity functions are assumed symmetric is given. Another possible topic of
future research is selection of an appropriate bandwidth h. Complicating
this selection is the fact that, when estimating a mixture model, one does
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not observe individual component densities. At every step of the algorithm,
new estimates of these components are computed; thus, bandwidth selection
problem in this context may be a problem fundamentally different from the
regular bandwidth selection for density estimation purposes. This issue is
discussed at length by Benaglia et al. (2009a), who recommend an iterative
bandwidth selection algorithm. It does not appear that generalization of
our algorithm in any of these many directions would present any serious
difficulties. Finally, there is the question of asymptotic convergence rates.
Empirical studies in Benaglia et al. (2009b) are suggestive of rates of con-
vergence of the original npEM algorithm, though no theoretical result on
this subject is yet known. Now that we have demonstrated that our new
algorithm may be used to optimize a particular objective function, it will
perhaps be possible to establish such results in the future.

Appendix 1: Some convergence properties

Suppose we fix λ0 and consider the function defined by Equation (13) that
maps (f0,λ0) 7→ (f̂ ,λ0). Iteratively applying this function yields a sequence

(f0,λ0), (f1,λ0), (f2,λ0), . . . . (20)

Here, we present a few simple convergence results regarding this sequence.
The results of this section have analogues in Section 3 of Eggermont (1999)
for a slightly different case.

Throughout this section, we will assume for the sake of simplicity that
the kernel K(·) is strictly positive on the whole real line. We define the
subset B ⊂ F by

B =

{

Sφ : 0 ≤ φ ∈ F and

∫

Ω
φj(x) dx = 1 for all j

}

. (21)

The idea of defining B in this way is that B will contain the whole sequence
f0, f1, f2, . . . except possibly the initial f0, where each element in the se-
quence is defined by applying equation (13) to the preceding element. To
verify this claim, we simply note that equation (13) may be rewritten as

f̂jk(u) = Sφ0
jk(u), (22)

where

φ0
jk(xk)

def
= αjk

∫

· · ·

∫

g(x)w0
j (x) dx1 · · · dxk−1dxk+1 · · · dxr (23)

must integrate to one because of the definition of αjk. Furthermore, the
functional f 7→ ℓ(f ,λ) is defined on B because for any (f1, . . . , fm) ∈ B,
fj is bounded below by infx∈ΩKh(x) > 0 since we have assumed that the
original kernel K(·) is positive; thus, N f is well-defined for f ∈ B.
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Lemma 3. The set B is convex and the functional ℓ(f ,λ) of Equation (4)
is strictly convex on B for fixed λ.

Proof: Let f1 and f2 be arbitrary elements of B, and take some α ∈
(0, 1). The linearity of the S operator implies that αf1 + (1 − α)f2 ∈ B,
which establishes the convexity of B immediately.

Furthermore,

ℓ
[

αf1 + (1 − α)f2
]

=

∫

g(x) log g(x) dx

−

∫

g(x) log
m

∑

j=1

λjN
[

αf1
j + (1 − α)f2

j

]

(x) dx.

Focusing on the rightmost term above, we first claim that

N
[

αf1
j + (1 − α)f2

j

]

(x) > αN f1(x) + (1 − α)N f2(x)

by the strict concavity of the N operator [Lemma 3.1(iii) of Eggermont
(1999)]. Furthermore, the fact that the logarithm function is concave and
strictly increasing implies that

ℓ
[

αf1 + (1 − α)f2,λ
]

<

∫

g(x) log g(x) dx − α

∫

g(x) log
m

∑

j=1

λj{N f1
j }(x) dx

−(1 − α)

∫

g(x) log

m
∑

j=1

λj{N f2
j }(x) dx

= αℓ(f1,λ) + (1 − α)ℓ(f2,λ).

Remark: We may also, using nearly the same proof as for Lemma 3,
show that ℓ(f ,λ) is strictly convex in λ for fixed f , though this fact ap-
pears less useful. It is not possible to prove that ℓ(f ,λ) is somehow strictly
convex in the vector (f ,λ) jointly—even if we were to define this concept
rigorously—since we know that, as in all mixture model settings, permuting
the subscripts 1, . . . ,m on (f1, λ1), . . . , (fm, λm) does not change the value
of ℓ(f ,λ), which implies that there cannot in general exist a unique global
minimizer of ℓ(f ,λ).

The following lemma establishes a sufficient condition so that the se-
quence of functions in (20) is guaranteed to have a uniformly convergent
subsequence. It turns out that, along with the assumptions made earlier,
the only additional assumption we will make is that the kernel density func-
tion satisfies a Lipschitz continuity condition:
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Lemma 4. If there exists L > 0 such that |Kh(x) −Kh(y)| ≤ L|x − y| for
any x,y ∈ Ω, then every functional sequence f1, f2, . . . defined by (20) has
a uniformly convergent subsequence.

Proof: Since Ω is a compact subset of Rr, we may assume that there
exist positive constants a < A such that a ≤ Kh(·) ≤ A on Ω. Thus,
in Equations (22) and (23), we must have a ≤ f̂jk ≤ A for all j, k. We
conclude that the sequence |f1|, |f2|, . . . is uniformly bounded.

Furthermore, for arbitrary x,y ∈ Ω and f ∈ B,

|fj(x) − fj(y)| = |Sφj(x) − Sφj(y)|

≤

∫

|Kh(x − u) −Kh(y − u)||φj(u)| du

≤ L|x − y|

for all j. We conclude that the sequence f1, f2, . . . is uniformly bounded
and equicontinuous, so the Arzelà-Ascoli Theorem implies that there is a
uniformly convergent subsequence.

Lemma 5. The functional f 7→ ℓ(f ,λ) is lower semicontinuous on B.

Proof: Consider a sequence of functions {fn} = {(f1,1, . . . , fm,n)}
′
∈ B.

Let us denote ψ = {ψ1, . . . , ψm}
′
= lim infn fn. By Lemma 4, there always

exists a subsequence fnk
→ ψ; without loss of generality, assume that this

subsequence coincides with the entire sequence {fn}. Since every component
function fj,n ∈ B is bounded away from zero then so is the limit function
ψ; therefore, log fj,n → logψ. Consequently, N fj,n → Nψj and MλN fn →
MλNψ. Since the function ρ(t) = t − log t − 1 ≥ 0, by Fatou’s lemma we
have

∫

g(x)ρ(MλNψ(x)) dx ≤ lim inf

∫

g(x)ρ(MλN fn(x)) dx.

From the above, the statement of the proposition follows immediately.
Notice that the functional f 7→ ℓ(f ,λ) is uniformly bounded from below

on B, which follows from Equation (6) and the fact that N fj(x) ≤ Sfj(x) =
1 by the arithmetic-geometric mean inequality. Thus, the lower semincon-
tinuity combined with strict convexity, as proved above, imply that for any
fixed λ, the sequence (20) converges to a global maximizer of the functional
f 7→ ℓ(f ,λ). As a practical matter, this means that we could essentially
replace ℓ(f ,λ) by the profile loglikelihood

ℓ∗(λ)
def
= inf

f∈B
ℓ(f ,λ)

because the minimization on the right-hand side may be accomplished by
iterating (13) until convergence. However, dealing with the profile loglikeli-
hood is not the general optimization strategy adopted in Section 4.
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Figure 2: The water-level data are analyzed using the npEM algorithm (solid
colored lines) from Benaglia et al. (2009b) and the new smoothed algorithm
(dotted line), assuming model (18) with m = 3 mixture components.
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Figure 3: Comparison of 10,000 nonparametric bootstrap replications of λ̂
for the Water-level data, using both algorithms. Bootstrapped 95% confidence
intervals are given in Table 1.
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