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Abstract

If voters vote strategically, is it useful to offer them the possibility of

expressing nuanced opinions? Say that a ballot is overstating if it is neither

abstention-like nor can be expressed as a mixture of the available ballots.

The paper shows that when two additive voting rules share the same (up

to an affine transformation) set of overstating ballots, they are strategically

equivalent in large elections. It also characterizes “robust” rules, whose set of

voting equilibria remains unaltered by adding any finite number of ballots: a

rule is robust if and only if it is strategically equivalent to Approval Voting.

These results do not hold for small electorates.
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1 Introduction

Shouting and voting are believed to be activities of a different sort. Whereas the

latter often goes hand in hand with the idea of finding an agreement (democracy

and peace), the former is recurrently associated with the lack of agreement (conflict

and wars). Indeed, to put an end to a dispute, one might suggest to switch from

shouting to voting. However, even if such a distinction seems to be common sense,

both activities have been remarkably close to each other in the past. For instance,

Spartans shouted to elect senators to the Gerousia, Sparta’s Council of Elders.

Each “voter” was allowed to shout as much as he wanted for each of the different

candidates. The candidate who had “the most and loudest” acclamations was elected

senator, see Girard (2010) [11] for an account of the Spartan voting method.

The Spartan shout is close to Evaluative Voting (EV ). Under EV , the voter

evaluates each candidate independently on the same numerical scale; the grades are

added and the candidate with the largest total is elected. Baujard and Igersheim

(2010) [1] report on an experimental work on EV with the scale {0, 1, 2}. This rule,

also called Range Voting, is obviously related to Utilitarianism; see Karni (1998) [13],

Dhillon and Mertens (1999) [8], Segal (2000) [27], d’Aspremont and Gevers (2002)

[6] and Gaertner and Xu (2010) [9] for axiomatic analysis. A related procedure was

in use for several centuries by Venetian oligarchs to elect their Dogi. Instituted in

1268 and used until 1789, the Venetian system allowed voters to express their opinion

about each candidate. A voter was given three balls to indicate approval, disapproval

or dubbio1. Another variation of the Spartan method is simply the modern voting

rule known as Approval Voting (AV ), often advocated for its flexibility since it

emerged in the literature in the mid 70s. Approval Voting2 is Evaluative Voting

with the scale {0, 1}.
Is shouting so different than voting? The previous question can be rephrased

in formal voting theory by asking whether extending the set of ballots available

under a given voting rule modifies the set of voting equilibria? A voting rule V ′ is

an extension of the voting rule V if all the ballots available under V are available

under V ′. For instance, Evaluative Voting (the Spartan shout) is an extension of

AV . Assuming strategic voting, one might suspect that the set of voting equilibria

1The italian dubbio corresponds to the English doubt. According to Lines (1986) [17], this

doubt is roughly equivalent to an abstention as “a doubt vote, if it ever did exist in doge elections,

would essentially be a no vote”.
2There exists a whole literature on AV . See Laslier and Sanver (2010) [16].

2



should not be too altered by such an extension. However, this need not be the case for

any extension: a well-known extension is known to modify the set of equilibria in a

convenient manner. Indeed, AV is an extension of Plurality voting (henceforth PV 3)

and, as shown by Myerson and Weber (1993) [21], AV improves the aggregation of

preferences when compared with PV in the noteworthy divided majority situation.

We focus on additive voting rules, in which a ballot is a list of points that the

voter is affording to the candidates, and where points for each candidate are simply

added. (A formal definition of this family of voting rules is provided in the next

section.) We analyze such an issue in the context of strategic voting, that is assuming

that voters strategically cast their votes in order to maximize their (expected) utility

(abstention is allowed). We study equilibria and consider that two voting rules are

strategically equivalent if they have the same equilibrium outcomes.

To study small electorates, we use a standard refinement of Nash equilibrium

and provide examples that show that voters need not overstate at equilibrium.

To tackle the problem on large elections, we focus on the first and simplest model

in this direction, proposed by Myerson and Weber (1993) [21]. In such a model, for

any pair of candidates, the voter considers that there is a positive probability that

her vote is pivotal on this pair, but some of these probabilities are vanishingly small

compared to others. We first define the notion of strategically equivalent voting

rules. Two rules are strategically equivalent whenever there exists an equilibrium

under both of them under which the candidates get the same expected scores (up

to a linear transformation) and the pivot probabilities satisfy the same ordering.

We then derive a sufficient condition for the strategic equivalence of voting rules.

The condition is simple. Say that a ballot is “overstating” if it is not abstention-like

(the ballot does not treat all candidates alike) and if it cannot be expressed as a

mixture of other available ballots. If two voting rules offer the same set of overstating

ballots, up to an affine transformation, then they are strategically equivalent.

The use of this sufficient condition is fairly straightforward, implying several

interesting consequences.

The first consequence is that, in our terms, shouting is voting. The rules used in

two cities lead to the same set of voting equilibria: in other words, Approval Voting

and Evaluative Voting (EV ) are strategically equivalent. The second consequence

3In an election held under PV , a voter is allowed to give at most one point to at most one

candidate. The candidate with the most votes wins the election. The most used rule for presidential

elections is Plurality with a Runoff (Blais (1997) [2]), but we here restrict attention to one-round

voting systems.
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concerns a different family of voting rules in which no restriction is given over how

the grades should be allocated between the different candidates. In an election held

under Cumulative Voting (CV ), a natural extension of Plurality Voting, a voter is

endowed with a finite number of points, and he is allowed to distribute them freely

between the different candidates. Different authors4 have discussed such a method

as it gives a high degree of flexibility to the voter. With such a voting rule, voters

have the possibility of overstating their vote: that is to give the highest possible

amount of points to only one of the candidates. We prove that this is indeed the

case in equilibrium, implying that PV and CV are strategically equivalent. We

hence prove that for both PV and AV , there exist extensions that do not modify

the set of voting equilibria. But, up to now, we have left unaddressed the question of

whether there exists voting rules which set of voting equilibria remains unaltered by

any finite extension; a voting rule satisfying such a definition is robust5. The answer

is positive and surprising. Without loss of generality, we work with normalized rules

in which the maximum score of a candidate in a ballot is 1. We prove that a voting

rule is robust if and only if it is strategically equivalent to AV . To do so, we first show

that AV (or any voting rule that contains all the AV ballots) is robust. The reason

is simple: any normalized ballot can be expressed as a strict convex combination

of AV ballots, and hence our sufficient condition for strategic equivalence applies.

Furthermore, any other normalized voting rule which is extended by adding the

ballots of AV is strategically equivalent to AV . Hence, any robust voting rule must

contain all the AV ballots and hence it is strategically equivalent to AV .

The described equivalence between voting equilibria described is valid along the

lines of the theory of large elections proposed by Myerson and Weber (1993) [21].

Nevertheless, small elections (that is elections with few voters) raise new questions.

For instance, the information available to voters might be much more detailed in

a small election than in a mass election, implying that such theory is of scant

interest in the former case. In order to investigate whether the previous claims still

hold in environments with few voters, we discuss two voting situations in the case

of Evaluative voting. The first example is a pure strategy equilibrium in which

there exists a sequence of trembles à la Selten (1975) [28] which induce a voter’s

unique best response not to be overstating for any arbitrarily small (even though

4See Sawyer and McRae (1962) [26], Brams (1975) [4], Nitzan (1985) [22], Cox (1990) [5] and

Gerber et. al (1998) [10].
5Robustness requires that the set of electoral outcomes is not modified by allowing voters to

choose from a wider set of ballots.
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positive) perturbation. In the second one, the strategy combination is a mixed-

strategy equilibrium in which the unique pure strategy best response for a voter

is not overstating. Indeed, one of the voters of the election mixes between his

undominated strategies making uncertain the final electoral outcome for the rest of

the voters. The “mixing” removes the weak preference for overstatements. This

situation is stronger that the first one. The situations studied prove that the lack

of overstatement can be a best response even in equilibria that satisfy different

equilibria refinements. The refinement (trembling-hand perfection) used in this work

is among the most classical ways of obtaining equilibria as a limit of games with

uncertainty (i.e. perturbed games). However, it is not too difficult to generalize

the results to settings in which the uncertainty comes from other sources. For

instance, Bayesian games with some uncertainty about voters’ types or common

values’ settings with imperfect information about the true state of nature are good

candidates for models in which overstating is not a best response for a strategic

voter. Finally, we discuss how the set of possible winners in equilibrium is altered

by an extension of the set of ballots. Even though we cannot fully characterize the

set of perfect equilibria (due to the lack of structure of voters’ mistakes) we are able

to show that the equilibria under which “unappealing” candidates win the election

both exist under a voting rule and its extension. In other words, the extension of

the voting rule does not seem to refine the set of possible winners of the election.

This paper is organized as follows. Section 2 presents the basics of the model.

Section 2 to 5 are devoted to large elections: Section 3 describes the equilibrium

concept, Section 4 states the sufficient condition for strategic equivalence, Section

5 presents the strategic equivalence between the above-mentioned voting rules, and

Section 6 contains the results on the robustness of a voting rule. Section 7 presents

the results concerning the environments with few voters, and Section 8 provides

some concluding comments.

2 The setting

There are N voters in the election. Each voter has a type t that determines his

strict preferences over the set of candidates K = {1, 2, . . . ,K}. The preferences of a

voter with type t (a t-voter) is denoted by ut = (ut(k))k∈K, in which ut(k) denotes

the utility a t-voter gets if candidate k wins the election. All types t belong to a

finite set of types T . The distribution of types is denoted by r = (r(t))t∈T with∑
t r(t) = 1: in other words, r(t) represents the share of t-voters.
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Within this work, we stick to the comparison of additive rules: a ballot is a

vector b = (b1, b2, . . . , bK) where bk is the number of points given to candidate k, to

be added to elect the candidate with the largest score. Each voter must choose a

ballot b from a finite set of possible ballots denoted by B.

For instance, in an election held under Plurality Voting (PV ) voters can abstain

or give one point to at most one candidate. Formally:

BPV = {Any permutation of (1, 0, . . . , 0)} ∪ {0, 0, ..., 0)}.

Similarly, an Approval Voting (AV ) ballot consists of a vector that lists whether

each candidate has been approved or not: for each j ∈ K , bj ∈ {0, 1}. Hence:

BAV = {0, 1}K.

Definition 1. A voting rule V is an extension of the voting rule V ′ if all ballots in

V ′ are available in V , i.e.

BV ′ ⊂ BV .

For instance, Approval Voting is an extension of Plurality Voting as BPV ⊂ BAV .

3 Large Elections

We assume that each voter maximizes his expected utility to determine which ballot

in the set B he will cast. In this model, his vote has an impact in his payoff if

it changes the winner of the election. Therefore, a voter needs to estimate the

probability of these situations: the pivot outcomes. We say that two candidates are

tied if their vote totals are equal. Furthermore, let H denote the set of all unordered

pairs of candidates. We denote a pair {i, j} in H as ij with ij = ji.

For each pair of candidates i and j, the ij-pivot probability pij is the probability

of the outcome perceived by the voters that candidates i and j will be tied for first

place in the election. A voter perceives that the probability that he will change the

winner of the election from candidate i to candidate j by casting ballot b with bi ≥ bj

to be linearly proportional to bi − bj, and that the constant of proportionality (the

ij-pivot probability) is the same for the perceived chance of changing the winner

from j to i if bj ≥ bi
6.

6This is roughly equivalent to assume that the probability of candidates i and j being tied for

first place is the same as the probability of candidate i being in first place one vote ahead candidate
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A vector listing the pivot probabilities for all pairs of candidates is denoted by

p = (pij)ij∈H . This vector p is assumed to be identical and common knowledge

for all voters in the election. A voter with ij-pivot probability pij anticipates that

submitting the ballot b can change the winner of the election from candidate j to

candidate i to be pij max{bi − bj, 0}.
Let Et[b] denote the expected utility gain of a t-voter from casting ballot b when

p is the common vector of pivot probabilities:

Et[b] =
∑
ij∈H

(bi − bj) · pij · [ut(i)− ut(j)]. (1)

The expected utility gain from casting ballot b equals the expected utility of

casting ballot b minus the expected utility of abstaining. Focusing on utility gains

simplifies notation.

A (voting) strategy is a probability distribution σ over the set B that summarizes

the voting behavior of voters of each type. For any ballot b and any type t, σ(b | t)
is the probability that a t-voter casts ballot b. Therefore,

τ(b) =
∑
t∈T

r(t)σ(b | t)

is the share of the electorate who cast ballot b. Hence, the (expected) score of

candidate k is

S(k) =
∑
b∈B

bkτ(b).

The set of likely winners of the election contains the candidates whose expected

score S(k) is maximal given the strategy σ.

Myerson and Weber (1993) [21] assume that voters expect candidates with lower

expected scores to be less likely serious contenders for first place than candidates

with higher expected scores. In other words, if the expected score for some candidate

l is strictly higher than the expected score for some candidate k, then the voters

would perceive that candidate l’s being tied with any third candidate m is much

more likely than candidate k’s being tied for first place with candidate m7.

j (and both candidates above the rest of the candidates), which is in turn the same one as the

probability of candidate j being in first place one vote ahead candidate i. Myerson and Weber

(1993) [21] justify this assumption by arguing that it seems reasonable when the electorate is large

enough. This is not verified in Poisson games, a formal model of large elections in which the pivot

probabilities are derived endogenously from the structure of the game.
7This assumption is needed in order to ensure the existence of equilibrium. The results presented

here do not lie on the ordering of the pivot probabilities.
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Definition 2. Given a (voting) strategy σ and any 0 < ε < 1, a pivot probability

vector p satisfies the ordering condition for ε (with respect to σ) if, for every three

distinct candidates i, j and k:

S(i) > S(j) =⇒ pjk ≤ εpik.

Besides, Myerson and Weber (1993) [21] assume that the probability of three

(or more) candidates being tied for first place is infinitesimal in comparison to the

probability of a two-candidate tie.

Definition 3. The strategy σ is a (voting) equilibrium of the game if and only if,

for every positive number ε, there exists some vector p of positive pivot probabilities

that satisfies the ordering condition and such that, for each ballot b and for each type

t,

σ(b | t) > 0 =⇒ b ∈ arg max
d∈B

Et[d].

It should be stressed that, in this definition, the pivot probabilities pij are sup-

posed to be constant when the voter contemplates casting one ballot or the other.

This point will play an important role in the next section. It is justified when the

number of voters is large for, in that case, the voter cannot change with his single

vote the order of magnitude of these probabilities. It can be shown that the set of

equilibria is non-empty8.

Finally, an important concept in our model should be defined: the equivalence

between equilibria under different voting rules.

Definition 4. An equilibrium σU of an election held under a voting rule U is equiv-

alent to an equilibrium σV of the same election held under V if and only if

1. the pivot probabilities satisfy the same ordering and

2. the scores of the candidates coincide, up to an affine transformation.

The sets of voting equilibria of an election held under two voting rules U and V

are equivalent if for any voting equilibrium of the election held under U (resp. V ),

there exists an equivalent voting equilibrium of the election held under V (resp. U)

Definition 5. Two voting rules are strategically equivalent if and only if their set

of voting equilibria are equivalent.

8See Theorem 1, page 105 in Myerson and Weber (1993) [21].
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We will pay special attention to the set of possible winners WV that arise under a

voting rule V . A possible winner is a candidate who wins the election in equilibrium

with positive probability. The set of possible winners of an election held under the

voting rule V is

WV = {k ∈ K | There exists an equilibrium σ in which S(k) is maximal}.

If two voting rules are strategically equivalent, then they have the same set

of possible winners. However, the converse need not be true; for instance, the

rankings of other candidates may differ. It is noteworthy that the definition of

strategic equivalence used is rather demanding. It requires more than the set of

possible winners being the same under two voting rules. This demanding definition

reinforces our results as we show that this strong version of equivalence holds in the

Myerson-Weber setting.

4 A sufficient condition for strategic equivalence

We now introduce some categorizations of the ballots that will be useful throughout.

An abstention ballot is a ballot with all the coordinates alike ; the set of such

ballots is denoted by Abs(B).

An interior ballot b is a ballot which is not an abstention ballot and that can

be expressed as a strict convex combination of other ballots in B, i.e. there exist

ballots

b1, b2, . . . , bm ∈ B with b =
∑
i

αib
i with αi ∈ (0, 1) and

∑
i

αi = 1.

An overstating ballot is a ballot which is neither an interior nor an abstention

ballot. Given the set of ballots B, the set of interior and overstating ballots are

respectively denoted by Int(B) and Ove(B) with,

Ove(B) = B \ {Int(B) ∪ Abs(B)}.

Remark 1.

Casting an abstention ballot or a ballot which is a convex combination of at least

one abstention ballot is dominated for every voter.
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To see this, let bj denote an abstention ballot with bj = (x, . . . , x). By formula

(1), E[bj] =
∑

ij∈H(x − x) · pij · [ut(i) − ut(j)] = 0 so that any abstention ballot is

dominated. Let c =
∑

i αib
i denote the convex combination of at least one abstention

ballot so that Et[c] =
∑

i 6=j αiEt[b
i] as Et[b

j] = 0. If Et[c] ≤ 0, then casting ballot c

is dominated. If Et[c] > 0, then
∑

i 6=j αiEt[b
i] > 0 so that there must exist bi with

i 6= j with Et[b
i] > 0. Then, casting ballot c is dominated by the mixed strategy

that casts ballot c with probability 1− αj and ballot bi with probability αj.

In other words, neither an abstention ballot nor a ballot which is a convex com-

bination of at least one abstention ballot are cast with positive probability in equi-

librium.

Remark 2.

The definition of interior ballot implies that if a ballot c is interior then it is the

strict convex combination of overstating and abstention ballots:

c =
∑
b∈B′

αb · b for someB′withB′ ⊂ Ove(B)∪Abs(B)withαb ∈ (0, 1)and
∑
b∈B′

αb = 1.

Remark 3.

The ballot set B is finite and hence not every ballot can be expressed by a convex

combination of other ballots in B.

Remark 4.

The set Ove(B) of overstating ballots is non-empty for any non-trivial voting

rule. To see this, let us suppose that Ove(B) = ∅ for some voting rule with ballot

set B. By definition, B = Ove(B)∪Int(B)∪Abs(B). By Remark 3, not every ballot

can be expressed by a convex combination of other ballots in B, so that B 6= Int(B).

As we have assumed that Ove(B) = ∅, we must have that Abs(B) 6= ∅, i.e. every

ballot which is not interior is an abstention ballot. Hence, every ballot of such a

rule is an abstention ballot as any interior ballot is a strict convex combination of

other ballots. Thus, such a voting rule can be labeled as trivial as it elects for any

preference profile the whole set of candidates.

Example 1.
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Let us consider a three-candidates election held under Cumulative Voting. We

assume that a voter is endowed with at most two points that can be freely distributed

among the different candidates. The set of allowed ballots BCV is:

BCV = {(0, 0, 0),(2, 0, 0), (0, 2, 0), (0, 0, 2),

(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The interior ballots are the following ones:

Int(BCV ) = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)},

whereas there is a unique abstention ballot:

Abs(BCV ) = {(0, 0, 0)}.

(To see why, it is enough to write that for instance the interior ballot (1, 1, 0) equals

the convex combination 1/2(2, 0, 0) + 1/2(0, 2, 0).) Finally, the set of overstating

ballots is:

Ove(BCV ) = {(2, 0, 0), (0, 2, 0), (0, 0, 2)}.

4.1 Overstating

By Remark 1, an abstention ballot is not cast with positive probability in equilibrium

so that there are two types of equilibria: interior and overstating. We refer to an

interior equilibrium whenever a voter’s best response includes an interior ballot. On

the contrary, an overstating equilibrium is an equilibrium in which every voter’s best

response uniquely includes overstating ballots.

Proposition 1. [Overstating] For any interior equilibrium, there exists an equiva-

lent overstating equilibrium.

Proof. Let σ be an interior equilibrium such that some t-voter’s best response satis-

fies σ(c | t) = 1 with c an interior ballot. Therefore we can write c =
∑

b∈B′ αb · b for

some subset B′ of the set of overstating ballots as c is cast with positive probability

at equilibrium (Remarks 1 and 2).

Formula (1) implies that

Et[c] = Et[
∑
b∈B′

αb · b] =
∑
b∈B′

αb · Et[b].

11



In other words, the t-voter is indifferent between casting ballot c and playing a mixed

strategy over the set B′ which mimics the convex combination that defines ballot c.

Formally, the voter t is indifferent between strategy σ as defined9 and strategy σ∗

with {
σ∗(b | t) = αb for all b ∈ B′ and

σ∗(·| t′) = σ(·| t′) for voters with type t′ 6= t.

Besides, for every ε > 0, the pivot probability vector p that justifies the strategy

σ also justifies the strategy σ∗ as the scores of candidates coincide under both

strategies, implying that σ∗ is an equilibrium.

All in all, both σ and σ∗ are justified by the same pivot probability vector and

under both of them, the expected scores of the candidates coincide. Hence, for any

interior equilibrium σ, there exists an equivalent overstating equilibrium σ∗.

4.2 Strategic equivalence

Proposition 1 proves that interior equilibria are not informative in the sense that

they do not add any information regarding the equilibria that can be attained under

a voting rule. Building on such a result, we now give a simple sufficient condition to

ensure the strategic equivalence of two voting rules. Indeed, we show that if there

exists a bijective affine transformation between the overstating ballots of two voting

rules, then both rules are strategically equivalent.

Theorem 1. Whenever there exists a bijective affine transformation between the

overstating ballots Ove(BU) and Ove(BV ) of two voting rules U and V , U and V

are strategically equivalent.

Proof. Let U and V denote two voting rules such that there exists a bijective affine

transformation f : b 7−→ f(b) = α + β · b, from Ove(BU) onto Ove(BV ), for some

reals α and β.

Let σ be a strategy in an election held under U in which every voter only casts

ballots in the set Ove(BU). Let σ∗ denote a strategy in the same election held under

V that satisfies

σ∗(b∗ | t) = σ(b | t), (2)

in which each ballot b∗ satisfies b∗ = f(b) = α + βb.

9Throughout the proof, t-voters play in pure strategies in the equilibrium σ. Similar arguments

can be used to extend the proof whenever σ involves that some t-voters play in mixed strategies.
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Let us now prove that the strategy σ is an overstating equilibrium of the election

held under U if and only if the strategy σ∗ is an overstating equilibrium of the

election held under V with both σ and σ∗ being equivalent.

First of all, an equilibrium is overstating if and only if the unique ballots that

are cast with positive probability are overstating. Thus, if we show that σ and σ∗

are equilibria under U and V respectively, then both equilibria will be overstating.

Let us now prove that casting ballot b is a best response given σ if and only if

casting ballot b∗ is a best response given σ∗:

b ∈ arg max
d∈Ove(BU )

Et[d]⇐⇒ Et[b] ≥ Et[d] ∀ d ∈ Ove(BU)

⇐⇒ α + βEt[b] ≥ α + βEt[d] ∀ d ∈ Ove(BU)

⇐⇒ Et[b
∗] ≥ Et[d

∗] ∀ d∗ ∈ Ove(BV )

⇐⇒ b∗ ∈ arg max
d∗∈Ove(BV )

Et[d
∗].

Besides, given that the strategy σ∗ satisfies (2), the scores of the candidates S(·)
given σ and S∗(·) given σ∗ satisfy

S∗(k) = α + βS(k) ∀ k ∈ K,

and whence the scores of candidates coincide up to an affine transformation under

both strategies.

In order to prove the equivalence between σ and σ∗, it remains to be checked

that pivot probabilities satisfy the same ordering with both strategies σ and σ∗.

However, as the scores of candidates coincide up to an affine transformation with

both strategies, a pivot probabilities vector p satisfies the ordering condition under

σ if and only if it satisfies the ordering condition under σ∗.

We have proved so far that σ is an overstating equilibrium under U if and only

if there exists an equivalent overstating equilibrium σ∗ under V . In other words,

if there exists a bijective affine transformation between Ove(BU) and Ove(BV ), the

set of overstating equilibria under both U and V are equivalent. But the previous

equivalence finishes the proof as by Proposition 1, any interior equilibrium under a

voting rule is equivalent to an overstating equilibrium under the same voting rule.

Theorem 1 has the advantage of being extremely simple to use: indeed, as will

be shown the next section, almost no computation is needed to check the strategic

equivalence of two voting rules.
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5 Applications

Two applications of Theorem 1 are now described. The main interest of such a

theorem is that it allows to “simplify” voting rules, in which the term simplify has

been coined by the recent literature on mechanism simplification10. In this literature,

a mechanism is simplified by reducing the message space of the agents, while no new

equilibria are created as a consequence of this reduction. When the number of voters

becomes large enough, adding or removing interior ballots to a voting rule does not

modify the set of voting equilibria. Our results hence prove that when the number

of voters is large enough, many voting rules can be simplified.

5.1 Evaluative Voting: One man, Many extended votes

An AV ballot consists of a vector that lists whether each candidate has been ap-

proved or not: ∀j ∈ K, bj ∈ {0, 1}. Hence it is simple to see that Abs(BAV ) =

{(0, . . . , 0), (1, . . . , 1)}.

Under Evaluative Voting, a voter can assign up to m points to each candidate

for some positive m. Hence,

b is an EV ballot if ∀ j ∈ K, bj ∈ {0, 1, . . . ,m},

with abstention ballots Abs(BEV ) = {(0, . . . , 0), (m, . . . ,m)}.

Theorem 2. EV and AV are strategically equivalent.

Proof. The set of overstating ballots of AV satisfies

Ove(BAV ) = {0, 1}K \ {(0, . . . , 0), (1, . . . , 1)},

and the set of overstating ballots of EV equals

Ove(BEV ) = {0,m}K \ {(0, . . . , 0), (m, . . . ,m)},

so that, by Theorem 1, EV and AV are strategically equivalent.

5.2 Cumulative Voting: One man, One extended vote

In an election held under PV , voters can give one point to at most one candidate.

Formally, we say that b is a PV ballot if for every j ∈ K, bj ∈ {0, 1} and there is at

most one bj 6= 0.

10See Milgrom (2009, 2010) [18, 19] and Perez-Richet (2011) [25].
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In an election held under Cumulative Voting, a voter can assign up to m points

to each candidate for some positive m with the restriction that the sum of the points

he can assign to each of the candidates is at most m. Hence,

BCV =

{
bj ∈ {0, 1, . . . ,m} ∀ j ∈ K and

∑
k∈K

bk ≤ m

}
.

Theorem 3. CV and PV are strategically equivalent.

Proof. Given the set of ballots under PV and CV , one obtains that

Ove(BPV ) = {Any permutation of (1, 0, . . . , 0)}.

and that

Ove(BCV ) = {Any permutation of (m, 0, . . . , 0)}.

which, by Theorem 1, concludes the proof.

6 Robust Voting rules

Within this section, we introduce the notion of robust voting rule and show that a

voting rule is robust if and only if it is strategically equivalent to AV .

Definition 6. A voting rule V is robust if any extension of V is strategically equiv-

alent to V .

Robustness requires that the set of electoral outcomes is not modified by allowing

voters to choose from a wider set of ballots.

A voting rule is normalized if the maximum score of a candidate in a ballot is

1. Remark that any ballot of a normalized rule can be expressed as the mixture

(convex combination) of AV ballots. Hence, for any normalized voting rule V which

extends AV , we have

Ove(BAV ) = Ove(BV ),

implying, by Theorem 1, the strategic equivalence of V and AV as summarized by

the next result. Furthermore, extending any voting rule V by “adding” the AV

ballots modifies the set of overstating ballots and hence leads to a voting rule which

is strategically equivalent to AV . We hence can state without proof the following

characterization of robust voting rules.

Theorem 4. A voting rule is robust if and only if it is strategically equivalent to

AV .
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7 Small Elections

The results previously presented are a consequence of the model used in which

voters’ perceptions over the impact of their ballots in switching the winner of the

election have a very specific shape. Such a theory fits particularly well the study

of mass elections. Indeed, as shown by further developments of the theory11, more

formal models give, roughly speaking, similar predictions depending on whether the

ordering condition is satisfied. However, it seems that the specific shape of expected

utility is not particularly relevant for studying voting in committees (that is voting

with few voters). Indeed, in a committee, the information a voter knows can be

much more detailed than in a large election.

When switching to an environment with few voters, we prove two results:

• Not overstating might be the unique best response for a strategic voter.

• The set of winners of an election is not significantly altered by allowing voters

to express an intensity of preference.

7.1 Overstating need not be optimal

In order to prove that not overstating may be a unique best response in a voting game

with few voters, we present two examples. The first one presents a pure strategy

equilibrium whereas the second one is a mixed strategy one. In order to test the

robustness of the examples, we focus on trembling-hand perfection à la Selten. The

definition of perfection is as follows:

Definition 7. A completely mixed strategy profile σε
N is an ε-perfect equilibrium in

an N -voters game if

∀i ∈ N , ∀bi, b̄i ∈ B, if Ui(b
i, σε
N\{i}) > Ui(b̄

i, σε
N\{i}), with σε(b̄i) ≤ ε,

in which Ui(b) denotes the payoff of voter i given the strategy combination b. We

refer to the strategy combination σN as a perfect equilibrium if there exists a sequence

{σε
N} of ε-perfect equilibria converging (for ε→ 0) to σN .

11See Myerson (2002) [20], Laslier (2009) [15], Núñez (2009) [24], Bouton and Castanheira (2010)

[3], Goertz and Maniquet (2010) [12], and Nuñez (2010) [23].
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Example 1:

There are three candidates K = {1, 2, 3} and three different types T = {a, b, c},
with cardinal utilities given by:

ua = (3, 1, 0), ub = (0, 3, 1) and uc = (0, 1, 3).

There are seven voters in the electorate. Voters 1 and 2 have type a, voters 3 and

4 have type b and voters 5, 6 and 7 have type c.

We consider Evaluative Voting in which voters can give up to two points to each

of the candidates.

We let f denote the strategy combination with

f = ((2, 0, 0), (2, 0, 0), (0, 2, 1), (0, 2, 1), (0, 0, 2), (0, 0, 2), (0, 0, 2)).

It is simple to see that voters 3 and 4 do not overstate. Besides, f is an equi-

librium in undominated strategies in which candidate 3 wins the election by more

than two votes.

Proposition 2. In Example 1, f is a perfect equilibrium in which some voters’ best

responses are not overstating.

This proposition, the proof of which is included in the appendix, shows that not

overstating might be a voter’s best response in a perfect equilibrium. Indeed, a

perfect equilibrium is the limit of completely mixed strategies of the voters that

arise as a consequence of uncorrelated mistakes of the voters. Hence, voters’ expected

utility is not anymore “smooth” as it is by assumption in the large elections model.

Example 2:

There are three candidates K = {1, 2, 3} and four different types T = {a, b, c, d},
with cardinal utilities given by:

ua = (6, 1, 0), ub = (0, 6, 1), uc = (0, 1, 6) and ud = (0, 3, 6).

There are seven voters in the electorate. Voters 1,2 and 3 have type a, voters 4 and

5 have type b, voter 6 has type c and voter 7 has type d .

We consider Evaluative Voting in which voters can give up to two points to each

of the candidates.

We let g denote the strategy combination

g = ((2, 0, 0), (2, 0, 0), (2, 0, 0), (0, 2, 1), (0, 2, 1), (0, 0, 2), g7).
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in which g7 stands for the mixed strategy 1/3(0, 0, 2) + 1/3(0, 1, 2) + (1/3)(0, 2, 2)

of voter 7. Every voter plays an undominated strategy in the strategy combination

g. It is easy to check that g is a mixed-strategy equilibrium of the election in which

voters 1 to 6 are playing a unique best response.

Proposition 3. In Example 2, g is a perfect equilibrium in which some voters’

unique best responses are not overstating.

Remark 1: The source of the non overstating behavior in the second example is

clearly the uncertainty faced by voters 4 and 5, as a consequence of the mixing of

voter 7. The same logic applies in a (Bayesian) game of incomplete information in

which voters are not sure of the type of their opponents.

Remark 2: The utility vectors in both examples are consistent with single-peaked

preferences.

7.2 Possible Winners remain unchanged

We now address the issue of the set of possible winners in an election with a small

number of voters. To do so, we give a proposition which extends a previous result

of De Sinopoli (2000) [7] (which focused in Plurality Voting). We show that any

candidate who is not a Condorcet loser can win the election under Plurality Voting

and Cumulative Voting.

Prior to stating it, we need the definition of Condorcet loser.

Definition 8. Candidate k’ is a Condorcet loser if

#{i ∈ N | ui(k) > ui(k
′)} > #{i ∈ N | ui(k′) > ui(k)} ∀ k ∈ K \ k′.

Proposition 4. In an election held under either PV or CV with at least 4 voters,

for every candidate k who is not a Condorcet loser there exists a perfect equilibrium

in which k wins the election.

Proof. Let 1 and 2 be two candidates who are not Condorcet losers. Let us divide the

voters in two groups: the voters who prefer candidate 1 to candidate 2, V (1, 2) =

{i ∈ N | ui(1) > ui(2)}, and the remaining ones V (2, 1) = {i ∈ N | ui(2) >

ui(1)}. Under CV , a voter can assign up to m points to a single candidate. Under

PV , the proof remains unchanged with the constraint that m = 1. Consider the

mixed strategy dε such that for every voter i ∈ V (1, 2), where ηi denotes the mixed
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strategy of voter that assigns equal probability to all his pure strategies with obvious

notations,

dεi = (1− ε− ε2)(m, 0, . . . , 0) + ε(0,m, 0 . . . , 0) + ε2ηi,

and such that for every voter i ∈ V (2, 1),

dεi = (1− ε− ε2)(0,m, . . . , 0) + ε(m, 0, 0 . . . , 0) + ε2ηi.

For each voter, the pivot event which becomes infinitely more likely as ε tends

towards zero is one in which candidates 1 and 2 are involved.1 Hence, each voter

plays his best response with probability higher than ε in the sequence of mixed

strategies dε. Besides, as ε approaches zero, every voter in the set V (1, 2) votes for

candidate 1, and every other voter votes for candidate 2, which implies that either

candidate 1 or candidate 2 wins the election, proving the claim.

The previous result implies that extending the set of available grades in the case

of PV does not refine in a relevant way the set of possible winners of elections with

few voters.

The reason why the equilibrium depicted by the Proposition 4 can be constructed

is simple. For any pair of candidates 1 and 2 (who are not Condorcet losers), we

split the electorate in two blocs: the ones who prefer candidate 1 to candidate 2 (the

partisans of candidate 1) and the ones who prefer candidate 2 to candidate 1 (the

partisans of candidate 2). Let us assume that partisans of candidate 1 assign her

the maximum number of points whereas partisans of candidate 2 behave in the same

manner with respect to candidate 2. Each of the two blocs is homogenous in the

sense that each voter makes the same mistakes. Hence, when casting his ballot, a

voter knows almost surely that, provided being pivotal, his vote will break the close

race between candidates 1 and 2. Therefore, it is a best response for the partisans

of a candidate to assign her the maximum number of points, proving that this is an

equilibrium. Both voting rules analyzed in the Proposition 4 share the feature that

a voter can assign the total number of points to a single candidate, leading to the

construction of this “almost-everything-can-happen” type of result.

The Majority Preferred Candidate In order to conclude our investigation in

the case of a reduced number of voters, we focus on the majority preferred candidate

situation, in a similar spirit to the one depicted by Nuñez (2010) [23]. Let us consider

a voting game held under Evaluative Voting. There are three types of voters in the

electorate:

ua = (3, 0, 1), ub = (1, 3, 0) and uc = (1, 0, 3),
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with voters 1,2 being of type a, voters 3 to 7 being of type b and voters 8 to 10 of

the third type. We will refer to candidate 2 as the majority preferred candidate as

5 voters over 10 rank him first. Candidate 1 is only ranked as a first option by two

over ten voters in the election but it can nevertheless be elected at equilibrium in

elections held under EV and AV as shown by next result.

Proposition 5. There exists a perfect equilibrium in which candidate 1 is the unique

winner of the election held under both EV and AV.

Proof. Under EV , a voter can assign up to m points to a single candidate. Consider

the mixed strategy eε where ηi denotes the mixed strategy of a voter that assigns

equal probability to all his pure strategies,

eεi = (1− ε− ε2)(m, 0, 0) + ε2ηi with i = 1, 2

eεi = (1− ε− ε2)(m,m, 0) + ε(0, 0,m) + ε2ηi with i = 3, . . . , 7,

eεi = (1− ε− ε2)(0, 0,m) + ε2ηi with i = 8, . . . , 10.

For each voter i = 1, 2, the pivot event which becomes infinitely more likely

as ε tends towards zero is (4m, 3m, 5m) so that it is a strict best response to vote

only for his first-ranked candidate. Similarly, for each voter i = 3, . . . , 7, the pivot

event which becomes infinitely more likely as ε tends towards zero is (4m, 2m, 5m)

so that it is a strict best response to vote for his first-ranked and his second-ranked

candidate. Finally, the event that determines voters i = 8, 9, 10’s best responses

is (5m, 3m, 4m) and hence their unique best response is to cast ballot (0, 0,m).

Besides, as ε approaches zero, candidate 1 wins the election as every voter who

votes for candidate 2 also votes for candidate 1, proving the claim.

The bottom-line of this example is that even if we do not provide a character-

ization of possible winners under Evaluative Voting, enlarging the set of possible

grades does not remove the coordination problems already present under Approval

Voting. Hence, one can intuitively think that the set of possible winners should

not be too refined by EV (when compared to AV ), if at all. Similar coordination

problems as the ones illustrated by Proposition 5 have been already identified by

Nuñez (2010) [23] in the case of AV . The logic of this unattractive equilibrium

boils down to voters’ anticipations. In a certain manner, AV performs better than

PV in preference aggregation as, with the former voting rule the voter does not

face the classical trade-off between voting for his preferred candidate and voting for

his preferred likely winner (the wasted-vote effect). However, this property of AV
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(and of EV ) may not be enough to ensure a correct preference aggregation in every

election. If the majority of voters anticipate that their preferred candidate is not

included in the most probable pivot outcome, this may lead to the election of an

unappealing candidate. Indeed, due to their anticipations, the majority of voters

favors their preferred likely winner by assigning her the maximum number of points

and at the same time vote for their preferred candidate, leading to the election of

the former candidate.

8 Conclusion

Building on the theory of strategic voting in large elections, we have derived a

sufficient condition for the strategic equivalence of voting rules that simply depends

on the ballots available to the voters. The condition says that whenever two voting

rules share the same set of overstating ballots (up to an affine transformation), then

they are strategically equivalent. Hence, such a condition helps us to draw some

conclusions over how adding ballots to a given voting rule modifies the set of voting

equilibria. First, we prove that it is possible to add ballots to both Plurality Voting

and Approval Voting without modifying the set of voting equilibria. In the case

of Approval voting, there is no difference between shouting (the Spartan Shout)

and voting (AV ) when voters act strategically. As far as Plurality voting (PV )

is concerned, Cumulative voting extends PV while being strategically equivalent

to PV . We then characterize robust voting rules, voting rules which set of voting

equilibria is not modified by adding any finite number of ballots. We show that

any robust voting rule is strategically equivalent to AV . As has been shown, the

previous results do not extend to a context with a reduced number of voters.

We have very few observations to back up, or to invalidate, these theoretical

results. Laslier and Van der Straeten (2004) [14] report on an experiment comparing

EV with the 0 to 10 scale and AV, and Baujard and Igersheim (2010) [1] report on an

experiment comparing EV with the 0-1-2 scale and AV. In both cases it is observed

that the outcome of the election (the elected candidate) is the same under the two

systems, even if it is not observed that voters concentrate on extreme grades.

An interesting extension of the present work would be to understand whether

similar results apply under proportional representation or in multi-seat elections in

which voters have to distribute their votes. Finally, it is noteworthy to underline that

our sufficient condition for strategic equivalence remains silent over the different rank

scoring rules as characterized by Young (1975) [30]. Indeed, there are no interior
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ballots in a rank scoring rule and the different scoring rules do not share the same

set of overstating ballots.
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A Appendix: Proof of Proposition 2

In an election held under Evaluative Voting in which voters can give up to two points

to each of the three candidates, voters have three undominated strategies: to give

two points to their favorite candidate, no points to their least preferred candidate and

zero, one or two points to their middle ranked candidate. The previous observation is

important, as in a perfect equilibrium voters only choose undominated strategies12.

It is easy to see that the strategy combination

f = ((2, 0, 0), (2, 0, 0), (0, 2, 1), (0, 2, 1), (0, 0, 2), (0, 0, 2), (0, 0, 2))

is an undominated equilibrium in which b-voters do not overstate and in which

candidate 3 wins the election. Consider the following completely mixed strategy

combination f ε, where ηi denotes the mixed strategy of voter i which assigns equal

probability to all his pure strategies.

i = 1,2 f ε
i = (1− 27ε2)(2, 0, 0) + 27ε2ηi

i = 3,4 f ε
i = (1− 27ε2)(0, 2, 1) + 27ε2ηi

i = 5,6,7 f ε
i = (1− ε1 − ε2 − 25ε2)(0, 0, 2) + (ε1 − ε2)(2, 0, 0) + (ε2 − ε2)(2, 2, 0) + 25ε2ηi,

in which ε1 = 1/3(ε+ ε2) and ε2 = 1/3(2ε− ε2).

It is easy to see that, for ε sufficiently close to zero, this is an ε-perfect equilib-

rium. Suppose all voters other than i choose the strategies prescribed by f . Then,

12See Corollary 2.2.6, page 29 in van Damme (1996) [29].
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the three undominated strategies of voter i are equivalent. Since for ε going to zero,

the probability of voter 5 (the same statement is valid for voters 6 or 7) to tremble

towards (2, 0, 2) or (2, 2, 0) is infinitely greater than the probability of any other

mistake, due to the trembling of one or several voters, it is enough to check that

in both of these events the limiting strategy is preferred to the other undominated

strategy.

For voters 1 and 2, the relevant contingencies which allow them to discriminate

between their three undominated strategies is when the behavior of the others is

summarized by the vectors (4, 4, 6) and (4, 6, 6). Let us denote their probabilities

given voter’s best responses by p((4, 4, 6) | f ε
−i) and p((4, 6, 6) | f ε

−i). Furthermore,

given voter’s best responses, we can write that 2p((4, 4, 6) | f ε
−i) = p((4, 6, 6) | f ε

−i).

Since

U1(2, 0, 0) = 3/2 p((4, 4, 6) | f ε
−i) + 4/3 p((4, 6, 6) | f ε

−i)

= 25/12 p((4, 6, 6) | f ε
−i)

> U1(2, 1, 0), U1(2, 2, 0).

Hence, (2,0,0) is the best reply to f ε
−i. The same statement is true for voter 2.

For voters 3 and 4, the relevant contingencies can be summarized by the vec-

tors (6, 2, 5) and (6, 4, 5). Let us denote their probabilities by p((6, 2, 5) | f ε
−i)

and p((6, 4, 5) | f ε
−i). Furthermore, given voter’s best responses, we can write that

2p((6, 2, 5) | f ε
−i) = p((6, 4, 5) | f ε

−i). Since

U3(0, 2, 1) = 1/2 p((6, 2, 5) | f ε
−i) + 4/3 p((6, 4, 5) |f ε

−i)

= 19/12 p((6, 4, 5) | f ε
−i)

> U3(0, 2, 0) = U3(0, 2, 2).

the non-overstating strategy is the best reply to f ε
−i. The same statement applies

for voter 4.

Similarly, one can deduce that for voters i = 5,6,7 casting ballot (0,0,2) is a

best response against f ε. Indeed, for voters 5, 6 and 7, the relevant contingencies

are summarized by the vectors (6, 4, 4) and (6, 6, 4). Let us denote their probabilities

by p((6, 4, 4) | f ε
−i) and p((6, 6, 4) | f ε

−i). Furthermore, given voter’s best responses,

we can write that 2p((6, 4, 4) | f ε
−i] = p((6, 6, 4) | f ε

−i). Since

U5(0, 0, 2) = 3/2 p((6, 4, 4) | f ε
−i) + 4/3 p((6, 6, 4) |f ε

−i)

= 25/12 p((6, 6, 4) | f ε
−i)

> U5(0, 1, 2), U5(0, 2, 2).
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the non-overstating strategy is the best reply to f ε
−i and similarly for voters 6 and

7.

Hence, {f ε} is a sequence of ε-perfect equilibria. Since f is the limit of f ε, it is

a perfect equilibrium in which voters’ best responses are not overstating.

B Appendix: Proof of Proposition 3

The first step of the proof consists in showing that g is a mixed strategy equilib-

rium. To do so, we compute the probability, under g, of each pivot outcome a

player can face and, from these probabilities, the expected utility derived from each

undominated strategy.

Voters 1,2,3

Even though the best responses are explained for the voter 1, the reasoning is

analogous for voters 2 and 3.

p((4, 4, 6) | g−1) = 1/3

p((4, 5, 6) | g−1) = 1/3

p((4, 6, 6) | g−1) = 1/3.

From the pivot probabilities previously described, we have

U1(2, 0, 0) = 25/9

U1(2, 1, 0) = 19/9

U1(2, 2, 0) = 13/9.

which entails that (2, 0, 0) is the unique best response for voter 1.

Voters 4,5

Voter 4’s best responses are analyzed, the reasoning being analogous for the

voter 5.

p((6, 2, 5) | g−4) = 1/3

p((6, 3, 5) | g−4) = 1/3

p((6, 4, 5) | g−4) = 1/3.

From the pivot probabilities previously described, we have

U4(0, 2, 0) = 1

U4(0, 2, 1) = 10/9

U4(0, 2, 2) = 1.

implying that (0, 2, 1) is the unique best response for voter 4.

Voter 6
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The most probable pivot outcomes faced by voter 6 are as follows

p((6, 4, 4) | g−6) = 1/3

p((6, 5, 4) | g−6) = 1/3

p((6, 6, 4) | g−6) = 1/3

From the pivot probabilities previously described, we have

U6(0, 0, 2) = 25/9

U6(0, 1, 2) = 19/9

U6(0, 2, 2) = 13/9.

implying that (0, 0, 2) is the unique best response for voter 6.

Voter 7

The most probable pivot outcome faced by voter 7 is the event (6, 4, 4). Due

to her utility profile, voter 7 strictly prefers to use an undominated strategy and is

indifferent among all of them: that is (0, 0, 2), (0, 1, 2), (0, 2, 2). Hence, the mixed

strategy g7 is a best response.

The second step of the proof consists in showing that g is a perfect equilibrium.

To do so, consider the following completely mixed strategy combination gε, where

ηi denotes the mixed strategy of voter i which assigns equal probability to all his

pure strategies.

i = 1,2,3 gεi = (1− 27ε2)(2, 0, 0) + 27ε2ηi

i = 4,5 gεi = (1− 27ε2)(0, 2, 1) + 27ε2ηi

i = 6 gεi = (1− ε− 27ε2)(0, 0, 2) + ε(0, 1, 2) + 27ε2ηi,

i = 7 gεi = g7 + 27ε2ηi.

It is easy to see that, for ε sufficiently close to zero, this is an ε-perfect equilib-

rium. Suppose all voters other than i choose the strategies prescribed by g. Since

for ε going to zero, the probability of voter 6 to tremble towards (0, 1, 2) is infinitely

greater than the probability of any other mistake, it is enough to check that the

limiting strategy is preferred to the other undominated strategy when either this

mistake or no mistake at all occurs.

For voters 1 to 5, the relevant contingency is the one described by the limiting

strategy g. Indeed, as has been shown, their unique best response is the one depicted

by g as when the trembles tends towards, they have a unique best response. For

voter 6, the same argument applies.
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Finally, one can deduce that for voter i = 7 casting the mixed strategy ballot

g7 is a best response, against gε. Indeed, for voter 7, the relevant contingency are

summarized by the vectors (6, 4, 4) and (6, 5, 4). Let us denote their probabilities

by p((6, 4, 4) | f ε
−i) and p((6, 6, 4) | f ε

−i). Since

U7(0, 0, 2) = 3p((6, 4, 4) | f ε
−i) + 3p((6, 5, 4) |f ε

−i)

= U7(0, 1, 2), U7(0, 2, 2).

the mixed strategy g7 is a best reply to gε−i.

Hence, {gε} is a sequence of ε-perfect equilibria. Since g is the limit of gε, it is

a perfect equilibrium in which voters’ best responses are not overstating.
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