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Limiting distribution of the continuity

modulus for Gaussian processes with

stationary increments

Zakhar Kabluchko

Institut für Mathematische Stochastik, Georg-August-Universität Göttingen,
Goldschmidtstr. 7, D-37077 Göttingen, Germany

Abstract

Let {X(t), t ∈ R} be a Gaussian process with stationary increments, zero mean and
a.s. continuous paths, whose variogram γ(t) behaves like c|t|α, c > 0, α ∈ (0, 2),
as t → 0. We show that the continuity modulus of X has asymptotically Gumbel
distribution. In the case α = 2, a non-Gumbel limiting distribution is obtained.

Key words: Lévy’s continuity modulus; Gaussian processes; Extremes.

1 Introduction

Let {X(t), t ∈ R} be a stochastic process. The continuity modulus {ωn, n > 0}
of X on the interval [0, 1] is defined as

ωn = sup
t∈[0,1]

(X(t +
1

n
) − X(t)).

If X is a standard Brownian motion, then a classical theorem of Lévy says
that

lim
n→ ∞ ωn/

√
2n−1 log n = 1 a.s.

A more precise result on the lim sup behavior of ωn is the integral test of Chung
et al. (1959); for the lim inf behavior see Révész (1982). Lévy’s continuity
modulus was generalized from Brownian motion to Gaussian processes with
stationary increments in Marcus (1968), Marcus (1970), Sirao and Watanabe
(1968), Sirao and Watanabe (1970).
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Here, we are interested in the properties of the distribution of ωn as n → ∞.
To formulate our result we assume that

(A) {X(t), t ∈ R} is a Gaussian process with stationary increments, zero mean
and a.s. continuous paths.

Recall that X is said to have stationary increments if the law of the process
{X(t + t0) − X(t0), t ∈ R} does not depend on the choice of t0 ∈ R. We
denote by γ(t) = E[(X(t) − X(0))2] the so-called variogram of X. Note that a
stationary Gaussian process with zero mean and covariance r(t) has stationary
increments, the variogram being γ(t) = 2(r(0) − r(t)).
We suppose that there exist α ∈ (0, 2) and c > 0 such that

(A1) γ(t) = c|t|α + o(|t|α) as t → 0.
(A2) γ is two times differentiable on (0, 1) and γ′′(t) < Ktα−2 for some K > 0

and all t ∈ (0, 1).

Note that the above conditions are satisfied for the fractional Brownian motion
having γ(t) = |t|α, as well as for the generalized Ornstein-Uhlenbeck process
and the generalized Cauchy model, the latter two being stationary Gaussian
processes having the covariance functions rOU(t) = e− |t|α, rCauchy(t) = (1 +
|t|α)−β and variograms γOU(t) = 2(1 − e− |t|α), γCauchy(t) = 2(1 − (1 + |t|α)−β),
where α ∈ (0, 2), β > 0. Another example is given by γ(t) = log(1 + |t|α),
α ∈ (0, 2).
For τ ∈ R and a constant Gα > 0 whose exact value will be not important for
us, define

un(τ) = (2 log n)
1
2 + (2 logn)− 1

2 (
2 − α

α
log log n + log Gα + τ). (1)

Theorem 1 Suppose that conditions (A), (A1), (A2) are satisfied. Then for
each τ ∈ R we have

lim
n→ ∞ P[ωn ≤

√
γ(1/n)un(τ)] = exp(−e−τ ).

The above theorem is valid for α ∈ (0, 2). For α = 2 the situation is quite
different.

Theorem 2 Suppose that X satisfies (A). Suppose further that γ has a Lip-
schitz continuous second derivative and set c = γ′′(0). Then there is a station-
ary Gaussian process ξ with zero mean and covariance E[ξ(0)ξ(t)] = γ′′(t)/c.
Further, for every τ ∈ R we have

lim
n→ ∞ P[ωn ≤

√
γ(1/n)τ ] = P[ sup

t∈[0,1]
ξ(t) ≤ τ ].
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2 Extremes of Gaussian processes

Our proofs are based on results about extremes of Gaussian processes. First,
we recall a fundamental theorem due to Pickands (1969a), Pickands (1969b),
see also Theorem 12.3.5 of Leadbetter et al. (1983).

Theorem 3 Let {X(t), t ∈ R} be a stationary Gaussian process with zero
mean, covariance function r(t) = E[X(0)X(t)] and a.s. continuous paths. Sup-
pose that for some α ∈ (0, 2] the following conditions hold

(B1) r(t) = 1 − |t|α + o(|t|α) as t → 0.
(B2) r(t) = 1 iff t = 0.
(B3) r(t) = o(1/ log |t|) as t → ∞.

Then, with un(τ) defined by (1),

lim
n→ ∞ P[ sup

t∈[0,n]
X(t) ≤ un(τ)] = exp(−e−τ ).

Pickands’ theorem was generalized in various directions. Here, we need the
following result about extremes of sequences of stationary Gaussian processes
due to Seleznjev (1991).

Theorem 4 For n > 0 let {ξn(t), t ∈ R} be a stationary Gaussian process
with zero mean, covariance function rn(t), and a.s. continuous paths. Suppose
that

(C1) rn(t) = 1 − cn|t|α + εn(t)|t|α, where cn and εn(t) satisfy limn→ ∞ cn = 1 and,
uniformly in n, limt→0 εn(t) = 0.

(C2) for every ε > 0 we have sup{rn(t) : n > 0, t ∈ [ε, n]} < 1.
(C3) for every ε > 0 there is T (ε) > 0 such that rn(t) log t < ε for every n > 0,

t ∈ [T (ε), n].

Let un(τ) be defined by (1). Then

lim
n→ ∞ P[ sup

t∈[0,n]
ξn(t) ≤ un(τ)] = exp(−e−τ ).

3 Proofs of Theorem 1 and Theorem 2

Before proving Theorem 1 in its full generality, we consider an instructive
special case. Suppose that X is a fractional Brownian motion with index α ∈
(0, 2), in which case γ(t) = |t|α. For n > 0 define a stationary Gaussian process

3
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{ξn(t), t ∈ R} by

ξn(t) =
X( t+1

n
) − X( t

n
)

√
γ(1/n)

. (2)

Note that the law of ξn does not depend on n due to the self-similarity property
of the fractional Brownian motion. The covariance function of ξn(t) is given
by r(t) = 1

2
(|1 − t|α + |1+ t|α) − |t|α and can be easily seen to satisfy conditions

(B1), (B2), (B3). Thus, by Pickands’ Theorem 3,

lim
n→ ∞ P[ωn ≤

√
γ(1/n)un(τ)] = lim

n→ ∞ P[ sup
t∈[0,n]

ξn(t) ≤ un(τ)] = exp(−e−τ ),

which proves Theorem 1 if X is a fractional Brownian motion.

Proof of Theorem 1. We suppose that X is a Gaussian process satisfying (A),
(A1), (A2). Define ξn as above by (2) and note that this time the law of ξn

may depend on n. We show that the sequence ξn satisfies the conditions of
Theorem 4. Note that ξn is stationary with E[ξn(t)] = 0, E[ξn(t)2] = 1. Using
the identity

E[X(t1)X(t2)] =
1

2
(E[X(t1)

2] + E[X(t2)
2] − γ(t1 − t2))

together with (2), it is easy to see that the covariance function rn(t) =
E[ξn(0)ξn(t)] is given by

rn(t) =
1

2γ(1/n)

[
γ(

1 − t

n
) + γ(

1 + t

n
) − 2γ(

t

n
)
]
. (3)

Using (A1), we may write γ( t
n
) = c| t

n
|α + | t

n
|αδ( t

n
), where lims→0 δ(s) = 0.

Then
rn(t) = 1 − cn|t|α + εn(t)|t|α,

where cn = c/(nαγ(1/n)) and

εn(t) =
1

2γ(1/n)|t|α

[
γ(

1 − t

n
) + γ(

1 + t

n
) − 2γ(

1

n
)
]

− δ(t/n)

nαγ(1/n)
.

Note that by (A1) we have limn→ ∞ cn = 1. To show that limt→0 εn(t) = 0
uniformly in n, we may assume that t ∈ (0, 1/2). By the mean value theorem
for the second order difference quotient, there is s = s(n, t) in the interval
[1−t

n
, 1+t

n
] such that

εn(t) =
1

2γ(1/n)|t|α

t2

n2
γ′′(s) − δ(t/n)

nαγ(1/n)
=

γ′′(s)nα−2

2nαγ(1/n)
|t|2−α − δ(t/n)

nαγ(1/n)
.

Now, by (A1), nαγ(1/n) remains bounded away from zero as n → ∞. Fur-
thermore, we have s ≥ 1/(2n) and thus, by (A2),

γ′′(s)nα−2 ≤ γ′′(s)(1/(2s))α−2 ≤ 22−αK.

4
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It follows that limt→0 εn(t) = 0 uniformly in n, which shows that condition
(C1) of Theorem 4 is satisfied. We show that (C3) holds. Fix ε > 0. We may
assume that t > 1. By the mean value theorem for the second order difference
quotient, we have, for some s = s(n, t) in [ t−1

n
, t+1

n
],

rn(t) =
1

2γ(1/n)

[
γ(

t + 1

n
) + γ(

t − 1

n
) − 2γ(

t

n
)
]

=
γ′′(s)

2n2γ(1/n)
.

First suppose that t ∈ [n
2
, n]. Then s > 1/3 for large n, and, by (A2), γ′′(s) is

bounded from above. Further, since by (A1) γ(1/n)nα is bounded away from
0, we obtain that for some constants C1, C2

rn(t) ≤ C1

(γ(1/n)nα)n2−α
≤ C2

n2−α
<

ε

log t
,

where the last inequality holds if n is sufficiently large. Now take some large
T0 and suppose that t ∈ [T0,

n
2
]. By (A2), we have γ′′(s) ≤ C3(t/n)α−2. Thus,

rn(t) ≤ C3t
α−2

2n2γ(1/n)nα−2
=

C3

2γ(1/n)nα
tα−2 ≤ C4t

α−2 <
ε

log t
,

where the last inequality holds if T0 is sufficiently large. This proves (C3). We
show that (C2) holds. Fix ε > 0 and let δ > 0. We may suppose that t ∈ [ε, T0],
since otherwise (C2) follows from the above proof of (C3). If n > N0 is big
enough, then it follows from (A1) that with c∗ = c − δ and c∗ = c + δ

c∗(t/n)α < γ(t/n) < c∗(t/n)α.

Analogous inequalities hold also for γ( 1
n
), γ( t+1

n
) and γ( t−1

n
). Thus, by (3),

rn(t) <
1

2c∗n−α

(
c∗ |t + 1|α

nα
+ c∗ |t − 1|α

nα
− 2c∗

tα

nα

)

=
c∗

2c∗
(|1 + t|α + |1 − t|α) − tα.

Note that supt∈[ε,T0]
1
2
(|1+ t|α + |1 − t|α) − tα < 1. Thus, for sufficiently small δ,

we have supt∈[ε,T0]
c∗
2c∗

(|1+t|α+|1−t|α)−tα < 1 and hence supt∈[ε,T0],n>N0
rn(t) <

1. This proves (C2).
Applying Theorem 4 to the sequence ξn, we obtain

lim
n→ ∞ P[ωn ≤

√
γ(1/n)un(τ)] = lim

n→ ∞ P[ sup
t∈[0,n]

ξn(t) ≤ un(τ)] = exp(−e−τ ).

This finishes the proof of Theorem 1. 2

Proof of Theorem 2. Let the assumptions of Theorem 2 be satisfied. Then, in

5
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particular, γ(t) = ct2/2 + o(t2) as t → 0. For n > 0 define a process ξn by

ξn(t) =
X(t + 1

n
) − X(t)√

γ(1/n)
. (4)

Analogously to (3), the covariance function of ξn is given by

rn(t) =
1

2γ(1/n)

[
γ(t +

1

n
) + γ(t − 1

n
) − 2γ(t)

]
.

Thus, for some s = s(n, t) ∈ [t − 1
n
, t + 1

n
],

rn(t) =
γ′′(s(n, t))

2n2γ(1/n)
→ γ′′(t)

c
, n → ∞.

It follows that γ′′(·)/c is a covariance function of some stationary Gaussian
process ξ. Since γ′′ is supposed to be Lipschitz continuous, we may choose
a version of the process ξ with continuous sample paths. We also take ξ to
have zero mean. Then it follows that the finite-dimensional distributions of ξn

converge to those of ξ.
Now we show that the sequence of processes {ξn(t), t ∈ [0, 1]}n>0 converges
to the process {ξ(t), t ∈ [0, 1]} in the sense of weak convergence on C[0, 1],
the space of continuous functions on [0, 1]. We need only to show that the
sequence ξn is tight. Using the usual mean value theorem twice, we obtain for
some s1 = s1(n, t) ∈ [t − 1

n
, t] and s2 = s2(n, t) ∈ [t, t + 1

n
]

r′
n(t) =

1

2γ(1/n)

[
γ′(t +

1

n
) + γ′(t − 1

n
) − 2γ′(t)

]
=

γ′′(s2) − γ′′(s1)

2nγ(1/n)
.

Using the Lipschitz continuity of γ′′, we obtain for some L, C > 0

r′
n(t) ≤ L|s2 − s1|/(2nγ(1/n)) ≤ L/(n2γ(1/n)) ≤ C.

It follows that for any t, s ∈ [0, 1]

E[(ξn(t) − ξn(s))2] = 2 − 2rn(t − s) = 2(rn(0) − rn(t − s)) ≤ 2C|t − s|.

Together with the fact that ξn(0) is standard Gaussian for every n, this implies
the tightness of the family ξn, see e.g. Corollary 11.7 of Ledoux and Talagrand
(1991). It follows that ξn converges to ξ weakly on C[0, 1] and hence

lim
n→ ∞ P[ωn ≤

√
γ(1/n)τ ] = lim

n→ ∞ P[ sup
t∈[0,1]

ξn(t) ≤ τ ] = P[ sup
t∈[0,1]

ξ(t) ≤ τ ].

This finishes the proof of Theorem 2. 2
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