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Let {X(t), t ∈ R} be a Gaussian process with stationary increments, zero mean and a.s. continuous paths, whose variogram γ(t) behaves like c|t| α , c > 0, α ∈ (0, 2), as t → 0. We show that the continuity modulus of X has asymptotically Gumbel distribution. In the case α = 2, a non-Gumbel limiting distribution is obtained.

Introduction

Let {X(t), t ∈ R} be a stochastic process. The continuity modulus {ω n , n > 0} of X on the interval [0, 1] is defined as

ω n = sup t∈[0,1] (X(t + 1 n ) -X(t)).
If X is a standard Brownian motion, then a classical theorem of Lévy says that lim n→∞ ω n / 2n -1 log n = 1 a.s.

A more precise result on the lim sup behavior of ω n is the integral test of [START_REF] Chung | On the Lipschitz's condition for Brownian motion[END_REF]; for the lim inf behavior see [START_REF] Révész | On the increments of Wiener and related processes[END_REF]. Lévy's continuity modulus was generalized from Brownian motion to Gaussian processes with stationary increments in [START_REF] Marcus | Hölder conditions for Gaussian processes with stationary increments[END_REF], [START_REF] Marcus | Hölder conditions for continuous Gaussian processes[END_REF], [START_REF] Sirao | On the Hölder continuity of stationary Gaussian processes[END_REF], [START_REF] Sirao | On the upper and lower class for stationary Gaussian processes[END_REF].
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Here, we are interested in the properties of the distribution of ω n as n → ∞.

To formulate our result we assume that (A) {X(t), t ∈ R} is a Gaussian process with stationary increments, zero mean and a.s. continuous paths.

Recall that X is said to have stationary increments if the law of the process {X(t + t 0 ) -X(t 0 ), t ∈ R} does not depend on the choice of t 0 ∈ R. We denote by γ(t) = E[(X(t) -X(0)) 2 ] the so-called variogram of X. Note that a stationary Gaussian process with zero mean and covariance r(t) has stationary increments, the variogram being γ(t) = 2(r(0)r(t)).

We suppose that there exist α ∈ (0, 2) and c > 0 such that

(A1) γ(t) = c|t| α + o(|t| α ) as t → 0.
(A2) γ is two times differentiable on (0, 1) and γ ′′ (t) < Kt α-2 for some K > 0 and all t ∈ (0, 1).

Note that the above conditions are satisfied for the fractional Brownian motion having γ(t) = |t| α , as well as for the generalized Ornstein-Uhlenbeck process and the generalized Cauchy model, the latter two being stationary Gaussian processes having the covariance functions r

OU (t) = e -|t| α , r Cauchy (t) = (1 + |t| α ) -β and variograms γ OU (t) = 2(1 -e -|t| α ), γ Cauchy (t) = 2(1 -(1 + |t| α ) -β ),
where α ∈ (0, 2), β > 0. Another example is given by γ(t) = log(1 + |t| α ), α ∈ (0, 2). For τ ∈ R and a constant G α > 0 whose exact value will be not important for us, define

u n (τ ) = (2 log n) 1 2 + (2 log n) -1 2 ( 2 -α α log log n + log G α + τ ). ( 1 
)
Theorem 1 Suppose that conditions (A), (A1), (A2) are satisfied. Then for each τ ∈ R we have

lim n→∞ P[ω n ≤ γ(1/n)u n (τ )] = exp(-e -τ ).
The above theorem is valid for α ∈ (0, 2). For α = 2 the situation is quite different.

Theorem 2 Suppose that X satisfies (A). Suppose further that γ has a Lipschitz continuous second derivative and set c = γ ′′ (0). Then there is a stationary Gaussian process ξ with zero mean and covariance E[ξ(0)ξ(t)] = γ ′′ (t)/c. Further, for every τ ∈ R we have

lim n→∞ P[ω n ≤ γ(1/n)τ ] = P[ sup t∈[0,1] ξ(t) ≤ τ ].
Our proofs are based on results about extremes of Gaussian processes. First, we recall a fundamental theorem due to Pickands (1969a), Pickands (1969b), see also Theorem 12.3.5 of [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF].

Theorem 3 Let {X(t), t ∈ R} be a stationary Gaussian process with zero mean, covariance function r(t) = E[X(0)X(t)] and a.s. continuous paths. Suppose that for some α ∈ (0, 2] the following conditions hold

(B1) r(t) = 1 -|t| α + o(|t| α ) as t → 0. (B2) r(t) = 1 iff t = 0. (B3) r(t) = o(1/ log |t|) as t → ∞.
Then, with u n (τ ) defined by (1),

lim n→∞ P[ sup t∈[0,n] X(t) ≤ u n (τ )] = exp(-e -τ ).
Pickands' theorem was generalized in various directions. Here, we need the following result about extremes of sequences of stationary Gaussian processes due to [START_REF] Seleznjev | Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes[END_REF].

Theorem 4 For n > 0 let {ξ n (t), t ∈ R} be a stationary Gaussian process with zero mean, covariance function r n (t), and a.s. continuous paths. Suppose that

(C1) r n (t) = 1 -c n |t| α + ε n (t)|t| α
, where c n and ε n (t) satisfy lim n→∞ c n = 1 and, uniformly in n, lim t→0 ε n (t) = 0. (C2) for every ε > 0 we have sup{r n (t) :

n > 0, t ∈ [ε, n]} < 1. (C3) for every ε > 0 there is T (ε) > 0 such that r n (t) log t < ε for every n > 0, t ∈ [T (ε), n].
Let u n (τ ) be defined by (1). Then

lim n→∞ P[ sup t∈[0,n] ξ n (t) ≤ u n (τ )] = exp(-e -τ ).
3 Proofs of Theorem 1 and Theorem 2

Before proving Theorem 1 in its full generality, we consider an instructive special case. Suppose that X is a fractional Brownian motion with index α ∈ (0, 2), in which case γ(t) = |t| α . For n > 0 define a stationary Gaussian process
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It follows that lim t→0 ε n (t) = 0 uniformly in n, which shows that condition (C1) of Theorem 4 is satisfied. We show that (C3) holds. Fix ε > 0. We may assume that t > 1. By the mean value theorem for the second order difference quotient, we have, for some

s = s(n, t) in [ t-1 n , t+1 n ], r n (t) = 1 2γ(1/n) γ( t + 1 n ) + γ( t -1 n ) -2γ( t n ) = γ ′′ (s) 2n 2 γ(1/n) .
First suppose that t ∈ [ n 2 , n]. Then s > 1/3 for large n, and, by (A2), γ ′′ (s) is bounded from above. Further, since by (A1) γ(1/n)n α is bounded away from 0, we obtain that for some constants

C 1 , C 2 r n (t) ≤ C 1 (γ(1/n)n α )n 2-α ≤ C 2 n 2-α < ε log t ,
where the last inequality holds if n is sufficiently large. Now take some large T 0 and suppose that t ∈ [T 0 , n 2 ]. By (A2), we have γ ′′ (s) ≤ C 3 (t/n) α-2 . Thus,

r n (t) ≤ C 3 t α-2 2n 2 γ(1/n)n α-2 = C 3 2γ(1/n)n α t α-2 ≤ C 4 t α-2 < ε log t ,
where the last inequality holds if T 0 is sufficiently large. This proves (C3). We show that (C2) holds. Fix ε > 0 and let δ > 0. We may suppose that t ∈ [ε, T 0 ], since otherwise (C2) follows from the above proof of (C3). If n > N 0 is big enough, then it follows from (A1) that with c * = cδ and c

* = c + δ c * (t/n) α < γ(t/n) < c * (t/n) α .
Analogous inequalities hold also for γ( 1 n ), γ( t+1 n ) and γ( t-1 n ). Thus, by (3),

r n (t) < 1 2c * n -α c * |t + 1| α n α + c * |t -1| α n α -2c * t α n α = c * 2c * (|1 + t| α + |1 -t| α ) -t α .
Note that sup t∈[ε,T0] 1 2 (|1 + t| α + |1 -t| α )t α < 1. Thus, for sufficiently small δ, we have sup t∈[ε,T0] c * 2c * (|1+t| α +|1-t| α )-t α < 1 and hence sup t∈[ε,T0],n>N0 r n (t) < 1. This proves (C2). Applying Theorem 4 to the sequence ξ n , we obtain This finishes the proof of Theorem 1.

2

Proof of Theorem 2. Let the assumptions of Theorem 2 be satisfied. Then, in

  n ≤ γ(1/n)u n (τ )] = lim n→∞ P[ sup t∈[0,n] ξ n (t) ≤ u n (τ )] = exp(-e -τ ).
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{ξ n (t), t ∈ R} by

Note that the law of ξ n does not depend on n due to the self-similarity property of the fractional Brownian motion. The covariance function of ξ n (t) is given by r(t) = 1 2 (|1 -t| α + |1 + t| α ) -|t| α and can be easily seen to satisfy conditions (B1), (B2), (B3). Thus, by Pickands' Theorem 3,

Proof of Theorem 1. We suppose that X is a Gaussian process satisfying (A), (A1), (A2). Define ξ n as above by (2) and note that this time the law of ξ n may depend on n. We show that the sequence ξ n satisfies the conditions of Theorem 4. Note that ξ n is stationary with

together with (2), it is easy to see that the covariance function

Using (A1), we may write γ(

Note that by (A1) we have lim n→∞ c n = 1. To show that lim t→0 ε n (t) = 0 uniformly in n, we may assume that t ∈ (0, 1/2). By the mean value theorem for the second order difference quotient, there is

Now, by (A1), n α γ(1/n) remains bounded away from zero as n → ∞. Furthermore, we have s ≥ 1/(2n) and thus, by (A2),

Analogously to (3), the covariance function of ξ n is given by

Thus, for some s = s(n, t)

It follows that γ ′′ (•)/c is a covariance function of some stationary Gaussian process ξ. Since γ ′′ is supposed to be Lipschitz continuous, we may choose a version of the process ξ with continuous sample paths. We also take ξ to have zero mean. Then it follows that the finite-dimensional distributions of ξ n converge to those of ξ. Now we show that the sequence of processes {ξ n (t), t ∈ [0, 1]} n>0 converges to the process {ξ(t), t ∈ [0, 1]} in the sense of weak convergence on C[0, 1], the space of continuous functions on [0, 1]. We need only to show that the sequence ξ n is tight. Using the usual mean value theorem twice, we obtain for some

Using the Lipschitz continuity of γ ′′ , we obtain for some L, C > 0

Together with the fact that ξ n (0) is standard Gaussian for every n, this implies the tightness of the family ξ n , see e.g. Corollary 11.7 of [START_REF] Ledoux | Probability in Banach spaces. Isoperimetry and processes[END_REF]. It follows that ξ n converges to ξ weakly on C[0, 1] and hence This finishes the proof of Theorem 2. 2