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Abstract We investigate the combined use of multiple structuring elements
with the standard morphological texture characterization tools,
namely morphological covariance and granulometry. The result-
ing operator is applied to both grayscale and color images in the
context of texture classi�cation. As to its extension to color tex-
ture data, it is realized by means of a weighting based reduced
vector ordering in the IHLS color space, equipped with genetically
optimized arguments. The classi�cation experiments based on this
framework are carried out with the publically available Outex13
texture database, where the proposed feature extraction scheme
outperforms the uni-variable versions of the operators under con-
sideration.

Keywords: Multivariate mathematical morphology, texture, granulometry, co-
variance, color ordering.

1. Introduction

Mathematical morphology (MM) o�ers a variety of tools for texture char-
acterization, such as granulometry, morphological covariance, orientation

maps, etc. The �rst two in particular have been employed successfully in a
number of texture analysis applications [3, 7, 22,23].

More precisely, granulometry is a powerful tool based on the �sieving�
principle, implemented by means of successive openings and/or closings with
structuring elements (SE) of various sizes, hence it is capable of extracting
shape and size characteristics from textures. Morphological covariance on
the other hand, is based on erosions with pairs of points separated by vectors
of various lengths, and provides information on the coarseness, anisotropy
as well as periodicity of its input.

In this paper, we concentrate on these two operators, and speci�cally on
the combined exploitation of their SE variables: size, distance and direction.
Since the original size-only de�nition of pattern spectra [13], these operators
have been extended in various ways (e. g. color, multivariate, attribute based
versions, etc). Relatively recent applications have explored for instance
the combination of SE shape and size as far as granulometry is concerned
[24,25], hence leading to a feature matrix rather than a vector, that describes



the combined size and shape distribution of its input. As to covariance, the
coupled use of SE pair distance and direction makes it possible to exploit the
anisotropic properties of textures additionally to their periodicity [12,23].

Here we investigate the ways of combining the complementary infor-
mation extracted by these two operators (e. g. concatenation, dimension
reduction, etc), and propose a hybrid of the two, where SE couples are
varied in terms of size, direction as well as distance. The proposed combi-
nation scheme is compared in terms of classi�cation accuracy, against the
standard de�nitions, using the publically available Outex13 color texture
database. The so far obtained experimental results show that it leads to an
improvement over the usual concatenation of feature vectors.

Furthermore, as far as the extension of this operator to color images is
concerned, since MM is based on complete lattice theory, a vector ordering
mechanism becomes necessary. Hence, we propose a weight based reduced
vector ordering, de�ned on the improved HLS (IHLS) color space, designed
speci�cally for the purpose of color texture classi�cation. This approach
makes it possible to optimize, for instance through genetic algorithms, the
weight of each component adaptively, according to the training set under
consideration.

The rest of the paper is organized as follows. Section 2 introduces brie�y
granulometry and covariance, and then elaborates on the combination of
their variables. In Section 3, the problem of extending morphological op-
erators to multivariate images is discussed, and the proposed ordering is
detailed. Next, Section 4 presents the experimental results that have been
obtained with the Outex13 database. Finally, Section 5 is devoted to con-
cluding remarks.

2. Morphological texture characterization

In this section, we start by recalling the basic texture categories along with
their perceptual characteristics, and then the covariance and granulometry
operators are introduced. Moreover, the combination of multiple SE related
variables is discussed.

2.1 Texture properties

According to the pioneering taxonomy work of Rao [19], textures can be
classi�ed with respect to their spatial distribution of details into four cate-
gories (Figure 1):

Strongly ordered: Textures consisting of the repetitive placement of
their primitive elements according to a particular set of rules.

Weakly ordered: Textures possessing a dominant local orientation,
which can however vary at a global level.

Disordered: Textures lacking any repetitiveness and orientation, and
usually described on the basis of their roughness.



Figure 1. Texture examples from the Brodatz album [5], from left to right, strongly
ordered, weakly ordered, disordered and compositional.

Compositional: Textures that do not belong to any of the previous
categories, and exhibit a combination of their characteristics.

In an e�ort to determine e�cient features, capable of discriminating
among the members of these categories, Rao and Lohse [20] have conducted
psycho-physical experiments, and identi�ed regularity (or periodicity), di-
rectionality and complexity as the most important perceptual texture char-
acteristics, as far as human observers are concerned. With the subsequent
work of Chetverikov [6] and Mojsilovic et al. [16], overall color and color

purity were added to this list.

2.2 Morphological covariance

This operator was initially proposed [14,15,22] as the equivalent in MM of
the autocorrelation operator. The morphological covariance K of an image
f , is de�ned as the volume Vol, i. e. sum of pixel values, of the image, eroded
by a pair of points P2,v separated by a vector ~v:

K(f ;P2,v) = Vol
(
εP2,v (f)

)
(1)

where ε represents the erosion operator. In practice, K is computed for
varying lengths of ~v, and most often the normalized version is used for
measurements:

Kn(f) = Vol
(
εP2,v (f)

)
/Vol (f) (2)

In the light of the aforementioned perceptual properties of textures, given
the resulting uni-dimensional covariance series, one can gain insight into
the structure of a given image [23]. In particular, the periodic nature of
covariance is strongly related to that of its input. Furthermore, the period
of periodic textures can easily be determined by the distance between the
repeated peaks, that appear at multiples of the sought period; whereas
the size of the periodic pattern can be quanti�ed by means of the width
of the peaks. In other words, their sharpness is directly proportional to
the thinness of the texture patterns appearing in the input. Likewise, the
initial slope at the origin provides an indication of the coarseness, with quick
drop-o� corresponding to coarse textures.



In order to obtain additional information on the directionality of f , one
can plot against not only di�erent lengths of ~v, but orientations as well [12].

2.3 Granulometry

Granulometry [14, 15] as a term belongs to the �eld of materials science,
where the granularity of materials is determined by passing them through
sieves. Using the same principle, this operator consists in studying the
amount of image detail removed by applying morphological openings γλ
and/or closings φλ of increasing size λ. The volumes of the opened (or
closed) images are then plotted against λ, or more usually their discrete
derivative Vol(γλ − γλ+1), i. e. pattern spectrum. The normalized version of
the operator can be written as:

Gn(f) = Vol (γλ(f)) /Vol (f) (3)

For unbiased measurements, the volume computation may be reduced
only to the area a�ected by the operator. As a featuring tool, granulom-
etry provides information on the shape and size of ordered textures, and
regularity of disordered textures [4, 23]. Furthermore, both operators can
be applied on a local or global level.

2.4 Proposed approach

Indeed, considering the fundamental perceptual texture properties men-
tioned in section 2.1, morphological covariance and granulometry provide
invaluable, yet complementary information on their input. More precisely,
covariance extracts a feature vector containing information on periodicity
and directionality, whereas granulometry concentrates rather on the granu-
larity of its input. Consequently both are necessary in the general case for
an e�cient texture description.

However, their combination is rather ambiguous, as it can be realized in
a variety of ways. The obvious method, is to calculate independently each
feature vector and then employ their concatenation. We propose here an
alternative way, which consists in unifying the two operators' functionalities
by varying in parallel multiple SE properties. As previously mentioned, the
use of multivariate granulometry and covariance has already been reported,
speci�cally, in the form of combined SE direction and distance [9], as far as
covariance is concerned, and shape and size combination with granulometry
[24,25].

We choose to implement with this purpose a combination of SE size,
direction and distance (Figure 2). For practical purposes, we replace the
erosion (ε) operator of covariance (2) with an opening (γ). Of course, on
the contrary of granulometry it is also necessary to employ SE pairs, so
that periodicity information may be extracted. Hence the following hybrid
expression is obtained:
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Figure 2. Illustration of structuring element pair variations, with respect to size,
direction and distance.

GKn(f) = Vol
(
γPλ,v (f)

)
/Vol (f) (4)

where Pλ,v denotes a pair of SEs of size λ separated by a vector ~v. However,
it should be noted that as the sieving principle of multiple morphological
openings is satis�ed if, and only if the SE is a compact convex set [15],
this combination no longer quali�es as a granulometry. In practice, only
the four basic directions (0◦, 45◦, 90◦, 135◦) are of importance, thus it was
chosen to integrate directional variation with distance as shown in Figure 2.
Of course, in case directionality becomes particularly signi�cant one can
always separate it as an additional dimension representing a �ner distinction
of directions, or even add one more dimension for shape distributions, where
di�erent SE shapes (e. g. disc approximation, square, lines, etc) are also
employed along with direction, size and distance.
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Figure 3. Plot of the feature matrices resulting from the application of expression
(4) on the strongly ordered (left) and disordered (right) texture of Figure 1.

Figure 3 presents the plots of the resulting features matrices, as applied
to the strongly ordered and disordered textures of Figure 1. Although their
size distributions are rather similar, their directionality and periodicitiy are
clearly distinct.

Moreover, as far as classi�cation is concerned, feature vector or matrix
size is of primary importance, since redundant information may eventually



be present and disrupt the overall process. Even with the moderate sizes
used in practice, the resulting feature set can easily become excessively large.
That is why dimension reduction techniques, such as principal component
analysis (PCA), as it will be shown in section 4, could become necessary.
Before testing the proposed approach, as well as the di�erent ways of its
use, in the next section a way of extending morphological operators, along
with the proposed hybrid operator, to color images is presented.

3. Extending to color images

As previously mentioned, color is an integral part of texture description, and
several ways of extracting color features have been reported, e. g. color his-
tograms, color correlograms, etc. According to Palm [18], these techniques
can be classi�ed into the following three categories:

Parallel approach: Color and intensity information is processed sepa-
rately. For instance a color histogram along with a co-occurrence matrix.

Sequential: Color information is �rst transformed into a greyscale
form, which is then processed with the tools available for intensity images.

Integrative: The color channels are processed either separately or si-
multaneously.

Here we choose to implement the third approach. The extension of
morphological operators to color and more generally to multivariate images
is still an open problem. Speci�cally, since the morphological framework is
based on complete lattice theory [21], it is theoretically possible to de�ne
morphological operators on any type of image data, as long as a complete
lattice structure can be introduced on the image intensity range. In other
words, at least a partial vector ordering is required. Several approaches
have been proposed with this purpose (e. g. marginal ordering, r-orderings,
c-orderings, etc), a comprehensive survey of which can be found in [1].

3.1 Color space

The choice of color space is of fundamental importance, as it can largely
in�uence the end results [11]. Here, we choose to follow the trend of the
last years in the domain of color morphology, and employ a polar color
space based on the notions of hue (h ∈ [0, 2π]), saturation (s ∈ [0, 1]) and
luminance (l ∈ [0, 1]). More precisely, although most polar color spaces
are essentially just a more intuitive description of the RGB color cube,
several implementations exist e. g. HSV, HSB, HLS, HSI, etc [8]. According
to Hanbury and Serra [10], the cylindrical versions of these spaces have
serious inconsistencies and are inappropriate for quantitative color image
processing. Hence we make our color space choice in favor of the improved

HLS space (IHLS) [10] using the L1 norm, which employs the original bi-
conic version of HLS.
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Figure 4. Vertical semi-slice of the cylindrical HLS (left) and bi-conic IHLS (right)
color spaces.

As illustrated in Figure 4, one of the most important drawbacks of the
cylindrical HLS space is the unintuitive de�nition of saturation. Speci�cally,
it is possible to have maximized saturation values for zero luminance. This
inconvenience, as well as the dependence of saturation on luminance are
remedied with the IHLS space, where the maximal allowed value for satura-
tion is limited in relation to luminance. Therefore, in order to bene�t from
the advantages of polar spaces in the context of multivariate morphology,
the ordering of IHLS color vectors is necessary.

3.2 Ordering color vectors

For the sake of simplicity, we have omitted the hue component at this stage
of our research from the ordering process, and instead we concentrate on
the relations of luminance (l) and saturation (s) (color purity). Luminance
is well known to account for the intensity variations and consequently, it
is often su�cient for the recognition of most objects, whereas color has a
rather auxiliary contribution. These two components may be ordered in a
variety of ways, for instance marginally, lexicographically, etc. A marginal
ordering strategy in this case:

∀ c, c′ ∈ [0, 1]2 , c ≤ c′ ⇔ c1 ≤ c′1 ∧ c2 ≤ c′2 (5)

is rather inappropriate as it does not take into account inter-channel rela-
tions. A lexicographical approach on the other hand, with luminance at top
position:

∀ c, c′ ∈ [0, 1]2 , c ≤ c′ ⇔ c1 ≤ c′1 ∨ (c1 = c′1 ∧ c2 ≤ c′2) (6)

prioritizes excessively the �rst component, since the second dimension (i. e.
saturation) does not contribute to the outcome of vector comparisons unless
an equality takes place at the �rst.

We choose to use a reduced or R-ordering where color vectors are �rst
reduced into scalar values and then ranked according to their natural scalar
order:

∀ c, c′ ∈ [0, 1]2 , c ≤ c′ ⇔ g(c) ≤ g(c′) (7)

Obviously the main issue at this point is the choice of the scalarization
function g : [0, 1]2 → R. In order to e�ciently combine the information



contained in saturation and luminance channels, their relations need to be
taken into account. Speci�cally, given the bi-conic form of IHLS, saturation
can reach its maximal value for medium luminance levels, whereas it is of
minimal importance for extreme levels (i. e. either too dark or too bright).
In order to model this relation we choose to use the sigmoid based transition
proposed in [2]:

l ∈ [0, 1], h(l) =

{
1

1+exp(−kL(l−ll)) if l ≤ 0.5
1

1+exp(kL(l−lu)) if l ≥ 0.5
(8)

where the slope kL = 10, and the lower and upper o�sets are respectively
ll = 0.25 and lu = 0.75. Its plot is given in Figure 5. The arguments of
h(l) were set empirically, and divide the luminance range roughly in three
regions, with the middle corresponding to important saturation levels.
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Figure 5. Plot of the weighting function h(l) for the importance of color purity in
relation to luminance.

Furthermore, the main problem consists in determining the in�uence of
each component. In other words, in what amount are we to use luminance
and saturation when comparing vectors? In the ideal case, one would follow
an image or vector speci�c approach, for example by increasing the contri-
bution of saturation if the image or vectors under consideration are highly
saturated. However, this method is in our opinion suitable for intra-image
problems such as �ltering, but ill suited for inter-image problems, such as
texture classi�cation. It results in using di�erent weights for each compo-
nent depending on the vectors or processed image, hence leading to a highly
adaptive approach, which undermines the comparability of the calculated
feature sets.

Therefore, we propose to follow a strategy where the contribution of
each component is dependent on the image database under consideration.
More precisely, g is de�ned as:

wl, ws ∈ R, ∀(l, s) ∈ [0, 1]2 , g(l, s) = wl × l + ws × h(l)× s (9)

where wl+ws = 1 are the weights of luminance and saturation respectively.
These weights are to be determined by means of a genetic algorithm, or any



other means of unsupervised optimization. Speci�cally, given the training
set of textures, the values of wl and ws are to be set to their values mini-
mizing the cost function w of features, that in turn minimizes the distance
of features among textures of the same class, and maximizes the distance
of textures belonging to distinct classes:

w = distintra−class + (1− distinter−class) (10)

Consequently, the color ordering becomes speci�c to the image database
under consideration. Of course this principle is by no means limited to
textures and can be applied in a likewise fashion for optimizing for instance
the ordering of multispectral vectors in remote sensing images. Application
results are given in the next section.

4. Results

In this section, we present the results that have been obtained using the
color textures of Outex13 (Figure 6) [17]. This set consists of 68 textures,
where every image has been divided into 20 non-overlapping sub-images,
each of size 128× 128 pixels, thus producing a total of 1360 images, which
are evenly divided as training and test sets. We compare four di�erent fea-
ture extraction schemes with both grayscale and color images. Speci�cally,
we test features computed using a granulometry (Granulometry) (3), mor-
phological covariance (Covariance) (2), their concatenation (Concatenated)
and �nally their proposed combined form (Combined).

Figure 6. Examples of the 68 textures of Outex13 [11].

More precisely, for granulometry square shaped SEs have been employed,
where a SE of size k has a side of 2k + 1 pixels, and k varied from 1 to 30
in steps of size 2. As to covariance, the four basic directions have been
used (0◦, 45◦, 90◦, 135◦) in combination with distances varying from 1 to
20. For their concatenated as well as proposed combined form (4) the same



arguments were in place. The 80x25 feature matrix that has resulted from
the combination option, was reduced into a matrix of size 2x80 by means of a
PCA transform and preserving only the �rst two dimensions. For grayscale
computations the luminance component of IHLS has been used, while for
the processing of color information the vectorial versions of operators were
implemented, based on the ordering (7), the weights of which have been
set in two ways. Besides using �xed values (Color: wl = ws = 0.5), the
optimization described in section 3.2 has been also implemented (Color-
optimized). The image set has been classi�ed using a kNN classi�er with
k = 1 and the Euclidean distance as a similarity metric.

The classi�cation accuracies, computed as the fraction formed by the
number of successful classi�cations divided by the total number of sub-
jects, are given in table Table 1. Globally, one can immediately remark
the positive, though comparably to intensity, small e�ect of using color
information. A result which asserts the auxiliary role of color in texture
recognition. Moreover, covariance systematically outperforms granulome-
try, hence showing the higher pertinence of periodicity and directionality
with this database, compared to granularity. The combination of the two
operators by means of a concatenation improves the accuracy levels, while
the proposed hybrid operator provides the overall best results, both with
color as well as grayscale images. Additionally, according to the obtained
values, the optimization scheme appears to result in database speci�c fea-
ture vectors, hence improving the overall performance.

Table 1. Classi�cation accuracies (%) for the Outex 13 textures.

Features Grayscale Color Color optimized

Granulometry 67.53 68.78 72.03

Covariance 73.82 76.92 80.46

Concatenated 77.75 79.93 83.74

Combined 83.53 85.53 88.13

5. Conclusion

As a fundamental problem of computer vision, several approaches have been
developed for texture description. Their extension to color images however is
still an open issue. In this paper, we have proposed a method for combining
the complementary information provided by the two basic texture featuring
tools o�ered by mathematical morphology. This combination by means
of varying multiple SE variables has the advantage of better capturing,
with respect to a mere concatenation, the three essential texture properties:
periodicity, directionality and complexity. Its extension to color data has



been realized using a reduced ordering in the IHLS space. The use of weights
results in a �exible solution that makes it possible for each image channel to
contribute to the vector comparison outcome. Furthermore, optimization
methods may be employed for rendering this ordering data speci�c.

The experiments that have been carried out on the Outex13 database,
have provided indications on the proposed methods' practical interest. Fu-
ture work will concentrate on the additional exploitation of shape informa-
tion. Moreover, the use of the hue component holds further potential of
improving the e�ciency for the computed feature vectors.

References

[1] E. Aptoula and S. Lefèvre, A comparative study on multivariate mathematical

morphology, Pattern Recognition 40 (November 2007), no. 11, 2914�2929, DOI
10.1016/j.patcog.2007.02.004.

[2] , On the morphological processing of hue, submitted to Image and Vision
Computing (2007).

[3] Aubert A., Jeulin D., and Hashimoto R., Surface texture classi�cation from morpho-

logical transformations, International Symposium on Mathematical Morphology (Palo
Alto, USA, June 16�18, 2000) (Goutsias J., Vincent L., and Bloomberg D.S., eds.),
Kluwer Academic Publishers, 2000, Mathematical morphology and its applications to
Image and Signal Processing, pp. 253-252.

[4] S. Batman and E. R. Dougherty, Size Distributions for Multivariate Morphological

Granulometries: Texture Classi�cation and Statistical Properties, Optical Engineer-
ing 36 (May 1997), no. 5, 1518�1529.

[5] P. Brodatz, Textures: a photographic album for artists and designers, Dover, New
York, 1966.

[6] D. Chetverikov, Fundamental structural features in the visual world, International
Workshop on Fundamental Structural Properties in Image and Pattern Analysis,
(Budapest, Hungary, September 6�7, 1999), pp. 47�58.

[7] Fricout G. and Jeulin D., Texture classi�cation from their morphological properties,
International Conference on Metrology and Properties of Engineering (Halmstad Uni-
versity, Sweden, September 2003), pp. 42�55.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, New
York, 1992.

[9] A. Hanbury, U. Kandaswamy, and D. A. Adjeroh, Illumination-invariant Morpholog-

ical Texture Classi�cation, International Symposium on Mathematical Morphology
(Paris, France, April 18�20, 2005) (C. Ronse, L. Najman, and E. Decencière, eds.),
Springer-Verlag, Dordrecht, Netherlands, 2005, Mathematical Morphology: 40 years
on, pp. 377�386.

[10] A. Hanbury and J. Serra, Colour Image Analysis in 3D-polar Coordinates, Interna-
tional Conference on Image Processing and its Applications (Magdeburg, Germany,
September 2003), pp. 124�131.

[11] T. Mäenpää and M. Pietikäinen, Classi�cation with color and texture: jointly or

separately?, Pattern Recognition 37 (August 2000), no. 8, 1629�1640.

[12] A. Mauricio and C. Figuerido, Texture analysis of grey-tone images by mathematical
morphology: a nondestructive tool for the quantitative assessment of stone decay,
Mathematical Geology 32 (2000), no. 5, 619�642.



[13] P. Maragos, Pattern spectrum and multiscale shape representation, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (1989), no. 11, 701�715.

[14] G. Matheron, Eléments pour une théorie des milieux poreux, Masson, Paris, 1975.

[15] , Random sets and integral geometry, J. Wiley, New York, 1975.

[16] A. Mojsilovi¢, J. Kova£evi¢, D. and R. J. Safranek and S. K. Ganapathy Kall, R.
J. Safranek, and S. K. Ganapathy, The vocabulary and grammar of color patterns,
IEEE Transactions on Image Processing 9 (2000), no. 3, 417�431.

[17] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllönen, and S. Huovinen,
Outex: New framework for empirical evaluation of texture analysis algorithms, In-
ternational Conference on Pattern Recognition (Quebec City, Canada, August 2002),
pp. 701�706.

[18] C. Palm, Color texture classi�cation by integrative co-occurrence matrices, Pattern
Recognition 37 (May 2004), no. 5, 965�976.

[19] A. R. Rao, A Taxonomy for Texture Description and Identi�cation, Springer-Verlag,
New York, 1990.

[20] A. R. Rao and G. L. Lohse, Identifying high level features of texture perception,
CVGIP: Graphical Models and Image Processing 55 (1989), no. 3, 218�233.

[21] C. Ronse, Why mathematical morphology needs complete lattices, Signal Processing
21 (October 1990), no. 2, 129�154.

[22] J. Serra, Image Analysis and Mathematical Morphology Vol I, Academic Press, Lon-
don, 1982.

[23] P. Soille, Morphological Image Analysis : Principles and Applications, Springer-
Verlag, Berlin, 2003.

[24] E. R. Urbach, N. J. Boersma, and M. H. F. Wilkinson, Vector-attribute �lters, In-
ternational Symposium on Mathematical Morphology, (Paris, France, April 18�20,
2005) (C. Ronse, L. Najman, and E. Decencière, eds.), Springer-Verlag, Dordrecht,
Netherlands, 2005, Mathematical Morphology: 40 years on, pp. 95�104.

[25] E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson, Connected Shape-Size

Pattern Spectra for Rotation and Scale-Invariant Classi�cation of Gray-Scale Images,
IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (February 2007),
no. 2, 272�285.


	On Morphological Color Texture Characterization
	Introduction
	Morphological texture characterization
	Texture properties
	Morphological covariance
	Granulometry
	Proposed approach

	Extending to color images
	Color space
	Ordering color vectors

	Results
	Conclusion


