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Abstract. The problem of colour image segmentation is investigated in
the context of mathematical morphology. Morphological operators are
extended to colour images by means of a lexicographical ordering in a
polar colour space, which are then employed in the preprocessing stage.
The actual segmentation is based on the use of the watershed transforma-
tion, followed by region merging, with the procedure being formalized as
a basin morphology, where regions are “eroded” in order to form greater
catchment basins. The result is a fully automated processing chain, with
multiple levels of parametrisation and flexibility, the application of which
is illustrated by means of the Berkeley segmentation dataset.

1 Introduction

Automatic, robust and efficient colour image segmentation is nowadays more in-
dispensable than ever, since numerous image depositories have been formed and
continue to grow with an increasing speed. As far as the human vision system is
concerned, edge information is primarily contained within the luminance compo-
nent. Hence colour is regarded as an invaluable, yet auxiliary component when it
comes to image segmentation and generally object recognition. The problem of
its efficient exploitation in this context remains to be resolved, because not only
the principles of human colour vision have not yet been fully understood, but
because it also introduces additional parameters in the already elusive problem
of general purpose image segmentation.

Specifically, one of the major questions is the representation of colour vectors
and the choice of the associated colour space. Since the desired segmentation
outcome is almost always based on the human interpretation of objects, it is
deemed natural to attempt to emulate the sensitivities of human colour vision.
That is besides the reason why polar colour spaces have been gaining popularity
in this regard. However as it will be elaborated in section 2, these spaces also
suffer from considerable drawbacks.

Among the approaches developed to resolve the problem of colour segmen-
tation, mathematical morphology offers a different perspective from the mostly
statistical and clustering based methods, since it is an algebraic image processing
framework capable of exploiting not only the spectral, but spatial relationships



of pixels as well. In this paper, we present a fully automated colour segmenta-
tion procedure, designed for polar colour spaces, based on morphological oper-
ators. In particular, the proposed approach consists primarily of manipulating
the catchment basins resulting from a watershed transformation, through their
interpretation as the new processing units for morphological operators. Hence
leading to a “morphology of basins”. A hierarchy of attributes is thus organised,
making it possible to merge these regions based on arbitrary characteristics such
as mean colour and texture. The resulting method is tested using the Berkeley
segmentation dataset [1].

The rest of the paper is organised as follows. Section 2 discusses initially the
crucial choice of polar colour space. Then in section 3 the proposed segmentation
approach is elaborated and its individual stages are detailed. Finally section 4
is devoted to concluding remarks.
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Fig. 1. Vertical semi-slice of the cylindrical HLS (left) and bi-conic IHLS (right) colour
spaces.

2 Choice of Colour Space

For the reasons mentioned in the previous section, here we concentrate on 3d-
polar colour spaces, that have appeared as the result of attempts to describe the
RGB cube in a more intuitive manner, from the point of view of human inter-
pretation of colour, in terms of luminance, saturation and hue. While luminance
L ∈ [0, 1] accounts for the amount of light, saturation S ∈ [0, 1] represents the
purity of a colour. The values of the periodical hue interval H ∈ [0, 2π[ on the
other hand, denote the dominant wavelength, with 0 corresponding to red.

Basically, polar colour spaces achieve this transformation by representing
colours with respect to the achromatic axis of RGB. Nevertheless, several imple-
mentational variants are available for this single transformation, e. g. HSV, HSB,
HLS, HSI, etc [2]. According to Hanbury and Serra [3], all of the aforementioned
colour spaces were developed primarily for easy numerical colour specification,
while they are ill-suited for image analysis. Specifically, although they were ini-
tially designed as conic or bi-conic shaped spaces, later on their cylindrical ver-
sions were employed in practice, in order to avoid the computationally expensive



(for that period) checking for valid colour coordinates. The passage from conic to
cylindrical shape however resulted in many inconsistencies within these spaces,
for instance by allowing fully saturated colours to be defined in zero luminance.
Extensive details on this topic can be found in [3].

Here we adopt the suggestion made in [3], and make our colour space choice
in favour of the improved HLS space (IHLS), which employs the original bi-
conic version of HLS, hence limiting the maximal allowed value for saturation
in relation to luminance (figure 1). Further advantages of IHLS with respect to
its counterparts include the independence of saturation from luminance, thus
permitting the use of any luminance expression (e. g. RGB average, perceptual
luminance, etc) and the comparability of saturation values.

Preprocessing Basin
extraction Merging Postprocessing

Input image Label image

Fig. 2. Summary of the proposed processing chain.

3 Proposed Approach

In an ideal world all images would have the same resolution, colour number and
overall complexity. Unfortunately it is not the case. The problem of segmenta-
tion in its most general form is highly difficult to resolve, as it aims to detect
the semantic regions of extremely heterogeneous input. Moreover semantic level
segmentation requires naturally some a priori information of semantic nature,
hence rendering it feasible only for domain specific applications, since no ontol-
ogy incorporating all types of objects exists. Consequently a more “practical and
realistic” aim, also adopted here, is to attempt to detect the principal regions of
images with respect to homogeneity, which is a task most important for content
based image retrieval.

Considering the vast heterogeneity of image data, an equally high degree of
adaptability is crucial, which will take into account the different types of border
information contained within an image, e. g. spectral, textural, etc. To this end,
we propose the processing chain summarised in figure 2. Briefly, the input im-
age is first simplified using border preserving morphological operators and then
through the combination of a colour gradient and the watershed transformation,
the catchment basins are obtained. Next, an iteratively applied hierarchical fu-
sion is carried out, providing a rough approximation of the sought borders, that
are finally refined in the last stage by means of a marker based watershed trans-
formation. Details on each step follow.



3.1 Preprocessing

This first step aims to simplify the input image, and eliminate any “excessive”
details. The morphological toolbox offers a rich variety of operators for this pur-
pose, however, several issues arise. The first concerns the extension of grayscale
morphological operators to colour images, a theoretical problem stemming from
the need to impose a complete lattice structure on the pixel intensity range,
which in the case of multivalued images, is equivalent to the need to order vec-
torial data [4, 5]. Several approaches have been developed to this end, a survey
of which may be found in [6]. Here, it has been chosen to order the colour vectors
of the IHLS space by means of a lexicographical ordering:

(h1, s1, l1) < (h2, s2, l2) ⇔







l1 < l2, or
l1 = l2, s1 < s2 or
l1 = l2, s1 = s2 and h1 < h2

(1)

where l1, l2, s1, s2 ∈ [0, 1] and h1, h2 ∈ [0, 2π]. As the hue component is a circular
value, an angular distance from a reference hue h0 [7] is employed for their
comparison:

h ÷ h0 =

{

|h − h0| if |h − h0| < π
1 − |h − h0| if |h − h0| ≥ π

(2)

which for the sake of simplicity is set as h0 = 0.0. The hue values are then
ordered according to their distances from h0:

∀ h, h′ ∈ [0, 2π], h < h′ ⇔ h′ ÷ h0 < h ÷ h0 (3)

where hues closer to h0 are considered greater. Hence, with the luminance com-
ponents compared first, this ordering leads to operators that process particularly
this channel, containing the majority of the total variational information.
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Fig. 3. From left to right, the original image (#101087), its preprocessed form and
the intensity transition of the white line in the original image, for a reconstructive and
standard processing based leveling.



Equipped with this ordering, erosion (ε), dilation (δ) and all the deriving
grayscale morphological operators may be extended to colour data. Nevertheless,
a second issue in this regard is the need for border preserving operators. That is
why, it was chosen to employ a morphological leveling Λ(f,m) [8], which provides
a simplified version of the input image f , by applying iterative geodesic erosions
and dilations to the marker m, a rough approximation of the input, until idem-
potence, i. e., Λ(f,m)i = sup

{

inf[f, δi(m)], εi(m)
}

, until Λ(f,m)i+1 = Λ(f,m)i.
The marker image is obtained by means of a reconstruction based opening fol-
lowed by a reconstruction based closing. The result is a “leveled” image, of which
the details smaller that the structuring element’s (SE) size have been removed
while also preserving perfectly all the region borders (figure 3). The size of the
SE, typically a square of 7×7 pixels is determined with respect to the dimensions
of the input image.

3.2 Basin extraction

Having simplified the input, this step consists in computing a first segmentation
map of the image using the watershed transformation. As this powerful operator
can be applied only to a scalar input representing the topographic relief of the
image, it has been chosen to combine the colour channels by means of a channel
wise maximum of marginal gradients:

ρHLS(h, s, l) = max {ρ(l), ρ(s), ρH(h)} (4)

where ρ = f − ε(f) is the standard internal morphological gradient. Although
the components of the polar colour spaces are highly intuitive, their combination
is relatively problematic. In particular, hue is of no importance if saturation is
“low”, while the bi-conic shape of the colour space assures that no high saturation
levels exist, if luminance is not “high enough”. Hence the hue gradient needs to
be weighted with a coefficient that has a strong output only when both compared
saturation values are “sufficiently high”:

ρH(h) = max
i∈B

{j(s, si) × h ÷ hi} − min
i∈B

{j(s, si) × h ÷ hi} (5)

where B is the local 8-neighborhood and j(·, ·) a double sigmoid controlling the
transition from “low” to “high” saturation levels:

j(s1, s2) =
1

(1 + exp(α × (s1 − β))) × (1 + exp(α × (s2 − β)))
(6)

where α = −10 and the offset β = µS is set as the mean saturation of the image,
hence making it possible to adapt the gradient’s sensitivity to colour, accord-
ing to the image’s overall colourfulness level. The application of the watershed
transformation on the newly computed gradient leads to the result depicted in
figure 4.



Fig. 4. From left to right, the hand reference segmentation, the proposed colour gradi-
ent and its oversegmented watershed transformation result, superposed on the original
image.

3.3 Merging

Given the sensitivity of the internal gradient, the oversegmented result has been
expected in the previous step. Considering that the sought borders are contained
within this complex of adjacency relations, from this point on all efforts are
concentrated on eliminating the unwanted borders, and thus increasing the sizes
of the catchment basins. Merging the mosaic of basins obtained by watershed
transformation is a well known technique in automated image segmentation [9,
10]. Here we follow a graph based formalisation for this procedure.

As each basin represents a locally homogeneous region, despite the level of
oversegmentation, by providing spectrally atomic regions, the entire watershed
procedure greatly reduces the volume of clustering to be carried out in the later
stages. At this point, based on the atomicity of each basin, one can proceed
by manipulating the image content with the catchment basins being the new
processing “image units”, instead of pixels. Hence the image can be viewed as
an undirected graph of basins, where each node is characterised by a set of
spectral and other properties (e. g. mean colour, variance, etc) as well as its set
of adjacent basins, or neighbours.

With this point of view, the merging procedure, can be defined as an oper-
ator on this graph, which propagates labels, and modifies adjacency relations.
Furthermore, by imposing a complete lattice structure on the “value interval”
of basins, one can define morphological operators, hence leading to a basin mor-

phology. In particular, by formulating the merging of basins, as the replacement
of each node, by its closest with respect to a certain metric, the operator becomes
intuitively similar to an erosion. While a dilation would dually replace each node
with its most distant neighbour. However this option is of no interest on its own.
Consequently, the basin erosion (εb) and dilation (δb) of a graph G = (V,E) can



be defined respectively as:

εb(G) =

{

G | ∀Vi ∈ V, label(Vi) = label( argmin
Vj∈N(Vi)

d(Vj , Vi))

}

(7)

δb(G) =

{

G | ∀Vi ∈ V, label(Vi) = label(argmax
Vj∈N(Vi)

d(Vj , Vi))

}

(8)

where N(Vi) is the set containing the neighbours of Vi. Several operators may be
derived from the combinations of these two, their efficiency however in this con-
text is strongly related to the metric of similarity in use (d(·, ·)). Consequently,
one can implement a rich variety of merging strategies, where each is based on
a different basin similarity metric, exploiting some of their properties.
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Fig. 5. Hierarchy of merging criteria.

We propose a hierarchical approach in this regard, as illustrated in figures
5 and 6, which consists in employing various properties of the basins in differ-
ent scales, in order to compute their distances and hence realise their erosions
(i. e. mergings) by means of equation (7). Specifically, it begins with a series of
thresholded erosions based on their mean colour, where only the basins that are
closer than a predefined limit are taken into account. This first step aims to
merge only spectrally similar basins. The colour distance in use is:

∀ c1 = (h1, s1, l1), c2 = (h2, s2, l2),

d(c1, c2) = j(s1, s2) × h1 ÷ h2 + (1 − j(s1, s2)) × |l1 − l2|
(9)

By means of factor j(·, ·), a saturation based continuous transition of priority is
realised between hue and luminance. This low level step is carried out iteratively
with thresholds starting from t0 = 0.01 and increasing until tmax, which doubles
the initial intra-basin variances. This process results in a preliminary segmen-
tation map, where relatively homogeneous regions appear. Next, we modify the
distance metric so as to eliminate intensity gradients, and apply it using the
same threshold. For this purpose, the erosions are computed by taking into ac-
count only the bordering pixels of basins. Whereas at the third step, higher level
merging criteria are employed. Specifically, in order to calculate the textural
similarity of basins, their mean covariance vector is used:

K(f) = Vol
(

εP2,v
(f)

)

/Vol (f) (10)



where P2,v is a pair of points separated by a vector v and Vol the volume, i. e.
sum of pixel values. Of course one is by no means limited with these criteria; for
instance border geometry may be further exploited. The threshold in this case
is fixed as the mean covariance vector of the entire image.

Fig. 6. From left to right, the three levels of merging using the principle illustrated in
figure 5.

3.4 Post-processing

Once this stage is reached, the principal regions of the input are expected to
have been formed. As a last touch one can eliminate all regions inferior to a
certain surface, by merging them with their closest neighbor. A more serious
problem however, concerns the possibility of local deviations from the sought
borders, since according to the definition of the proposed erosion operator, basin
processing has been carried out so far using only the immediate neighborhood
of each basin.

To counter this phenomenon, one can employ for instance multiple scales by
modifying the size of the processed neighborhood, or in other words the shape
and extent of the SE. Another possibility is to profit from the topological prop-
erties of the marker based watershed transform, which by limiting the flooding
sources, provides an absolute control over the number of regions that are formed.
As to the markers, once can very simply erode the binary region map, while pre-
serving their connectivity. Thus, flexibility areas are formed among them which
make it possible to realise topological border corrections (figure 7).

4 Discussion and conclusion

In this paper, an unsupervised and input specific colour image segmentation
method has been presented. It has been developed for the improved HLS space,



Fig. 7. From left to right, the segmentation result using the jump connection algorithm
[11], the marker image and the final marker based watershed result.

and constitutes an attempt to integrate the spatial sensitivities of morphological
operators with spectral image properties. Furthermore, a graph based morphol-
ogy approach has been formulated in order to manipulate the catchment basins
produced by the watershed transform. This formulation aims mainly to provide
a more efficient and flexible exploitation framework for the wealth of topological
information provided by the aforementioned transform.

Pertinent results have been obtained with the Berkeley dataset (figures 8),
even by using the basic erosion definition in combination with a hierarchy of
multiple merging criteria, ranging from mean colour to covariance based texture
features. While more sophisticated operators (e. g. geodesic reconstruction of
basins, etc), as well as the exploration of further basin metrics remain to be in-
vestigated. Its execution speed and adaptivity, along with its capacity to provide
the “main” borders of its input, render this approach suitable for applications
where precision is of secondary importance, and a fast and robust segmentation
is prioritised (e. g. content based image retrieval).

Issues that require further attention include improving the estimation of ar-
guments as well as the use of additional high level merging criteria, such as
border geometry.
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Fig. 8. From left to right, the original images, their segmentations based on
jump connection [11] and based on the proposed approach (top to bottom:
#3096,#42049,#143090 and #145086.


