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Abstract In dentin restoration, collagen fiber network infiltration is an issue. Using
data from the litterature, we have constructed a relevant numerical geometrical model
of the network. The specificity of our model is that the fibers are taken into account
implicitly using a regularized Heaviside function. This function is either used to set the
viscosity or to localize the contact line where capillary forces are applied. A level set
technique with respect to fluid infiltration front tracking in five fiber networks using
the level set method and Navier-Stokes equations with capillary terms is used to point
out efficient critical infiltration parameters. A variational formulation which can be
implemented in FEM is proposed both for the infiltration front and the contact line.
Because of lack of knowledge on fiber orientation, different configurations were tested
through permeability assessment of the whole network. Fiber orientation, interfibrillar
space and contact angle influence were investigated.

Keywords Demineralized dentin · Collagen fiber network modeling · Permeability ·
Level set method · Capillarity

1 Introduction

In restorative dentistry, adhesion to dentin is currently achieved by creating a mi-
cromechanical seal between a resin and demineralized dentin. Demineralized dentin
is a porous medium made of enlarged tubules and interfibrillar spaces between colla-
gen fibrils that have been uncovered by demineralization (Figure 1). Infiltration of the
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restorative material in the tubules leads to the creation of resin tags and the fibrous
tissue infiltration leads to what is called a hybrid layer consisting of encapsulated col-
lagen fibrils. This hybrid layer or micromechanical interlocking was first observed by
Nakabayashi et al. [1] who stated that good bonding was not provided by resin tags.
Consequently, the restoration retention quality is ruled by the quality of the hybrid
layer.

Practitioners encounter a lack of durability of the seal [2] due to the incomplete and
heterogeneous infiltration of this layer leading to degradation of the bond. Monomers do
not always fully penetrate the porous substrate [3,4]. A phase separation was reported
by Spencer Wang [5], the collagen network playing the role of filter between resin
phases. These defects of the hybrid layer lead to further degradation [6], which affects
bonding durability [7].

Fig. 1: The two types of porosity of demineralized dentin

A better understanding of the infiltration of the collagen scaffold is thus a prereq-
uisite to the improvement of bonding conditions. In this study, we try to model the
dentinal collagen tissue geometry and its infiltration using a level set method and finite
elements. This method is often used to track a front: Prodanovic & Bryant [8] used
it to determine critical curvatures for drainage and imbibition for example, but to the
authors’ knowledge no front tracking using this method has been done on fiber beds.
Clague & Phillips [9] used the Lattice-Bolzmann method to determine layered arrays
of cylinders and Schultz et al. [10] developed a Full Morphology (FM) model studying
two-phase flow in an array with cylinders randomly oriented in parallel planes. The
FM approach was compared to Lattice Bolzmann by Vogel et al. [11]. We chose to use
the level set method since a special meshing of the front to be tracked is not needed
e.g. at fiber intersections. Here, the fibers are only described through the localization
of capillary forces at the triple line junction.

The final aim of this study was to test the numerically infiltrated collagen network
with its future oral loading to highlight infiltration parameters that lead to sufficient
quality of bonding. Thus, in this paper a model of the network and infiltration tests
depending on parameters such as fluid surface tension properties and network charac-
teristics are presented. We first present how we have modeled the network and validated
it through Darcy’s permeability numerical tests. Then we deal with the infiltration of 3
types of network differing by the orientation of the fibers The crucial role of fiber spac-
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ing and of fiber orientation is pointed out. The contact angle effect on the rise or fall
of the front is also assessed. And the effect of crossing fibers that enhance infiltration
rate is observed.

2 Collagen tissue modeling

After briefly describing the real network made of collagen fibers, the numerical collagen
fiber network model and its validation with respect to permeability comparison with
literrature values are presented.

2.1 Network modeling

It is customary to model biological materials by using magnetic resonance imaging
to build a mesh. Here we are not especially interested in one realization that would
need statistical analyses of many images, but by the qualitative mean features of the
network. This is why we preferred to build directly a numerical network. Furthermore,
the network is not modeled in a classical way: we avoid meshing problems by defining
the fibers and the surrounding fluid as an heterogeneous fluid. Before detailing our
modeling approach, we present basic knowledge about this network so as to have entry
parameters for the model.

2.1.1 Characteristics of the real network

This network has been widely observed, especially by transmission electron microscopy
(TEM), scanning electron microscopy (SEM) [12] and atomic force microscopy (AFM)
[13]. Figure 2a is a FESEM image of the collagen network obtained after drying, which
is why the fibers diameter are smaller than in the hydrated state, where the range of
diameters is 50-100 nm [13]. The collagen fiber network porosity was assessed using
mercury porosimetry and is roughly 55% [14]. No quantitative study on fiber orientation
was done, although a dependence on localization was observed [15–17]. So, different
types of network are studied in the following sections.

2.1.2 An implicitly materialized network

In our model the collagen fiber network is a cylinder network. Cylinder diameter is 80
nm and its height is larger than the control volume (a representative volume element
is discussed in 2.2.2).

The geometry is not explicitly modeled but taken into account using a variable
viscosity. Thus, we consider a heterogeneous fluid with two different viscosities instead
of a solid immersed in a homogeneous fluid: the cylinders have a much larger viscosity
than the surrounding fluid. As fiber orientation is not known deterministically, we
propose to take randomly oriented networks of cylinders (RAND networks). Networks
with a preferential orientation of the fibers are also built and called PAR or VERT
networks. The target porosity fixes the number of cylinders in the control volume. Each
cylinder center Xi is randomly set in a control volume. Then its direction ai is randomly
taken for realizations of RAND networks. For PAR networks, ai verifies ai.iz = 0 with
iz the third vector of the basis, that is to say, in PAR networks cylinders are placed in
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(a) The collagen fiber network (b) The numerical network

Fig. 2: Real and modeled collagen fiber network

parallel planes perpendicular to iz direction. For VERT networks, ai verifies ai.iz = 1,
that is to say, in VERT networks cylinders are parallel to the iz (the flow direction).

The cylinders are materialized using a Boolean sum of regularized Heaviside func-
tions cyl(x, y, z) representing the cylinder distribution. Figure 2b illustrates fiber dis-
tribution through the viscosity representation within the control volume. The viscosity
is set (with µf , the fluid viscosity):

µ(x, y, z) = µf + 1000 ∗ cyl(x, y, z) (1)

2.2 Model validation through comparison with explicit modeling and permeability
assessment

2.2.1 Flow around one single fiber to validate the implicit model

To validate our model, the equivalence between an explicitly modeled fiber (that is to
say a solid fiber immersed in a fluid) and a fiber constructed with the method presented
above is tested. The same pressure gradient and boundary conditions are applied to
the same control volume, first with a fiber modeled as a solid cylinder then with a fiber
materialized by a high viscosity. The results are illustrated in figure 4.

The flows around the two fibers are comparable and the flow inside the high vis-
cosity area is vanishingly small (figure 3b). The discharge is in the same range in the
two cases with one fiber (see table 1). These results confirm that the model is well
fitted to simulate the flow around fibers. It is possible to set the parameters of the
regularized Heaviside function (diameter and dimension of the smoothed transition)
to exactly reach the same results in the two cases, but as we only know the range of
the real diameter of dentinal collagen fibers, it is unnecessary to invoke such accurate
computations in our study.
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(a) Explicitly modeled fiber (b) Implicitly modeled fiber

Fig. 3: Streamline and velocity field plot around one fiber. (a): The fiber is explicitly
modeled. The tube radius of the streamline is proportional to the velocity field. (b):
The fiber is implicitly modeled : the fiber is represented by the isovalue 0.5 of the
function cyl

one implicit fiber one explicit fiber no fiber
Figure 3b Figure 3a (ref)R

udS
(
R

udS)ref
(%) 12.5 17.5 100

Table 1: Permeability comparison in three cases: one implicit fiber, one explicit fiber
and no fiber

2.2.2 Permeability assessment

For porous media, permeability is a key parameter. Its assessment is a way to validate
our model by comparing our results with known values. The permeability changes
with regards to fiber orientation are discussed in section 4, but here only a RAND
network is considered. The first step in determining permeability is to choose the
control volume and the boundary conditions. Then a pressure gradient is applied and
Darcy’s permeability is determined.

RVE and boundary conditions
To assess permeability we have to choose an appropriate control volume that has to

be a representative volume element (RVE). The RVE is usually regarded as a volume V
of heterogeneous material that is sufficiently large to be statistically representative of
the whole material [18]. The RVE must be sufficiently large to include a sampling of all
microstructural features of the material, which means here that the RVE must include
a large number of fibers. Giman et al. [19] remark that the RVE should contain enough
information on the microstructure yet be sufficiently smaller than the macroscopic
structural dimensions. Finally, we choose a volume of roughly 25 times a fiber diameter
to assess the network permeability so that a cube of 2 µm is chosen. Whereas this
modeling of the fibers has certain advantages concerning meshing, the shortcoming of
the implicitly modeled fibrils is that a no slip boundary condition is necessary to prevent
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the network from following the induced flow. So the RVE has to be taken inside a larger
volume where we set no slip conditions (larger cube of size 4 µm) and the auxiliary
smaller cube is used to assess permeability. Using such technical precautions, pertinent
permeability estimations can be obtained.

Darcy’s permeability
Darcy’s permeability K was assessed using a representative control volume (defined

in 2.2.2).
To determine the permeability tensor, a pressure gradient is applied to two parallel

faces of the control volume:

u = −K
µ
∇p (2)

This law links u, the bulk-averaged flow velocity (m/s), to the pressure gradient∇p
(Pa/m) applied, µ the fluid viscosity (Pa.s) via Darcy’s specific permeability K (m2).
The mean permeability for a collagen fiber network with a fiber diameter of 80 nm
randomly set in the RVE to reach 55% porosity is found to be approximately:

KRAND = 10−18m2 (3)

Comparison with other studies
This value is in agreement with experimental and semi-empirical studies (see the

review of Swartz & Fleury [20]). Happel [21] proposed a relationship that gives the
estimated flow resistance as a summation of the resistance of cylindrical fibers parallel
and perpendicular to flow:

K =
εr2

h

k
, (4)

where rh =
(s2 − d2)

4d
,k = (2/3)k+ + (1/3)k−, s is fiber spacing (50 nm), d is fiber

diameter (80 nm), ε is the network porosity (55% in our case) and given expressions
of k+ and k− (functions of ε).

This semi-empirical expression gives a permeability of 1.7 10−17 m2.
An experimental value is also presented in the review of Swartz & Fleury [20]:

according to Anand et al. [22], in vitro collagen gel permeability range is 10−16-10−18

m2. So our numerical results are in agreement with such values. We may also notice
that the permeability we have found numerically is also two to four orders smaller
than that of a sandstone (oil sand) (data from Scheidegger adapted by Kaviany [23]).
To sum up, in this section we have defined the collagen network geometric model and
validated it through different tests. The infiltration of this network and the description
of influencing parameters are the purpose of the following sections.

3 Infiltration modeling

The resin flow within the network remains to be determined to better understand ”hy-
bridization”. For etch-and-rinse adhesives, the resins are currently applied mechanically
by practitioners with a brush or sponge. We think that both pressure and capillarity
play a role in the infiltration. Our aim is to track the flow through time to see which
parameters are critical for a quality seal. The challenge is to handle one more fluid (the
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resin) interacting with fibers and the substrate fluid and to take into account capillary
rise. To do this, the level set method is used coupled with the Navier-Stokes equations
to track the front. Thus, both fibers and capillary membranes are implicitly modeled,
avoiding interface meshing difficulties, but in this part the fibers are only geometrically
defined to avoid stopping the level set front.

3.1 The capillary membrane

Although the equations of fluid at rest with capillary forces are classical, we derive here
these equations directly from the conservation of momentum in a three dimensional
framework. This is important for finite element simulations to have available a direct
and complete derivation. The equilibrium equations of the membrane are thus written
and some mathematical background is provided in the Appendix.

3.1.1 Equations inside the capillary membrane: interface surface between two fluids

Let a, a=1,2, two fluid domains which are adjacent along the curved surface S. Let n be
the unit normal of the interface pointing from 1 towards 2. The subscript S will either
stand for the partial derivative tangential to the surface or the tangential component
of a vector or a tensor. Div A stands for the usual divergence operator applied to an
order two tensor like the one appearing in the equilibrium equations:

(DivA)i =
X

j

∂Aij/∂xj (5)

Let σa be the stress tensor inside each fluid (a=1, 2) and σm the stress tensor of
the interface which is assumed to be a tangential tensor which means:

σm(n) = 0 (6)

Then the superficial equilibrium equation of the interface reads, with n directed
from fluid 2 to fluid 1:

DivSσm + (σ1 − σ2)(n) = 0 (7)

According to equation (40) (in the Appendix), this equation splits into a normal
and tangential components:

Tr(σm.DSn) + ((σ1 − σ2)(n), n) = 0 (8)

(DivSσm)S + ((σ1 − σ2)(n))S = 0 (9)

The classical assumption of an isotropic state of membrane stress pm gives:

pmdivSn + ((σ1 − σ2)(n), n) = 0 (10)

∇Spm + ((σ1 − σ2)(n))S = 0 (11)

These equations are exactly those proposed by Landau & Lifschitz [24].
When the surrounding fluids are at equilibrium or are inviscid, the superficial gra-

dient of the tension pm vanishes so that the tension is constant over the membrane.
Then pm, called the surface tension coefficient is given by:
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pm = −((σ1 − σ2)(n), n)/divSn (12)

In the academic case the surface can be given parametrically by Z(x, y). n and DSn
are functions of Z which is the sole unknown of the problem and which thus satisfies
a partial differential equation (see subsection 3.2).

3.2 The simplified case of vertical fibers in two fluids at rest

The previous equations have been used in the case of a simplified geometry. In this part,
the influence of several parameters on the capillary rise is determined. The generalized
Laplace equation (see [25]) is to be solved in the case of a chosen geometry undergoing
capillary forces with a fluid at rest under gravity forces:

ρgZ
pm

= divSn(Z) (13)

with, n(Z) =
−∇S0Z+iz

‖−∇S0Z+iz‖ , the external normal vector of the capillary membrane,

S the capillary membrane surface and S0 the horizontal surface, that is to say the
initial capillary membrane surface (see figure 4a and 4b).

(a) Vector definitions (b) Surface definitions

Fig. 4: Surface and vector definitions

The weak formulation of equation (13) can be written with w, a scalar test function:

Z

S0

ρg
pm

ZwdS0 =

Z

S0

wdivSndS0 (14)

As, in the special case here:

divSn = divS0n (15)

And,
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divS0(wn) = wdivS0n + (∇S0w, n) (16)

Z

S0

ρg
pm

ZwdS0 =

Z

S0

(divS0(wn) − (∇S0w, n)) (17)

So that using the divergence formula on the surface S0 with boundary ∂S0 and
arclength dl0 the final weak form for Z is:

Z

S0

(
ρg
pm

Zw − 1
a

(∇S0w,∇S0Z)))dS0 =

Z

∂S0

w(n, νS0)dl0 (18)

With a =
q

1 + ‖∇S0Z‖2

This weak form has been discretized and solved by a finite element method. The
contact angle θ is set at the contact with the fibers through the boundary condition at
the interface with the fibers:

(n, νS0) = −cosθ (19)

The following example has been chosen. The chosen geometry represents five verti-
cal fibers (figure 5) in a square domain. Boundary conditions are periodic on the faces
of the square, that is to say:

Z(x1, y) = Z(x3, y) (20)

Z(x, y2) = Z(x, y4) (21)

Fig. 5: Geometry for the Laplace formula to be solved

Let us discuss the numerical results obtained by solving this equation. The inter-
fibrillar space is an important parameter. The height of rise in vertical fibers with
80 nm-interfibrillar distance is roughly 10 cm (see table 2). In the practical case of
a collagen network, this space is roughly 50 nm so capillarity will not be negligible
in the height of rise. Furthermore, the meniscus is affected by this interfibrillar dis-
tance, but its height is negligible in comparison with the global rise (table 2). It is
also observed that when the contact angle is changed the fluid motion direction can be
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Fig. 6: Interfibrillar space influence (θ = π/6). The color scale indicates the value of
Z − Zmin (Zmin is defined figure 4a) varying from 0 in blue to 3.5 10−7m in red
(distance d1) or from 0 to 1.3 10−7m (distance d2)

Fig. 7: Contact angle influence. The color scale indicates the value of Z−Zmin varying
from 0 in blue to 1.3 10−7m in red (θ = π/6) or from 0 in red to -1.3 10−7m in blue
(θ = 4π/6)

inverted(figure 7). The results obtained by varying the contact angle or the interfibril-
lar space are shown in figure 7 and detailed in table 2. The values found are perfectly
symmetric for a contact angle of 2π/6 or 4π/6.

The observations made in this case provide some basic knowledge worth adding to
in a more complex study. However, parameters like fiber orientation and infiltration
time have to be checked with respect to our initial problem. To reach this goal, a full
Navier-Stokes model with contact line boundary conditions was coupled with the level
set method and solved in a finite element code.
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Table 2: Parametric study of capillary rise Zmax and meniscus height ∆Z

θ Interfibrillar distance d Capillary rise Zmax ∆Z
π/6 d1=0.6 10−7 0.168 3.5 10−7

π/6 d2=0.8 10−7 0.168 1.3 10−7

2π/6 d2 0.0969 2.8 10−8

4π/6 d2 -0.0969 2.8 10−8

3.3 The coupled model used to follow the flow in the collagen fiber network

3.3.1 The level set method to track the front

The level set method was introduced by Osher and Sethian [26] to track the evolution
of interfaces. It has already been used in a wide range of applications, especially incom-
pressible and compressible two-phase flows. The method consists in tracking an isolevel
of a signed distance function φ(x, y, z). The movement of the interface is governed by
the following equation:

∂φ
∂t

+ (u.∇)φ = 0 (22)

Here, φ(x, y, z) = 0.5 localizes the tracked front. This method allows us to avoid a
specific meshing at the moving interface. This equation is coupled through u and φ to
the Navier-Stokes equation in which capillary forces have to be accounted. This issue
is discussed in the next subsection. The variable φ is also considered to compute the
unit normal n(φ) to the capillary surface:n(φ) = ∇φ

‖∇φ‖ )

3.3.2 The Navier-Stokes equations in the whole domain translated into weak terms in
the virtual power principle

The membrane equilibrium
To take into account capillarity, a method inspired by the continuum method proposed
by Brackbill et al. is used. In this method the crucial hypothesis is to take the following
form for σm (as was also done to find the Laplace formula in 3.1.1):

σm = pmIS (23)

Where pm is constant. The virtual power principle is written for each fluid (a=1, 2):
Z

Ωa

(ρa(aa − g), u)dV =

Z

Ωa

(Divσa, u)dV (24)

Using equation (42) and the divergence formula:

Z

Ωa

(ρa(aa − g), u)dV +

Z

Ωa

Tr(σaDu)dV =

Z

S
(σa(na), u)dS (25)

where na is the normal vector pointing to the exterior of the fluid 2 (n1 = −n(φ)
and n2 = n(φ)).

Then the virtual power principle is written for the capillary membrane:
Z

S
(DivSσm, u)dS +

Z

S
((σ1 − σ2)n(φ), u)dS = 0 (26)
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Thus if we add the three expressions of the virtual power principle (for the mem-
brane and for each fluid):

Z

Ω
(ρ(a − g), u)dV +

Z

Ω
Tr(σDu)dV =

Z

S
(DivSσm, u)dS (27)

It can be shown using ideas similar to those in section 3.1.1 and equation (23) that:

(DivSσm, u) = (DivSσm, unn(φ)) + (DivSσm, uS) (28)

(DivSσm, unn(φ)) = −unpmdivSn(φ) (29)

and

(DivSσm, uS) = 0 (30)

By integration of (DivSσm, u) over the whole capillary membrane, we have:

Z

S
(DivSσm, u)dS = −

Z

S
unpmdivSn(φ)dS (31)

Using the fact that divSn(φ) = divn(φ) and
R
S undivn(φ) =

R
S −(Du(n(φ)), n(φ))dS+R

∂S(u, ν)dl (taking into account fluid incompressibility), the virtual power principle
over the membrane and the two fluids gives:

Z

Ω
(ρ(a− g), u)dV +

Z

Ω
Tr(σDu)dV +

Z

S
pm(−(Du(n(φ)), n(φ)))dS =

Z

∂S
pm(ν, u)dl

(32)

The third term can be approximated as follows:

Z

S
pm(−(Du(n(φ)), n(φ)))dS = km

Z

R3
pm(−(Du(n(φ)), n(φ)))δm(φ)dV (33)

Where km is a normalized parameter and δm(φ) the delta function defining the mem-
brane so surface tension is only applied on that particular layer. The fourth term can
be approximated as follows (δw is the delta function defining the solid wall):

Z

∂S
pm(ν, u)dl = kl

Z

R3
pm(−n(φ)cosθ + nw, u)δwδm(φ)dV (34)

Where kl is a model parameter: in the present paper applications, kl = 5 is chosen
to enhance capillary effects.

Thus, the boundary condition is only applied at the intersection of the membrane
and the solid wall because of the definition of δw and δm(φ)
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Application to one fiber
To test the model, it is applied to the case of one fiber only using a high viscosity (as
it was done to assess permeability) and by adding the boundary condition force on the
triple line. The results are presented figure 8. The high viscosity of the fiber tends to
stop the front and the isovalue of the level set function wrappes the fiber boundaries
like a latex glove. However, if the fibers are only taken into account by their effect
on the contact line, the expected meniscus shape is found. That is why the fibers are
considered that way in what follows.

To sum up, the idea used in Darcy’s permeability of using a heterogeneous viscosity
is adapted. This time, instead of using cyl(x, y, z) for the viscosity function it is used
to define the boundary of the cylinders (δw). This can be explained by the fact that
to allow the front to move at the interface with a wall (here, a fiber), a small zone
surrounding the fibers has to be defined with a low viscosity. So here we took the
whole fiber with low viscosity.

We have also pointed out here one of the limitation of the level set method: the
surface attached to the level set should not be too shaky with large curvature oscillation.

Fig. 8: Fiber viscosity effect on the advancing front. The gray area represents the
moving capillary membrane, and it also indicates the vertical fiber on the second part
of the figure

4 Analysis of fiber configuration and fluid properties

In this last section, we study the role of diverse parameters of the network with respect
to meniscus slope and infiltration profile.

4.1 Interfibrillar space influence

A vertical fiber network is a simple and convenient type of network to appreciate
the effect of fiber distance. Two networks are built with different distances between
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five fibers surrounded by a wall. Figure 9 presents the front shape depending on the
distance between fibers. There seems to exist a threshold distance above which no
interaction between fibers occurs. When the interfibrillar space d is 0.8 µm (Figure
9A), the meniscus of the central fiber interacts with its neighbors. Its meniscus is higher
than its neighbors, whereas when this distance is increased the interaction decreases
(d=1.6 µm, Figure 9B). The solid wall meniscus interacts with fibers when d=1.6 µm
so the results are really meaningful in a zone close to the center only. To overcome this
numerical artifact, periodic boundary conditions were used hereafter.

Fig. 9: influence of the distance between fibers. A: d=0.8 µm. B: d=1.6 µm

4.2 Orientation influence

In this section, the influence of fibers orientation on permeability and on the infiltration
front is studied using the three types of network: RAND, PAR, VERT.

4.2.1 On the network permeability

Using the method described in 2.2.2, we computed the mean permeability of collagen
fiber networks (porosity 55%) with different fiber orientations and we obtained:

KRAND = 10−18m2 (35)

KPAR = 10−18m2 (36)

KV ERT = 10−18m2 (37)

The Darcy’s permeability of the different networks is of the same order of magni-
tude. Nevertheless when the porosity of the PAR network is lowered to 27%

4.2.2 On the infiltration front through the network

To investigate the influence of fiber orientation, three types of network with periodic
boundary conditions were built:

- a network with five vertical fibers randomly set in the control volume (VERT)
- a network with five fibers in planes perpendicular to the front direction (PAR)
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- a network with five fibers randomly set in the control volume (no constraint on
their position and direction) (RAND)

We chose to use a limited number of fibers to clarify the effect of fiber orientation
on the front.

Fig. 10: Advancing front through the three different networks

The results are illustrated by figure 10. The vertical fiber (VERT) network infil-
tration is deeply influenced by the distance between fibers. The capillary rise is higher
when the fibers are closer (red arrow), so the conclusion of the previous section is
confirmed, with periodic boundary conditions that avoid meniscus interaction with
exterior walls (figure 10 A, black arrow).

In the PAR network the front seems less driven by capillarity. This is because the
capillary membrane and the fiber walls do not always intersect. We may remark here
that the PAR network is the closest to the collapsed state of collagen fibers, so the
collapse of the fibrous network is less propitious than RAND (the closest to the real
network) or VERT networks. The dashed arrow shows that fibers nevertheless attract
the membrane, but only when the front is approaching. The black arrow points out an
area that stems from the periodic boundary condition.

In the RAND network, the main observation is that the orientation variation of
two close fibers may drastically increase the front rise (figure 10 C, red arrow). It can
be figured out that a large gradient of orientation may lead to a local acceleration of
the infiltration process and consequently to a heterogeneous penetration.

Interfibrillar space is a crucial parameter. As in a capillary tube (where the larger
the diameter of the tube, the higher the capillary rise for physical reasons) when the
fibers are closer the front rise is higher. But in our case, this space cannot be lowered
that much because then the molecules of the resin are too large to creep through it.

The capillarity effects influence the flow through a vertical fiber network more
than through a network with fibers perpendicular to the front direction, because the
boundary condition term that gives the expected meniscus shape is active only when
the front is passing through fibers. This term is always active in VERT networks. So,
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it is believed that changing the network into a VERT network can enhance infiltration.
Using this idea, Pasquantonio et al. (2007) applied an electric field to demineralized
dentin and showed that it improved bonding. One of the possible reasons could be that
the field is reorienting the network into a VERT network.

4.3 Contact angle influence

In this section, the contact angle influence is investigated. First, the right meniscus
shape is obtained when the contact angle is larger than or equal to π/2 (figure 11).
The front is moving down: there is a capillary fall. We can thus model the mercury
entrance in a penetrometer of a porosimetry test, for example, and see if the simulation
is in agreement with porosimetry experiments. In the PAR network, when the contact
angle is lowered (so the force at the contact line is closer to the vertical), the front
moves faster (figure 12). This means that in restorative dentistry, it should be more
efficient to use an adhesive with a low contact angle with collagen fibers.

Fig. 11: Advancing front through the PAR network with different contact angles at
t=1.5e-8s

Fig. 12: Advancing front through the VERT network with different contact angles at
t=1.5e-8s
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5 Conclusion

We have modeled the dentinal collagen network, revealed by demineralization and
crucial for bonding quality in dental restoration. Its permeability was assessed and is
within the range 10−20-10−18m2. Three simplified fiber networks were infiltrated by a
fluid using the level set method and the Navier-Stokes equations with capillary terms to
validate the method. The fronts were computed for different fiber orientations and the
evolving front was discussed qualitatively. The front was successfully computed through
the three types of network. It was observed that the front is significantly influenced by
fiber orientation, interfibrillar space and contact angle. We may wonder whether those
parameters can be changed to improve dentinal infiltration. This work will be applied to
demineralized dentin collagen network infiltration in restorative dentistry to assess the
heterogeneity of resin penetration essential to the adhesion of the seal. Macroproperties
like equivalent capillary pressure and relative permeability can be estimated from the
simulation described here. Furthermore, we may simulate porosimetry tests to validate
the whole model of demineralized dentin, which has an heterogeneous porosity.
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6 Appendix

6.1 Mathematical definitions

A vector a is decomposed according to (see figure 13):

a = aS + ann (38)

ann

aS

n

S

Fig. 13: Normal and tangent vectors at a surface
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with a similar decomposition for an order two tensor A:

A = AS + A(n)S ⊗ n + n ⊗ A(n)S + Annn ⊗ n (39)

The DivSAS vector, which involves a derivative only along the surface S, can also
be decomposed according to:

DivSAS = (DivSAS)S + (DivSAS, n)n (40)

but if we develop the following identity, which involves the surface curvature tensor
DSn assuming that AS is symmetric:

0 = divSAS(n) = (DivSAS , n) + Tr(AS.DSn) (41)

we can write:
DivSAS = (DivSAS)S − Tr(AS.DSn)n (42)


