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Abstract

In this paper, we investigate the possibilities of-
fered by the extension of the connected component
trees (cc-trees) to multivariate images. We propose
a general framework for image processing using the
cc-tree based on the lattice theory and we discuss
the possible applications depending on the proper-
ties of the underlying ordered set. This theoretical
reflexion is illustrated by two applications in mul-
tispectral astronomical imaging: source separation
and object detection.

1 Introduction

The cc-tree has become a popular model for the
analysis of gray-level images. It provides a hierar-
chical representation of images with various appli-
cations: connected filters [10], segmentation [5], ob-
ject detection and characterization [7], source sepa-
ration [3]. Moreover, algorithms to efficiently com-
pute the cc-tree for integer images [8, 10] or float-
ing point images [2] are available. Nevertheless, all
these approaches were limited to gray-level images
while multivariate images are becoming more and
more popular. Recently, the authors of [6] have
begun to investigate about the extensions of the
cc-trees for color images but limited to connected
filters. Compared to this work, we aim at study-
ing the properties of the cc-trees for more general
applications involving multivariate images.

In this paper, the definition of the cc-tree com-
patible with multivariate images and based on the
lattice theory is given in Sec. 2. The use of this defi-

nition is then discussed and its possible applications
depending on the properties of the underlying or-
dering relation are examined. This theoretical work
is illustrated with two applications in multispectral
astronomical imaging (Sec. 3): source separation
and object detection.

2 Connected Component Tree

We now recall some preliminary definitions and
give a rigorous definition of the cc-tree. Then, the
general framework for multivariate image process-
ing using the cc-tree is discussed.

Let £ be a join bounded semi-lattice with the
order relation <, the supremum operator \/ and its
least and greatest elements 1 and T. Let I : D +— L
be an image from a discrete domain D (generally
D = 7Z2) to L. In the sequel, we assume that £ =
R" withn >1 and R = R U {—o00, +00}.

We also assume that the support s(I) =
{x € D|I(x) # L} of the image I is finite. We de-
fine the thresholding I'* C D of the image I at level
teLby It={zecD|t<I(x)}

Moreover, D is equipped with a connexion C [11]
(for example the 4- or 8-neighborhood if D = Z?).
Let E C D, we denote by CC(F) C P(FE) the
set of connected components of E with respect
to C, with P (F) the set of all subsets of E. Let

G = U,epCC (Tt) C P (D) be the set of all

connected components of the thresholdings of I at
all possible levels. Then, we consider the Hasse
diagram (G,V) of the set inclusion partial order
relation C. The set of edges V is defined by V =
{(z,y) eGPlycaVz(yCzCa)= (2=y)}.

As s (I) is a finite set, the set G is also finite ensur-
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Figure 1. This example shows the Hasse diagrams of the thresholds with the marginal partial
order <,, and a lexicographic total order <; . From left to right we have: the bi-valued image,
its thresholding (gray) at levels [0, 0], [0, 1], [1,0] and [1, 1], and the resulting Hasse diagrams for

the two orders.

ing that the graph is correctly defined. Moreover,
(G,V) is valued by a function I : G — P (Rn),

Vg € G, l(g) = max{t eR"[gcCC (Tt)}. For
a node g, we call I(g) the levels of g (i.e., the
maximum threshold values so that g is included in
the thresholded image).

In the general case, < is a partial order and the
Hasse diagram of G contains cycles [9]. Fig. 1 (top
line) shows an example using the marginal partial
order: v,v' € R", v <,y v/ & v; < v, i=0,...,n.
In this case, the different thresholdings partially
overlap, leading to a cycle in the Hasse diagram.

On the contrary, a total order or pre-order (i.e.,
without anti-symmetry) on L ensures that the
Hasse diagram of G is an acyclic graph. Thus,
in the sequel, we consider only total (pre-)order,
and with no loose of generality, we assume that
CC (D) = {D} so (G,V) can be considered as a
tree rooted by its greatest element 1= D (Fig. 1
bottom line).

We now present, in a multivariate context, how
the tree can be filtered to extract relevant compo-
nents and finally, how to reconstruct an image from
the filtered tree.

2.1 Filtering and Reconstruction

The nodes of the tree are equipped with any
quantitative or qualitative information called at-
tributes that may help to achieve the given pur-
pose (e.g., Sec. 3). Then, let P be a predi-
cate on G based on these attributes. We define
a pruning function Fp which removes all nodes
which do not fulfill P and provides a new tree
Fp(G,V)=(G",V").

Usually the predicate is based on a threshold
function and removes all nodes having an attribute
lower than a given value. This approach, based on
a local decision criterion, naturally leads to idem-
potent operators, but more complex predicates can
also rely on global decisions [10]. In this case, we
can always derive the idempotent filter: Fp° which
is the filter F'p recursively applied until convergence
(ensured by the finite size of G).

Finally, the processing can be completed (if nec-
essary) by a reconstruction of the tree which is an
operator from the tree space back to the image
space defined by:

Vo € D, R(G/,V/)(il?) = \/ f<g7x)
geqG’

(1)

where f: GxD — R" can be any value computed
from g and z. The overall framework is summarized
in Fig. 2.

2.2 Influence of the Order Type

Given the previous definition of the cc-tree (fil-
tering and reconstruction), we now explore the dif-
ferences implied by the choice of a total order or a
total pre-order to build the tree.

In the case of a total order, the valuation func-
tion [ returns a singleton for each node and thus, it
can be used directly in the reconstruction step to
design connected filters. In fact, this case is nearly
equivalent to a gray level image, nevertheless, the
multivariate information may still be very useful to
define relevant attributes.

On the other hand, if the order is a total pre-
order, then the valuation function may return a set
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Figure 2. General framework using cc-trees

of levels {¢;} such that Vi, j, i # j then ¢; <t; and
t; <t; but t; # t;. This is an issue to design con-
nected filters as the valuation function cannot be
used as it in the reconstruction process. In [6], the
authors proposed to compute a new value from the
set {t;}, for example the mean or the median. But
the mean may introduce new values, which can be
considered as a drawback while the median requires
the use of another total order.

Nevertheless, if the reconstruction step is not
needed or if it is not based on the pixel values of the
original image, and if the attributes do not require
that each node has a unique level, a pre-order does
not lead to any difficulty. For example in detection
or segmentation tasks, we might be only interested
by the boundaries of detected objects.

3 Applications

We propose two applications in 5-band astro-
nomical images to demonstrate the capabilities of
cc-trees in multivariate frameworks. The bands
come from ultra-violet to near infrared and were
extracted from the Sloan Digitalized Sky Survey.
Each band has a different signal to noise ratio and
a different seeing (size of the point spread function).

We define a vectorial order based on the com-
bination of several techniques [1]: a reduced order
defined as a normalized truncated energy function,
a quantified and normalized order and finally, a lex-
icographic order. Then, let v,v" € @n, we define the
pre-order <4, by:

v <ap ¥ S DEH(U)J,“J,

koy

< Bl ]| e

where <y, is the lexicographic order, o1, ...,0, are
the standard deviation of the noise in each band,
k is a confidence factor (k = 3), |-] is the floor
function. Moreover, the bands are sorted by seeing
size (best seeing at first). E, (v) is the normalized

V1 Un
ka’l""7 ka’l

To obtain a total order < 4,, we extend <4, with
a lexicographic order applied to the initial spectral
bands.

energy defined as: E,, (v) = H

3.1 Source Separation

A typical problem in astronomy is to identify
the different sources, this task is made difficult by
the projection effects and the intrinsic difficulty to
estimate the distance of the sources.

The authors of [3] describe a method based on
the cc-tree in strongly quantified gray-level images.
The algorithm identifies the branches of the tree
having a sufficient volume relatively to their father.

We have extended this method to floating mul-
tispectral images using the order <4, and a spatial
4-neighborhood. Nodes are equipped with a sin-
gle attribute: the multispectral volume defined as

Vig) = /Sse,(I(@) = 1(9))" (I(x) ~ U(g)). Then,
a node of the tree is kept if its volume is greater
than a fraction p of its father volume and if this
condition also holds for at least one of its brothers.
Finally, the different sources are simply identified
by the leaves of the tree. This approach is both
scale and flux invariant so that p is a very robust
threshold.

Fig. 3 shows some results. Images are color
compositions with enhanced contrast, the different
sources are located by the red squares; we can ob-
serve that the objects superimposed on the galaxies
were correctly identified as separate objects, more-
over the multispectral processing allows to natu-




rally take account of structures shining at different
wavelengths.

Figure 3. Source separation in two 5-band
astronomical images.

3.2 HII Regions Detection

In galaxies, HII regions are made of very bright
young and massive stars plunged into ionized hy-
drogen clouds and are an important marker of the
galaxy activity. HII regions are characterized by
their color, their relatively small size and their
brightness. These features suggest 3 attributes to
separate these regions from other bright objects:
the area of the component, its color (difference be-
tween 2 bands in the astronomical context) and its
energy per pixel. The pruning criteria is then sim-
ply defined as a threshold on these 3 attributes.
This application uses a 4-neighborhood and the
pre-order < 4, (since neither the reconstruction nor
the attributes require a unique component level).

Fig. 4 shows two examples, the images are color
compositions with enhanced contrast and the dif-
ferent HII regions are located in red (boundaries).
The HII regions are correctly identified among
other bright sources thanks to the multispectral
processing which brings the discriminant color in-
formation.

Figure 4. HIl regions detection in two 5-
bands astronomical images.

4 Conclusion

In this paper we have discussed the possible ap-
plications of the extension of cc-trees to multivari-
ate images within a general framework valid for var-
ious image processing applications. We have inves-
tigated the possibilities and the difficulties inherent
to the choice of a total order or pre-order related to
the pixel values. Two applications in multispectral
astronomical images are developed with the defini-
tion of relevant astronomical vectorial total order
and pre-order.

In future works, we plan to explore the defini-
tion of the cc-trees with more general definitions of
the connectivity based on non flat connected com-
ponents [4].
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