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Abstract In this paper, we propose an extension of the component tree based on �at
zones to hyperconnections (h-connections). The tree is de�ned by a special order on the
h-connection and allows non �at nodes. We apply this method to a particular fuzzy h-
connection and we give an e�cient algorithm to transform the component tree into the new
fuzzy h-component tree. Finally, we propose a method to binarize document images based
on the h-component tree and we evaluate it on the DIBCO 2009 benchmarking dataset:
our novel method places �rst or second according to the di�erent evaluation measures.
Keyworks Hyperconnection; Hierarchical Representation; Document Image Binarization.

1 Introduction

Hierarchical and tree based representations have become very topical in image processing. In
particular, the component tree (or Max-Tree) has been the subject of many studies and practical
works. Nevertheless, the component tree inherits the weaknesses of the �at zone approach, namely
its high sensitivity to noise, gradients and di�culty to manage disconnected objects. Even if some
solutions have been proposed to preserve the component tree [5, 4], it seems that a more general
framework for grayscale component tree [1] based on non �at zones becomes necessary.

In this article, we propose a method to design grayscale component tree based on h-connections.
The h-connection theory has been proposed in [7] and developed in [1, 3, 4, 8, 9]. It provides a
general de�nition of the notion of connected component in arbitrary lattices. In Sec. 2, we present
the h-connection theory and a method to generate a related hierarchical representation. This
method is applied to a fuzzy h-connection in Sec. 3 where an algorithm is given to transform a
Max-Tree into the new grayscale component tree. In Sec. 4, we illustrate the interest of this tree
with an application on document image binarization.

2 H-component Tree

This section presents the basis of the h-connection theory [7, 1] and gives a de�nition of the h-
component tree. The construction of the tree is based on the z-zones [1] of the h-connection,
together with a special partial ordering. Z-zones are particular regions where all points generate
the same set of hyperconnected (h-connected) components and the entire image can be divided
into such zones. Under a given condition, the Hasse diagram obtained in this way is acyclic and
provides a tree representation.

Let L be a complete lattice furnished with the partial ordering≤, the in�mum
∧
, the supremum∨

. The least element of L is denoted by ⊥ =
∧
L. We assume the existence of a sup-generating



family S in L. A h-connection on L is given by a subset C+ of L which contains the h-connected
elements of L, and an overlap criterion e (i.e. a predicate on subsets of L) such that:

1. ⊥ ∈ C+ and ∀s ∈ S, s ∈ C+: the least element and the sup-generators are h-connected.

2. ∀A ⊆ C+, eA ⇒
∨

A ∈ C+ the supremum of overlapping elements is h-connected.

Moreover, e must be decreasing ∀A ⊆ P (L), 6e A ⇒ ∀b ∈ L, 6e {b}
⋃

A. Being given an element
a ∈ L, the maximal h-connected elements lower than a are called the h-components of a; they are
noted: γ∗ (a) = {h ∈ C+ |h ≤ a,∀h′ ∈ C+, h ≤ h′ ≤ a ⇒ h = h′}. Then, the h-connected opening
of an element a ∈ L by the marker s ∈ S is given by γs (a) =

∨
{h ∈ γ∗ (a) | s ≤ h}. Contrary to

connected openings of traditional set or lattice connections, the result of a h-connected opening
is generally not h-connected. Finally, the z-operators [1] group sup-generators into equivalence

classes. Being given an element a ∈ L, the equivalence relation
a∼ is de�ned by: ∀s1, s2 ∈ S,

s1
a∼ s2 ⇔ γs1 (a) = γs2 (a). Then, the z-operator ζa (s) of the sup-generator s is given by:

ζa (s) =
∨ {

s′ ∈ S | s′ a∼ s
}
. The result of a z-operator is called a z-zone.

Fig. 1 shows how to decompose a function into its h-components and its associated z-zones.
The h-connection used in this example is composed of all functions having a unique maximum [1].
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Figure 1: Decomposition of the function f with the h-connection of functions with a unique
maximum: left) function f , �ve pulses δ1, . . . , δ5 representatives of the �ve equivalence classes of

the relation
f∼. The di�erent gray levels represent the results of the z-operators: ζδi (f). The

sup-generator δ1 (and its equivalence class) are associated to the whole set of h-components of f
and thus γδ1 (f) = f , right) the h-openings of δ2, . . . , δ5.

We now propose a way to build a h-component tree from the z-zones. In the following, we
consider the lattice of functions I = LE , where E is a discrete �nite domain and L the space of
values. The support of a function f ∈ I is the set of points where the function is di�erent from
⊥: supp (f) = {p ∈ E | f(p) 6= ⊥}. We de�ne the partial ordering � on I by:

∀x, y ∈ I, x � y ⇔
(
supp (x) ⊆ supp (y)

)
∧

(
y/supp(x) ≤ x

)
(1)

where y/supp(x) is the function y restricted to supp (x). Fig. 2 demonstrates shows pairs of functions
that are respectively comparable and not comparable according to �.

Then, a graph-based representation of the image a ∈ I is obtained using the Hasse diagram
(Ga, Va) of the z-zones de�ned by the order �. The graph (Ga, Va) is de�ned by: Ga = ζ (a) ∪
{⊥} and Va =

{
(x, y) ∈ G2

a |x 6= y, x � y,∀z ∈ Ga, x � z ≺ y ⇒ x = z}. The least element ⊥ is
added to G to ensure that it is connected but can be omitted if it is not necessary. We can show
that if each z-zone is either disjoint or comparable according to � then the graph is acyclic and
we call it the h-component tree. Then, the h-component tree can be used in a similar way as the
traditional Max-Tree to perform �ltering, detection, segmentation with the advantage to support
non �at nodes.
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Figure 2: Left: two functions a and b such that a � b. Right: two functions c and d that are not
comparable according to �.

3 Fuzzy H-Connection

We experiment the proposed h-component tree with a fuzzy h-connection [3] and we give an
algorithm to transform a Max-Tree into the h-component tree. We now consider the lattice I of
functions from a �nite discrete domain E to the interval [0, 1]. We assume that E is equipped with a
primary set connection C [6]. We de�ne the connectivity measure cf of the image f , for all x, y ∈ E
(adapted from [3]) by cf (x, y) = maxM∈Px,y minp∈M f(p), with Px,y = {M ∈ C |x ∈ M,y ∈ M}
the set of all connected sets containing x and y. If Px,y is empty, we set cf (x, y) = 0 meaning that x
and y are not connected. The fuzzy h-connection C+

f,τ of level τ ∈ [0, 1] is then de�ned by (adapted

from [3]): C+
f,τ = {f ∈ I | ∀x, y ∈ E, 1−min(f(x), f(y)) + cf (x, y) ≥ τ}. The discriminant points

of fuzzy h-connected functions are indeed regional maxima: a function is fuzzy h-connected if, for
each pair of regional maxima, the di�erence between the height of the lowest maximum and the
height of the saddle point between the two maxima is lower than 1−τ . Figure 3 shows an example
of such a τ h-connected function.

The fuzzy h-component tree can be computed from the Max-Tree using algorithm 1. The
pseudocode assumes that each node is equipped with two attributes, the level and the peak level
(highest level in its branch), and a function child(n) that returns the n-th child. The procedure
delete node, deletes the given node and gives all its children to its father, while the procedure
delete branch deletes the given node and all its children. Finally, the procedure correctPointList
corrects the list of points attached to the given node according to its new level.

The algorithm proceeds in two steps. The �rst loop performs three actions: it removes irrele-
vant nodes that are neither local maxima nor saddle zones, it removes regional maxima that are
absorbed by the parameter τ and it updates the level of all nodes according to τ . The second
loop has two aims: it removes irrelevant nodes (same criteria as during the �rst pass) that may
have appeared during the node removal process of the �rst pass and it corrects the set of points
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Figure 3: This function with
two regional maxima at levels
1.0 and 0.6 belongs to C+

f,τ for
all τ ≤ 0.6.
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Figure 4: The h-component tree for a function with di�erent
values of τ . For each value of τ : the signal with the associated
z-zones (top) and its h-component tree with the level of each
node (bottom).



Algorithm 1: Procedure to transform a max-tree into the h-component tree of C+
f,τ .

input : The image im, the max-tree of im, and the parameter τ of the fuzzy h-connection
for all nodes n from root to leaves do

while n has exactly one child do
node c = n.child(1);
n.level = c.level;
delete node c;

if (n is not the root AND n.parent.level ≥ n.peakLevel) then delete branch of node n;
else n.level = min(n.level + 1− τ, n.peakLevel);

for all nodes n from root to leaves do
while n has exactly one child do

node c = n.child(1);
n.level = c.level;
delete node c;

correctPointList(im,n);

associated to each node according to its new level. At the end of the algorithm, all attributes
can be correctly computed according to the C+

f,τ h-connection. Figure 4 presents examples of
h-component trees for di�erent values of τ .

4 Application

We test the use of the h-component tree in the context of document image binarization and we
propose a novel method based on background removal. The method processes the document image
in three steps: 1) removal of the background using the h-component tree, 2) adaptive thresholding,
and 3) post-processing. The background identi�cation is based on the evolution of the area of the
h-component tree nodes compared to their gray level. Formally, being given a leaf L of the fuzzy
h-component tree, we look for the largest set of nodes {N0, . . . , Nm} of respective level Ti and
area Ai, such that L = N0, ∀i = 1, . . . ,m, Ni is the father of Ni−1, T0 − Tm > c4 and:

∀i = 1, . . . ,m : Ai < c3 ∨
(

Ai −A0

Ti − T0
< c1 ∧

Ai −Ai−1

Ti − Ti−1
< c2

)
(2)

with c1, c2, c3 and c4 four thresholds. c1 constrains the global slope and c2 constrains its derivative.
c3 allows to neglect small nodes (strong noise on the curve) and c4 de�nes a minimum contrast
level. c1 and c2 are scale invariant while c3 and c4 de�nes minimal size and contrast below which
we consider that a node is not signi�cant. Finally, the local background is the reconstruction
of the tree where the branch of Nm has been removed. The global background is de�ned as
the in�mum of all local backgrounds. Values of the thresholds were determined empirically by
observing area-level curves of leaves belonging to the foreground and to the background. They
are set to: c1 = −8× 104, c2 = −2× 106, c3 = 2× 103, c4 = 0.1 and the parameter τ of the fuzzy
connection is set to 10/255.

Then, the adaptive thresholding is based on the values of the image edges. The edges are
detected using a Sobel operator with an Otsu thresholding. Finally, the post-processing is com-
posed of a closing and an opening by reconstruction. We applied this method to the DIBCO 2009
benchmarking dataset [2]. This dataset was used for a contest (43 algorithms tested) during the
ICDAR 2009 conference to evaluate binarization algorithms on a set of handwritten and printed
document images representative of the various di�culties of this issue. We obtained a F-Measure
score of 91.24 (that would have placed �rst in the contest) and a Peak Signal to Noise Ratio of
18.30 (second place). Fig. 5 presents two examples of handwritten document image binarization.
It shows the quality of the background removal method and the subsequent thresholding.



Figure 5: Document image binarization, each line presents one document image from the DIBCO
2009 dataset [2]. From left to right: image, image after background removal, and result.

5 Conclusion

In this article, we proposed a general de�nition of grayscale component tree based on the h-
connection theory which has the advantage to produce non �at zones. We show how it can be
applied to a fuzzy h-connection recently proposed [3] and we give an algorithm to transform
the Max-Tree into the grayscale component tree based on the fuzzy h-connection. Finally, we
experiment our approach on the issue of document image binarization. The proposed algorithm
is evaluated on the DIBCO 2009 dataset [2]: the very good results assert the interest of this tool
for various image processing issues. In future works, we plan to explore the theoretical properties
of our approach to derive general properties about the operators based on the h-component tree.

References

[1] U. Braga-Neto and J. Goutsias. A theoretical tour of connectivity in image processing and
analysis. JMIV, 19(1):5�31, 2003.

[2] B. Gatos, K. Ntirogianni, and I. Pratikakis. ICDAR 2009 document image binarization contest
(DIBCO). In ICDAR, pages 1375�1382, 2009.

[3] O. Nempont, J. Atif, E. Angelini, and I. Bloch. A new fuzzy connectivity measure for fuzzy
sets. JMIV, 34(2):107�136, 2009.

[4] G.K. Ouzounis. Generalized Connected Morphological Operators for Robust Shape Extraction.
PhD thesis, University of Groningen, 2009.

[5] G.K. Ouzounis and M.H.F. Wilkinson. Mask-based second-generation connectivity and at-
tribute �lters. PAMI, 29(6):990�1004, 2007.

[6] J. Serra. Image Analysis and Mathematical Morphology. II: Theoretical Advances. Academic
Press, London, UK, 1988.

[7] J. Serra. Connectivity on complete lattices. JMIV, 9(3):231�251, 1998.

[8] M.H.F. Wilkinson. An axiomatic approach to hyperconnectivity. In ISMM, volume 5720 of
LNCS, pages 35�46, 2009.

[9] M.H.F. Wilkinson. Hyperconnectivity, attribute-space connectivity and path openings: Theo-
retical relationships. In ISMM, volume 5720 of LNCS, pages 47�58, 2009.


