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The second critical point for the Perfect Bose gas in quasi-one-dimensional traps
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We present a new model of quasi-one-dimensional trap with some unknown physical predictions
about a second transition, including about a change in fractions of condensed coherence lengths due
to the existence of a second critical temperature Tm < Tc. If this physical model is acceptable, we
want to challenge experimental physicists in this regard.

PACS numbers: 05.30.Jp, 03.75.Hh, 67.40.-w

1. It is well known since 1925 [1] for an ideal gas of iden-
tical bosons of mass m in a three dimensional cubic box
Λ = L3 described the grand canonical ensemble (V, T, µ)
with T the temperature and µ the chemical potential,
there exists a critical density of thermal gas saturation
of ρc = ζ(3/2)/λ3

β where λβ = ~
√
2πβ/m is the thermal

length and β = 1/kBT . The hypothesis of A. Einstein
back in 1938 [2] by F. London assumed that for a par-
ticle density ρ above the critical density ρc surplux the
particles ρ − ρc starts in the ground state mode k = 0 .
Thus we note that ρk=0 = ρ − ρc for ρ > ρc. But this
argument macroscopic population of the ground state de-
pends drastically on the geometry of the box. This is only
first discovered H. Casimir [3] in 1968 for a certain geom-
etry anisotropic and what has motivated the work of M.
van den Berg, J. Lewis and J. Pule from 1981 [4] - [7].
These are generalized the concept of Bose-Einstein con-
densate defining density in thermodynamic limit for an
ideal Bose gas in a rectangular box any Λ = Lx×Ly×Lz:

ρ0 = lim
η→0

lim
Lx,Ly,Lz→∞

∑

‖k‖6η

ρk = ρ− ρc. (1)

This definition includes all possibilities from a conden-
sate, given here from [6] and revisited [8] in reference to
new terminologies [9]:
(i) The condensate conventional or usual [8], [9] formed

by the ground state (type I [6]).
(ii) The fragmented condensate [8], [9] if the general-

ized condensate is distributed over a set (finite / infi-
nite) modes macroscopically occupied in an energy band
near the fundamental mode ie N0 =

∑
k6kc

Nk, with
Nk = O(N) (Type I / II [6]).
(iii) The quasi-condensate [8], [9] if the condensate

is distributed over a generalized set of modes occupied
mesoscopic in an energy band near the fundamental mode
ie N0 =

∑
k6kc

Nk, with Nk = O(N δ), δ < 1 (type III
[6]).
In 1983 [5], van den Berg proposed a box model three-

dimensional anisotropic exponentially in both directions
to define a second critical density ρm separating a regime
of condensate generalized type III (for ρc < ρ < ρm )
towards a regime of generalized type I condensate (for
ρ > ρm ). Lately, we have reexamined this model

[10] questions that we call two-dimensional and we have
shown that this a transition between two regimes: quasi-
condensate and coexistence between a regime of con-
ventional condensate and quasi-condensate, notably by
showing that the second critical density ρm corresponds
to a saturation density of gas near condensation similarly
to the saturation of thermal gas for ρc . In addition we
have calculated the second critical temperature and de-
termined the fractions similar condensed changed. Then
we calculated the effects of this transition on the coher-
ence length for these two regimes of condensate general-
ized.
However this transition in the model boxes van den

Berg is not the case for almost one-dimensional (quasi-
1D). Our finding presented here is the existence of this
transition between two regimes for the ideal gas of bosons
in a harmonic trap quasi-1D. The purpose of our letter
is to show where is the transition between a quasi-BEC
and BEC conventional find the geometric model for the
trap to his observation and to characterize this transition
(Fractions condensed, coherence lengths). This theoreti-
cal prediction is interesting because we have seen in the
experimental [11] and theoretical articles [12], [13] the
existence of a second critical temperature called Tφ for
quasi-1D environments, but calculated and explained dif-
ferently from ours.
2. Consider an ideal gas of bosons in a harmonic trap
characterized by three-dimensional pulsation ωx, ωy, ωz :
where external potential is given by:

Vext(r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (2)

The Hamiltonian for a particle is given by [14]:

T
(N=1)
Λ = − ~

2

2m
∆+ Vext(r) . (3)

The energy levels are then given by:

ǫsxsysz = ~ωz(sz +
1

2
) + ~ωz(sz +

1

2
) + ~ωz(sz +

1

2
). (4)

Let µ the chemical potential of this system in the
grand canonical ensemble, its value must be strictly lower
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than the ground state to ensure the convergence dis-
tribution the Bose-Einstein statistics showing the num-
ber average boson in each of the modes of expression
Nsxsysz = (expβ(ǫsxsysz − µ) − 1)−1. Thus we can de-
fine the effective chemical potential relative to ground
level as µ = ǫ000 − ∆µ. When the potential ∆µ > 0
tends to 0, the thermal gas is saturated and we obtain
a critical number of particles when ω0 = (ωxωyωz)

1/3

tends to 0:

N ≃ 1

(~βω0)3

∫

R3,+

d3ǫ
1

eβ(ǫ+∆µ) − 1

<
ζ(3)

(~βω0)3
= Nc. (5)

The nature of the spectrum for this trap is different
from that of a particle in a box, that is why the type of
geometry for the second transition will be different. If
we consider that this trap is anisotropic with a quasi-1D
type ”cigar” in the axis z, we must have the condition
ωz ≪ ω⊥ with ωx = ωy = ω⊥. Usually [14], [12], [13] is
taken as a model ω⊥ = λωz with the condition λ ≫ 1.
Thus we have an anisotropy level of modes in each direc-
tion for ~ωz ≪ ~ω⊥. If in this case we have an effective
chemical potential ~ωz ≪ ∆µ ≪ ~ω⊥ then we can cal-
culate the number of atoms in a condensate generalized
(quasi-condensate) in an energy band near the fundamen-
tal on the axis z:

Nqbec ≡
∑

s=(0,0,sz)

Ns ≃
1

~βωz

∫

R+

dǫz
1

eβ(ǫz+∆µ) − 1

≃ − 1

~βωz
ln[β∆µ] = N −Nc. (6)

Thus for a macroscopic number of particles in
the condensate, we must have condition ∆µ =
β−1e−~βωz(N−Nc) + . . .. But there is another condition
for completing the energetic part along the axis z because
the chemical potential ∆µ determines the size of the en-
ergy band, decreases when the number of particles N
increases and therefore a second critical number of par-
ticles noted Nm, the condition ~ωz ≪ ∆µ is false. For
this model unlike gas trapped in a box, there is no global
notion of ”density” of particles as the containment takes
place throughout the three-dimensional space R3 . How-
ever we can introduce a scaling for the number of parti-
cles n ≡ Nω3

0 which converges when N tends to infinity
and when ω0 tends to 0 [14]. We then find that when

~ω ≃ ∆µ is a β~ωz ≃ e−~β(nm−nc)/ω
2
⊥ . To resolve this

condition, we introduce the model of anisotropic quasi-
1D trap following ωz = ω⊥e

−ω2
c/ω

2
⊥ where ωc > 0 is a

pulse of anisotropy exponentially. Thus there is a limit
to the number of particles in the condensate distributed
over the energy axis z:

Nm = Nc +
ω2
c

~βω3
0

. (7)

FIG. 1: Illustration of phase diagram, see (5), (7)

Now if we go beyond this critical number Nm, we shall
complete the ground state:

Nbec ≡ Ns=0 =
1

eβ∆µ − 1
≃ 1

β∆µ
= N −Nm, (8)

and thus the chemical potential is ∆µ = 1/(β(N −Nm))
and the value of the quasi-condensate is saturated:

NQbec ≃ − 1

~βωz
ln[β∆µ] = Nm −Nc,

since N − Nc = (n − nc)/ω
3
0 and thus ω3

0NQbec ≃
(~β)−1ω2

⊥ ln[ω3
0/(n− nc)] ≃ ω2

c (~β)
−1

Note that this model of exponential anisotropy is nec-
essary to limit ”thermodynamics”, ie when ω⊥ tends to
0, to define the second critical number of particles Nm

which is the same order as the first critical number Nc

(proportional to ω−3
0 ). For finite pulses in a given exper-

imental situation, we must calculate the parameter ωc

depending on the aspect ratio λ = eω
2
c/ω

2
⊥ and see if the

ratio ωc/ω⊥ is sufficiently large to consider that one is
in an exponential phase. Usually if one considers a sys-
tem where very anisotropic λ ≫ 1 to consider this point
of view that the system is exponentially anisotropic, we
have to have ln(λ) ≫ 1 .
3. In experiments with BEC, it is important to know

the critical temperatures associated with corresponding
critical densities. The first critical temperatures: Tc, for
a given particles number N is given by solutions of this
equation: N = Nc = ζ(3)/(~βω0)

3. Then we get:

Tc =
~ω0

kBζ(3)1/3
N1/3 . (9)

By the expression for the second critical particles num-
ber one gets the following relation between the first and
the second critical temperatures because Tm are given by
solution of this equation N = Nm = Nc + ω2

c/(~βω
3
0):

T 3
m + τ2 Tm = T 3

c . (10)
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FIG. 2: Curve illustrating (11) as a function of τ

Tc
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FIG. 3: Illustration of condensate fractions (13) (—), (14) (-
- -), (15) (- - -) with Tc

τ
= 2

3

Here τ = ωc~/kBζ(3)
1/2 is ”effective” temperatures re-

lated to the corresponding geometrical shape.

We can compute the relative difference between both
critical temperature due to (10) , see figure 2:

Tc − Tm

Tc
= f(

Nωc

N
) (11)

where Nωc =
ω3

cζ(3)
1/2

ω3
0

defined by
Nωc

N = τ3

T 3
c
and with:

f(x) = 1− Ω(x)1/3 +
x2/3

3
Ω(x)−1/3 (12)

where Ω(x) = 1
2 (1 +

√
1 + 4

27x
2).

The temperature dependence of the ”quasi-
condensate” NQbec is, see figure 3:

NQbec

N
=





1−
(

T
Tc

)3
, Tm ≤ T ≤ Tc ,

τ2

T 3
c
T , T ≤ Tm .

(13)

The corresponding ground state conventional BEC is, see
figure 3:

Nbec

N
=

{
0 , Tm ≤ T ≤ Tc,

1− ( T
Tc
)3
(
1 + τ2

T 2

)
, T ≤ Tm,

(14)

and for the two coexisting condensates one gets:

N −Nc

N
=

N0

N
=

NQbec +Nbec

N
= 1−

(
T

Tc

)3/2

. (15)

4. Another physical observable to characterize this sec-
ond critical temperature is the correlation function con-
densate coherence length. In quasi-1D harmonic trap,
the correlation function is locally defined by:

g(r, r′) =
∑

s

φs(r)φs(r
′)

eβ(ǫs−µ) − 1
, (16)

where the wave function φs(r) are the well known three
dimensional hermite functions:

φs(r) = φsx(x)φsy (y)φsz (z),

with for ν = x, y, z (rx ≡ x, ry ≡ y, rz ≡ z):

φsν (rν ) = csν
1√
Lν

Hsν (rν/Lν)e
−

r2ν
2L2

ν ,

with csν = 1/
√
sν !2sν

√
π, ν = x, y, z and where the

effective confinement lengths Lν, ν = x, y, z are given by:

Lν =
√

~

mων
. Notice that the limiting diagonal function

n(r) ≡ σ(r, r) is local space particle density at point r.

To compute the correlations in the direction z, in-
duced by the quasi-condensate, we have to consider
r = r̃−∆r/2 r′ = r̃+∆r/2, where ∆r/2 = (0, 0,∆z) and
integrate r̃ over the space to keep the effect of condensate
through the trap, it give the mean value of correlation for
the distance ∆r:

〈g〉(∆r) =

∫

R3

d3r̃g(r̃ −∆r/2, r̃ +∆r/2).

= 〈gNbec〉(∆r) + 〈gQbec〉(∆r) + 〈gbec〉(∆r) (17)

where correlation function is divided in three parts,
each part is the truncation of the sum (16) : the non-
condensate correlations 〈gNbec〉 ≡ ∑

sx>0,sy>0,sz
, the

quasi-condensate correlations 〈gQbec〉 ≡
∑

sx=0,sy=0,sz

and the condensate correlations 〈gbec〉 ≡ (correlation
of the ground state). By formulas (16) and (17) and
by mathematical assumptions [16], [17] for the non-
condensate part, we get, see figure 4:

〈gNbec〉(∆r) ≃
∫

R1

dx̃

∫

R1

dỹ

∫

R1

dz̃

∞∑

j=1

ejβµ
√
πj~ω0/2

3

× e−jmβ(ω2
xx̃

2+ω2
y ỹ

2+ω2
z z̃)

2

e
−2m (∆r)2

jβ~2

=

∞∑

j=1

ejβµ
1

j3~3ω3
0

exp[−2m
(∆r)2

jβ~2
], (18)

which decrease exponentially fast for µ < 0. The quasi-
condensate part, for T < Tc, by the scaling argument of
localization of the scale of energetic momentum of quasi-
condensate given by ∆µ, and by mathematical assump-
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FIG. 4: (a) Allure of correlation functions (19) with ω0 = 1,
β~2/2m = 1 and β∆µ = 1, 0.1, 0.01, 0.001, 0.00001, 0.0000001
respectively curves (- - -), (- - -), (...) and (—). Notice that
(...) and (—) are combined, what can be interpreted as a
saturation of the coherence of the thermal gas. (b) Allure
of correlation functions (18) with ω0 = 1, β~2/2m = 1 for
β∆µ = 0.001, 0.0001, 0.000001 respectively (- - -), (- - -), (—
).

tions [16], [17], is given by, see figure 4:

〈gQbec〉(∆r) ≃
∫

R1

dz̃

∞∑

j=1

ejβ∆µ 1√
πj~ω0/2

× exp[−jmβ(ω2
z z̃)

2β∆µ] exp[−2m
(∆r)2β∆µ

jβ~2
],

=

∞∑

j=1

ejβµ
1

j~ωz
exp[−2m

(∆z)2∆µ

jβ~2
]. (19)

The condensate part, for T < Tm is given by:

〈gbec〉(∆r) =

∫

R3

dr̃φ000(∆r)φ000(−∆r)Nbec

= Nbec exp (
∆z2

L2
z

) ≃ Nbec. (20)

We can defined the coherence length of the quasi-
condensate as the maximal scale of length of ∆z such
that the correlations are non-negligible when ωz, ω⊥

tends to zero. Then by a scaling argument, see equa-
tion (19) we obtain Lc =

√
~/mω⊥β∆µ, where ∆µ is

given by β−1e~βωz(N−Nc) for Nc < N < Nm. Thus
Lc

√
mω⊥/~ = (ω⊥/ωz)

γ(T ), where the exponent γ(T ) =
~βω3

0(N − Nc)/ω
2
c for Nc < N < Nm and γ(T ) =

~βω3
0(Nm − Nc)/ω

2
c for N > Nm. Using relations (9)

and (10) between N , Nc, Nm and T , Tc, Tm, we can find
the temperature dependence of the exponent:

γ(T ) =

(
T

τ

)2
((

Tc

T

)3

− 1

)
, Tm < T < Tc ,

= 1, T ≤ Tm . (21)

7. We propose an experimental investigation of a weakly
interacting Bose gas in quasi-one-dimensional-harmonic-
trap, with the opposite of Thomas-Fermi regime to verify
experimentally the effect of geometry on the kinetic en-
ergy and on the coherence properties of the condensate
between these two critical points. The next work will deal
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FIG. 5: curve illustrating the exponent (21) as a function
of T

Tc
and with Tc

τ
= 2

3
. This gives us a relative difference

between the two critical densities of 0.587, see relation 11 and
figure 2

with the implementation of the interactions between par-
ticles and its effect on the second critical temperature as
it is done for the first critical temperature [15]. An other
question for quasi-two-dimensional boxes is the validity
of Hohenberg theorem [9] which forbidden the existence
of the condensate on the ground state for homogeneous
system.

We are thankful to Markus Holtzmann for useful dis-
cussions about the exponential anisotropy effect.
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121, 263 (2000). 74, 063623 (2006).
[10] M.Beau, V.Zagrebnov, Condensed Matter Journal

(2010).
[11] F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P.

Bouyer, A. Aspect, Phys. Rev. A 67 051602(R) (2003)
[12] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven,

Phys. Rev.Lett. 87, 050404 (2001).
[13] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven,

Phys. Rev.Lett. 85, 3745 (2000).
[14] F.Dalfovo et al., Rev. Mod. Phys. 71, 463 (1999).
[15] M. Holzmann, J.-N. Fuchs, G. Baym, J.-P. Blaizot, F.

Lalo, Comptes Rendus Physique 5, 21 (2004)
[16] M.Abramowitz, I.A.Stegun, eds (1972), Handbook of

Mathematical functions with formulas, graphs and math-
ematical tables, New York: Dover Publications.

[17] M.Beau, Thesis, in progress (2010).


