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Introduction

Let Ω ⊂ R 2 be a simply connected domain and let a ε : Ω → R be a measurable function such that 0 < b ≤ a ε ≤ 1. We associate with a ε a generalized Ginzburg-Landau (GL, in short) type energy

E ε (u) = 1 2 Ω |∇u(x)| 2 + 1 2ε 2 (a 2 ε (x) -|u(x)| 2 ) 2 dx. (1) 
Here, u ∈ H 1 (Ω, C) and ε > 0 is the GL parameter. This variant of the standard GL type energy (which corresponds to a ε ≡ 1) is called GL functional with pinning term a ε or pinned GL functional. We quote here few relevant papers among the vast literature concerning this energy functional.

• In [START_REF] André | Vortex pinning with bounded fields for the Ginzburg-Landau equation[END_REF], the authors consider the case where a ε = a ∈ C β (Ω) is independent of ε.

• [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] and [START_REF] Aydi | Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint[END_REF] treat the case where a ε = a is independent of ε and takes the value b in ω and 1 outside ω, with ω smooth subset of Ω. The latter article considers the case of an applied magnetic field.

• In [START_REF] Aftalion | Pinning Phenomena in the Ginzburg-Landau model of Superconductivity[END_REF], a ε depends on ε and is smooth. The oscillation rate of a ε depends on ε.

The goal of this article is to study the pinned GL functional with a fast oscillating discontinuous pinning term a ε . This may be viewed as a simplification of more realistic models which describe superconductivity phenomena for composite superconductors. The experimental pictures suggest nearly 2D structure of parallel vortex tubes ( [START_REF] Newton | Vortex lattice theory: A particle interaction perspective[END_REF], Fig I .4). Therefore, the domain Ω can be viewed as a cross-section of a multifilamentary wire with a number of thin superconducting filaments. Such multifilamentary wires are widely used in industry, including magnetic energy-storing devices, transformers and power generators [START_REF] Larbalestier | High-T c superconducting material for electric power applications[END_REF], [START_REF] Glowacki | Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors[END_REF].

Another important practical issue in modeling superconductivity is to decrease the energy dissipation in superconductors. Here, the dissipation occurs due to currents associated with the motion of vortices ( [START_REF] Lin | Ginzburg-Landau vortices, dynamics, pinning and hysteresis[END_REF], [START_REF] Bardeen | Theory of the Motion of Vortices in Superconductors[END_REF]). This dissipation as well the thermomagnetic stability can be improved by pinning ("fixing the positions") of vortices. This, in turn, can be done by introducing impurities or inclusions in the superconductor.

Our pinning term is periodic with respect to a δ × δ grid where δ = δ(ε) → 0. As in [START_REF] Aftalion | Pinning Phenomena in the Ginzburg-Landau model of Superconductivity[END_REF], due to the fast oscillations, this problem is related to a periodic homogenization problem (depending on the relation between ε and δ).

The boundary condition we consider is the Dirichlet one. More specifically, we fix some g ∈ H 1/2 (∂Ω, S 1 ). Our class of test functions is

H 1 g := {u ∈ H 1 (Ω, C) | u = g on ∂Ω}. (2) 
We consider solutions u ε of the minimization problem inf

u∈H 1 g E ε (u). (3) 
In this article we will consider only the case where the boundary data g has zero degree. The case where the degree is not zero requires additional techniques and will be investigated in a forthcoming paper.

Recall that the degree (winding number) of g is defined as

deg ∂Ω (g) = 1 2π ∂Ω g × ∂ τ g dτ = 0,
where:

• For z ∈ C, ℜz denotes the real part of z and ℑz denotes the imaginary part of z.

• "×" stands for the "vectorial product" in C, z 1 × z 2 = ℑ(z 1 z 2 ), z 1 , z 2 ∈ C.

• τ is the unit and direct tangent vector at ∂Ω, i.e., denoting ν to be the unit outward normal to ∂Ω, one has τ = ν ⊥ .

• ∂ τ is the tangential derivative.

This degree is an integer. For a proof of this assertion and for more properties of the topological degree of g, see e.g. [START_REF] Brezis | New questions related to the topological degree[END_REF] or [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF].

If u ε is a minimizer of the problem (3), then it satisfies the Euler-Lagrange equation

   -∆u ε = 1 ε 2 u ε (a 2 ε -|u ε | 2 ) in Ω u ε = g on ∂Ω . (4) 
Following [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF], one may prove that in the special case g ≡ 1 there is a unique minimizer U ε . Moreover, this minimizer satisfies b ≤ U ε ≤ 1. This U ε plays an important role in the study of GL functional with pinning term. Indeed, define, for u ∈ H 1 g , a new map v = u U ε ∈ H 1 g . Then E ε decouples as follows [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] E ε (u

) = E ε (U ε v) = f (ε) + F ε (v), (5) 
where

f (ε) := E ε (U ε ), F ε (v) := 1 2 Ω U 2 ε |∇v| 2 + 1 2ε 2 U 4 ε (1 -|v| 2 ) 2 . (6) 
Therefore, u minimizes E ε in H 1 g (Ω) if and only if v minimizes F ε in H 1 g . In what follows, we denote by v ε a minimizer of F ε in H 1 g . Following again [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF], we have |v ε | ≤ 1 and |u ε | ≤ 1 in Ω. From [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF] and [START_REF] Berlyand | Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain[END_REF] we see that the study of the pinned GL is reduced to the study of the weighted GL functional F ε and to the study of the asymptotics of U ε .

The plan of our work is the following: in Section 2 we prove a "clearing out" result (Theorem 1). More specifically, we prove that v ε is "vortexless" for small ε, i. e., that |v ε | → 1 uniformly in Ω as ε → 0. (Recall that deg ∂Ω (g) = 0; this assumption is essential for our conclusion.) This result is true for any weighted GL functionals. Such general functionals are defined by formula [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] and do not require any assumption except uniform bounds on the weights. In particular, clearing out does not rely on any periodicity assumption. We believe that this result has its own interest. The clearing out result reduces the study of the behavior of v ε to the one of S 1 -valued maps. In other words, we will reduce the problem of minimizing F ε in the class of all test functions to the one of minimizing F ε in the class of S 1 -valued maps. The latter problem will be studied in detail in Section 3. There, the asymptotic analysis of minimizers of the F ε among S 1 -valued maps, combined with an asymptotic analysis of U ε (analysis performed at the beginning of Section 3), will allow us to conclude Section 3 by describing the behavior of u ε as ε → 0.

Clearing out for general weighted Ginzburg-Landau type functionals

Let b ∈ (0, 1) and let

α ε ∈ W 1,∞ (Ω), β ε ∈ L ∞ (Ω) be such that b ≤ α ε , β ε ≤ 1.
We associate to α ε and β ε the weighted GL type functional defined through the formula

F ε : H 1 (Ω, C) → R + v → 1 2 Ω α ε |∇v| 2 + β ε 2ε 2 (1 -|v| 2 ) 2 . ( 7 
)
Let g ∈ H 1/2 (∂Ω, S 1 ) be such that deg ∂Ω (g) = 0. For ε > 0, we denote by v ε a minimizer of

F ε in H 1 g . One may easily prove that v ε satisfies    -div(α ε ∇v ε ) = β ε ε 2 v ε (1 -|v ε | 2 ) in Ω v ε = g on ∂Ω . ( 8 
)
Since deg ∂Ω (g) = 0, we have

[7] H 1 g (Ω, S 1 ) = {v ∈ H 1 g | |v| = 1 in Ω} = ∅. If we take any fixed map v ∈ H 1 g (Ω, S 1
) as a test function for F ε , we find that there is C 0 depending only on g such that min

v∈H 1 g (Ω) F ε (v) = F ε (v ε ) ≤ C 0 . (9) 

Uniform convergence of |v ε | to 1

This part is devoted to the proof of the following theorem.

Theorem 1. When ε → 0, we have |v ε | → 1 uniformly in Ω.
For the convenience of the reader, we split the rather long proof of Theorem 1 into two parts.

Theorem 1 holds far away the boundary

We prove that, for sufficiently small ε,

|v ε | is arbitrarly close to 1 outside an 2 √ ε-neighborhood of ∂Ω. Proposition 1. Let ε n ↓ 0 and {x n } n ⊂ Ω be such that dist(x n , ∂Ω) ≥ 2 √ ε n . Then |v εn (x n )| → 1.
Proof. We write ε instead of ε n . Let n be sufficiently large such that √ ε > ε and consider the circular

annulus B √ ε (x n ) \ B ε (x n ). From (9), we have, with C r := {|x -x n | = r}, C 0 ≥ b 4 B √ ε (xn)\Bε(xn) |∇v ε | 2 + 1 ε 2 (1 -|v ε | 2 ) 2 = b 4 √ ε ε 1 r • r Cr |∇v ε | 2 + 1 ε 2 (1 -|v ε | 2 ) 2 . ( 10 
)
By mean value argument, there are C 1 (depending only on g, Ω and b) and r ∈ (ε,

√ ε) such that r Cr |∇v ε | 2 + 1 ε 2 (1 -|v ε | 2 ) 2 ≤ C 1 | ln ε| . ( 11 
)
Lemma 1. Let δ > 0. Then, for large n and for r as in [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF], we have

1. Var (v ε , C r ) ≤ δ, where Var (v ε , C r ) := Cr |∂ τ v ε |; 2. |v ε | ≥ 1 -2δ on C r .
Proof. Assertion 1. is a direct consequence of the bound [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF], which yields

Cr |∂ τ v ε | 2 ≤ Cr |∇v ε | 2 ≤ Cr 1 Cr |∇v ε | 2 = 2πr Cr |∇v ε | 2 ≤ 2πC 1 | ln ε| .
It follows that, for large n, we have |Var

(v ε , C r )| ≤ δ.
In order to prove 2., we argue by contradiction. Assume that there are δ > 0, a subsequence

{n k } k and points x n k ∈ C r such that |v ε (x n k )| < 1 -2δ (here ε = ε n k ).
From the estimate 1. on Var (v ε , C r ), one has, for large k,

|v ε | < 1 -δ on C r .

Consequently, r

Cr

(1 -|v εn k | 2 ) 2 ≥ 2πr 2 δ 2 .
Since r ≥ ε, this inequality contradicts the estimate [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF] for small ε.

So far, we proved the existence of a circle around x n such that, on that circle, |v ε | is close to 1 and v ε varies little. More specifically: if 0 < γ < 1 then, for large n, there exists

S ε ⊂ B 1 (0) such that • dist(S ε , 0) ≥ 1 -γ,
• S ε is the smallest of the two regions delimited by a chord in the closed unit disc,

• v ε (C r ) ⊂ S ε .
The following lemma implies that, under the above assumptions on S ε and on r, we have, for large n, |v ε (x n )| ≥ 1γ. This inequality completes the proof of Proposition 1, which is the first step in the proof of Theorem 1.

Lemma 2. Let C be a chord in the closed unit disc, C different from a diameter. Let S be the smallest of the two regions enclosed by the chord and the boundary of the disc. Let O be a Lipchitz bounded open set and let g ∈ H 1/2 (∂O, S).

Let α, β ∈ L ∞ (O, R) satisfy ess inf α > 0, ess inf β > 0. If v minimizes GL type energy F (v) = O α(x)|∇v| 2 + β(x)(1 -|v| 2 ) 2 in H 1 g (O), then v(O) ⊂ S.
Remark 1. This statement generalizes Lemma 8 in [START_REF] Berlyand | Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain[END_REF] (there α = 1, β = 1/(2ε 2 )). However, the proof in [START_REF] Berlyand | Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain[END_REF] does not apply directly to our situation.

Proof. Clearly, one may assume that O is connected. We start by noting that v has the following properties:

• v is continuous in O (this relies on the equation satisfied by v, on Theorem 2 in [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF] and on Sobolev embeddings).

• |v| ≤ 1. Indeed, consider the test function

v ′ =    v, if |v| ≤ 1 v |v| , if |v| > 1 . Since v ′ has more energy than v,
we find that |v| ≤ 1 a. e. and thus |v| ≤ 1.

Without loss of generality, we may assume that, for some µ ∈ (0, 1), we have C = {z ∈ B 1 (0) : ℜz = µ} and S = {z ∈ B 1 (0); ℜz ≥ µ}.

The map w := |ℜv| + iℑv equals g on ∂O and has the same energy as v. Thus w minimizes F . In particular, w is continuous. Therefore, if we prove that w(O) ⊂ S, we will have v(O) ⊂ S. In conclusion, we reduced the problem to the case where ℜv ≥ 0.

Let P be the orthogonal projection on S. When z ∈ B 1 (0) ∩ {ℜz ≥ 0}, we have

P (z) =      z, if ℜz ≥ µ µ + iℑz, if |ℑz| ≤ 1 -µ 2 and ℜz < µ µ + i(sign ℑz) 1 -µ 2 , if |ℑz| > 1 -µ 2 and ℜz < µ . (12) 
One may check easily that

|z| ≤ |P (z)| ≤ 1 for z ∈ B 1 (0) ∩ {ℜz ≥ 0}. ( 13 
)
Set ψ(z) := P (w(z)), which equals g on ∂O. 

V := {z ′ ∈ S 1 | 0 ≤ ℜz ′ < µ}.
We have to prove that U := w -1 (V ) = ∅. We argue by contradiction and assume

U = ∅. Then U is open, since U = O \ w -1 (S) with S a closed set.
We first prove that w is locally constant in U . Indeed, in U , w satisfies div(α∇w) = 0. Since w ∈ H 1 (U, S 1 ), we may write, in U , w = e ıϕ , where ϕ ∈ H

1 [8]. Let ζ ∈ C ∞ c (U ).
If we multiply the equation div(α∇(cos ϕ)) = 0 by ζ cos ϕ and the equation div(α∇(sin ϕ)) = 0 by ζ sin ϕ and add the two results, we obtain αζ|∇ϕ| 2 = 0, so that ϕ (and thus w) is locally constant in U .

Let W = ∅ be a connected component of U , so that w ≡ s ∈ V in W . Consider the non empty set Y := w -1 ({s}). Then Y is open in O (since w is locally constant in U ), and clearly Y is closed in O. Therefore, Y = O, i. e., w ≡ s in O. This contradicts the facts that g : ∂O → S, tr ∂O w = g and s / ∈ S.

Theorem 1 holds close to the boundary

We prove that, inside an o ε (1)-strip along ∂Ω and for sufficiently small ε, |v ε | is arbitrarily close to 1.

The key argument will be provided by the following lemma.

Lemma 3. Let (x ε ) ε>0 ⊂ Ω be such that r ε := dist(x ε , ∂Ω) → 0. Then we have, for all C ≥ 2,

F ε (v ε , B Crε (x ε )) → 0.
Proof. Note that it suffices to prove the result for C = 2. (For larger values of C, it suffices to replace

x ε by the point at distance C + 1 2 r ε from x ε and at distance C + 3 2 r ε from ∂Ω.)

Let δ > 0. We will prove that there is ε δ > 0 such that for ε < ε δ , we have

F ε (v ε , B 2rε (x ε )) ≤ δ.
For the convenience of the reader, the proof is divided into four steps.

Step 1: Flattening of Ω and choice of a good triangle Without loss of generality, we may assume that ∂Ω is flat near x ε . The general case is obtained by flattening the boundary. This will affect the equation satisfied by v ε and the energy associated with it, but not the conclusion of the proof below (which relies only on energy bounds and qualitative conclusions derived form the equation of v ε ). From now on, we assume that Ω ⊂ R 2 + and ∂Ω ⊂ R in a neighborhood of fixed size of x ε . We also assume, without loss of generality, that x ε = (0, r ε ).

For ℓ > 0, we set

T ℓ := {(s, t) | t = s + ℓ, s ∈ [-ℓ, 0]} ∪ {(s, t) | t = -s + ℓ, s ∈ (0, ℓ]} ⊂ R 2 +
(thus T ℓ is the union of two segments). Denote by ω ℓ the (solid) triangle enclosed by T ℓ and R. Then we have B(x ε , 2r ε ) ∩ Ω ⊂ ω 5rε .

Our goal is to construct, for an appropriate small ℓ (depending on x ε and such that ℓ > 5r ε ) a test function h :

ω ℓ → C such that tr ∂ω ℓ h = tr ∂ω ℓ v ε and F ε (h, ω ℓ ) → 0. Since v ε is a global minimizer of F ε in H 1 g (Ω, C), it follows that v ε is also a minimizer of F ε in H 1 tr ∂ω ℓ v (ω ℓ , C). Our goal is to prove that F ε (v ε , ω ℓ ) → 0. Since B 2rε (x ε ) ⊂ ω ℓ , the lemma will follow.
Let ε 1 > 0 be such that for ε < ε 1 , 5r < √ r. Let w be the harmonic extension of g to Ω. We claim that

1. ∃ C 1 > 0 (independent of ε) and ∃ ℓ ∈ (5r, √ r) such that ℓ T ℓ |∇v ε | 2 + 1 ε 2 (1 -|v ε | 2 ) 2 + |∇w| 2 ≤ C 1 | ln r| , (14) 2 
. |v ε (x)| -→ x∈T ℓ , x→∂Ω 1, 3. |v ε | ≥ 1/2 on T ℓ (for sufficiently small ε).
The claim 1. comes directly from (9) and a mean value argument. Claim 2. is proved in Lemma 4 below, using an argument essentially due to Boutet de Monvel and Gabber [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF].

In order to prove Claim 3., we start by noting that

T ℓ |∂ τ |v ε || 2 ≤ Cℓ T ℓ |∂ τ |v ε || 2 ≤ Cℓ T ℓ |∇v ε | 2 ≤ C ′ | ln r| . (15) 
Consequently, there exists 0 < ε 2 ≤ ε 1 such that, for ε < ε 2 , the variation of |v ε | on T ℓ is smaller than 1/2. Since, by Lemma 4, we have |v ε | = 1 at the endpoints of T ℓ , we obtain that Claim 3. holds.

Lemma 4. Let α ∈ W 1,∞ (Ω), β ∈ L ∞ (Ω; R + ) be such that inf α > 0. Let v be a critical point of u → α|∇u| 2 + β(1 -|u| 2 ) 2 in the class H 1 g (Ω), where g ∈ H 1/2 (∂Ω; S 1 ). Then |v| ∈ C(Ω).
Proof. We first note that |v| ≤ 1 a. e. (by the maximum principle. This is obtained, e. g., by

noting that U := 1 -|v| 2 satisfies -div(α∇U ) + 4β|v| 2 U = 2α|∇v| 2 in Ω U = 0
on ∂Ω , and consequently

U ≥ 0 in Ω.) We next split v = v 1 + v 2 , where v 1 is the harmonic extension of g. It follows that v 2 satisfies -∆v 2 = α -1 ∇α • ∇v + 2α -1 βv(1 -|v| 2 ) in Ω v 2 = 0 on ∂Ω . Since |v| ≤ 1 and α ∈ W 1,∞ , we obtain v 2 ∈ H 2 (Ω) ∩ H 1 0 ⊂ C 0 (Ω).
On the other hand, we have v 1 ∈ C(Ω) and |v 1 | ∈ C(Ω) (the last point is essentially due to Boutet de Monvel and Gabber [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF]; see also [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF], Theorem A.3.2). Therefore, we have |v| ∈ C(Ω). Now that ℓ was properly chosen, we construct our test function h. This function will coincide with v ε outside ω ℓ . Therefore, we will only explain how to construct h inside ω ℓ . In order to obtain a globally H 1 -map, we will set h equal v ε on T ℓ . Let h be of the form h = ρe ıψ ; in order to have h = v ε on T ℓ , we will make sure that ρ = |v| and e ıψ = v ε |v ε | on T ℓ . In Step 2, we construct ρ. In Step 3, we construct ψ. Finally, in Step 4 we estimate the energy of h and conclude.

Step 2 : Choice of the modulus ρ of the test function h Let ρ : ω ℓ → [0, 1] be defined by

ρ(s, t) =      t s + ℓ (|v ε (s, s + ℓ)| -1) + 1, if s < 0 t -s + ℓ (|v ε (s, -s + ℓ)| -1) + 1, if s > 0 . Clearly, ρ ∈ H 1 (ω ℓ , [0, 1]), ρ = |v ε | on T ℓ and ρ = 1 on ∂ω ℓ ∩ ∂Ω.
For further use, we estimate

ω ℓ |∇ρ| 2 + 1 ε 2 (1 -ρ 2 ) 2 . We denote ω - ℓ = {x = (s, t) ∈ ω ℓ | s < 0}
(this is the left half of the triangle ω ℓ ). We will estimate the quantity

ω - ℓ |∇ρ| 2 + 1 ε 2 (1 -ρ 2 ) 2 .
By symmetry, a similar estimate will hold in ω + ℓ := ω ℓ \ ω - ℓ , and thus in ω ℓ .

We have

1 ε 2 ω - ℓ (1 -ρ 2 ) 2 ≤ 4 ε 2 ω - ℓ (1 -ρ) 2 ≤ C ε 2 0 -ℓ ds ℓ+s 0 t 2 (s + ℓ) 2 (|v ε (s, s + ℓ)| -1) 2 dt ≤ Cℓ ε 2 0 -ℓ (|v ε (s, s + ℓ)| -1) 2 ds ≤ Cℓ ε 2 T ℓ (|v ε | -1) 2 ds ≤ C | ln r| .
(The last inequality comes from Claim 1.)

In order to estimate

ω - ℓ |∇ρ| 2
, we start from the identity

ω - ℓ |∇ρ| 2 = 0 -ℓ ds ℓ+s 0 dt |∂ s ρ| 2 + |∂ t ρ| 2 .
On the one hand,

0 -ℓ ds ℓ+s 0 dt|∂ t ρ| 2 = 0 -ℓ (|v ε (s, s + ℓ)| -1) 2 s + ℓ ds = 0 -ℓ ds s + ℓ s -ℓ d dk [|v ε |(k, k + ℓ)] 2 ≤ √ 2ℓ T ℓ |∇v ε | 2 ≤ C | ln r| .
On the other hand, we have

|∂ s ρ| 2 ≤ 2 t 2 (s + ℓ) 4 (|v ε (s, s + ℓ)| -1) 2 + t 2 (s + ℓ) 2 (∇|v ε |(s, s + ℓ) • (1, 1)) 2 = 2(A 1 + A 2 ). Since 0 -ℓ ℓ+s 0 A 1 ≤ 0 -ℓ ℓ+s 0 1 (s + ℓ) 2 (|v ε (s, s + ℓ)| -1) 2 = 0 -ℓ 1 s + ℓ (|v ε (s, s + ℓ)| -1) 2 ≤ C | ln r| and 0 -ℓ ℓ+s 0 A 2 ≤ 2ℓ T ℓ |∇v ε | 2 ≤ C | ln r| ,
we find that

ω ℓ |∇ρ| 2 ≤ C | ln r|
. In conclusion, the following estimate holds:

ω ℓ |∇ρ| 2 + 1 ε 2 (1 -ρ 2 ) 2 ≤ C | ln r| . ( 16 
)
Step 3 : Construction of an auxiliary phase ψ Recall that |w(z)| → 1 uniformly as z → ∂Ω [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF]. Thus, there is some 0 < ε 3 ≤ ε 2 such that for ε < ε 3 we have |w| ≥ 1/2 in ω ℓ . For ε < ε 3 , we may write, in ω ℓ , w = |w|e ıϕ with ϕ ∈ H 1 (ω ℓ , R). Note that, by choice of ℓ, we have

|v ε | ≥ 1/2 on T ℓ and v ε ∈ H 1 (T ℓ ). Therefore, we may write v ε = |v ε |e ıφ on T ℓ , with 1/2 ≤ |v ε | ≤ 1 and φ ∈ H 1 (T ℓ ). Since v ε -w ∈ C(Ω) (cf the proof of Lemma 4) and v ε = w on ∂Ω, it follows that lim z→∂Ω (v ε -w)(z) = 0. Therefore, we have lim z→∂Ω z∈T ℓ ∩∂ω - ℓ e ı(φ(z)-ϕ(z)) = lim z→∂Ω z∈T ℓ ∩∂ω + ℓ e ı(φ(z)-ϕ(z)) = 1. Consequently, there are k + , k -∈ Z such that lim z→∂Ω z∈T ℓ ∩∂ω - ℓ φ(z) -ϕ(z) 2π = k -and lim z→∂Ω z∈T ℓ ∩∂ω + ℓ φ(z) -ϕ(z) 2π = k + .
By [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF] and the fact that

|v ε |, |w| ≥ 1 2 on T ℓ , we obtain ℓ T ℓ |∇φ| 2 + |∇ϕ| 2 ≤ C | ln r| .
Thus, for small ε, the variations of φ and ϕ are small on ∂ω ℓ \∂Ω and consequently, there is 0 < ε 4 < ε 3 such that for ε < ε 4 , we have k -= k + . Without loss of generality, we may assume

k -= k + = 0. Let ψ : ω ℓ → R be defined by 1. tr ∂ω ℓ ψ = tr ∂ω ℓ (φ -ϕ), 2. ψ(s, t) =      t ℓ + s [φ(s, s + ℓ) -ϕ(s, s + ℓ)] , if s < 0 t ℓ -s φ(s, -s + ℓ) -ϕ ′ (s, -s + ℓ) , if s > 0 .
For further use, we estimate the Dirichlet energy of ψ. It suffices to estimate the energy in ω - ℓ ; a similar estimate holds in ω ℓ .

We have

ω - ℓ |∇ψ| 2 = 0 -ℓ ds ℓ+s 0 dt |∂ s ψ| 2 + |∂ t ψ| 2 = B 1 + B 2 .
First, we obtain, denoting ξ = φϕ,

B 1 = 0 -ℓ ℓ+s 0 |∂ s ψ| 2 ≤ 2 0 -ℓ ℓ+s 0 ξ(s, s + ℓ) ℓ + s 2 + d ds ξ(s, s + ℓ) 2 = 2(B 11 + B 12 ). Now B 11 = 0 -ℓ 1 ℓ + s |ξ(s, s + ℓ)| 2 ≤ 0 -ℓ 1 ℓ + s s -ℓ d dα ξ(α, α + ℓ) dα 2 ≤C 0 -ℓ T ℓ |dξ| 2 ≤ ℓ T ℓ |dξ| 2 ≤ C | ln r| .
Next, we have

B 12 = 0 -ℓ ℓ+s 0 |dξ| 2 (s, s + ℓ) ≤ ℓ T ℓ |dξ| 2 ≤ C | ln r| .
Similarly, we have

B 2 ≤ C | ln r| .
Finally, we find that

ω ℓ |∇ψ| 2 ≤ C | ln r| . ( 17 
)
Step 4: Conclusion (proof of Lemma 3 completed) Consider the following test function

h := v in Ω \ ω ℓ ρe ı(ϕ+ψ) in ω ℓ .
Clearly h ∈ H 1 g and

F ε (v ε , B 2rε (x ε )) ≤F ε (v ε , ω ℓ ) ≤ F ε (h, ω ℓ ) ≤ C | ln r| + 4 ω ℓ |∇w| 2 . ( 18 
)
The last estimate follows by combining ( 16) with ( 17) and the fact that

|∇h| 2 = |∇ρ| 2 +ρ 2 |∇(ϕ+ψ)| 2 .
Since

ω ℓ |∇w| 2 → 0 as ε → 0, we find that F ε (v, B 2r (x)) < δ for small ε.
The next result completes the proof of Theorem 1.

Proposition 2. Let ε n ↓ 0 and {x n } n ⊂ Ω be such that dist(x n , ∂Ω) → 0. Then |v εn (x n )| → 1.
Proof of Proposition 2. Let δ ∈ (0, 1). Denote

d n := dist(x n , ∂Ω) and v n := v εn . Since there is C 0 > 0 such that F εn (v n ) ≤ C 0 , we may choose C 1 > 1 and r n ∈ (d n /C 1 , d n ) such that 2πC 0 ln C 1 < δ 10 4 (19) 
and

r n Cn |∇v n | 2 + 1 ε 2 n (1 -|v n | 2 ) 2 ≤ C 0 ln C 1 , with C n = {x ∈ Ω | |x -x n | = r n }. ( 20 
)
As in the proof of 1. in Lemma 1, we have

[Var(v n , C n )] 2 ≤ 2πC 0 ln C 1 . (21) 
Using [START_REF] Newton | Vortex lattice theory: A particle interaction perspective[END_REF] and the bound [START_REF] Lin | Ginzburg-Landau vortices, dynamics, pinning and hysteresis[END_REF], we find that one of the two cases occurs:

1. |v n | ≥ 1 - δ 10 on C n , 2. |v n | < 1 - δ 10 3 on C n .
In the first case, using [START_REF] Newton | Vortex lattice theory: A particle interaction perspective[END_REF] and Lemma 2, we obtain

|v n (x n )| ≥ 1 -δ.
Assume that for infinitely many n the second case occurs. Up to subsequence, we may assume that it is true for each n.

For large n, let y n := Π ∂Ω (x n ) be the orthogonal projection of x n on ∂Ω and let x ′ n be the intersection point of the segment [x n , y n ] with C n . For large n and for all z ∈ T

n := z ∈ C n | |x ′ n -z| ≤ r 2 we have |z -w z | ≤ 3d n . (22) 
Here, w z is the first intersection point with ∂Ω of the ray starting from x and passing through z. 

Note that z ∈ T n ⇔ z = x n + (x ′ n -x n )e ıθ with θ ∈ [-π/6, π/6]. (23 
I θ ∂ τ |v n | 2 ≤ 3d n I θ |∂ τ v n | 2 . ( 24 
) Denote A := θ∈[-π/6,π/6]
I θ and write each x ∈ A as x = x n + se ıθ (s ≥ r n ). By ( 22), ( 23) and (24) we have

A |∇v n | 2 ≥ π/6 -π/6 dθ I θ |∂ τ v n | 2 s ds ≥ π 3C 1 inf z∈Tn d n I θ |∂ τ v n | 2 ≥ πδ 2 9 • 10 6 • C 1 .
Since C 1 is independent of n and A ⊂ B 3dn (x n ), the above estimate contradicts Lemma 3.

Hence, for sufficiently large n, we have

|v n | ≥ 1 - δ 10 on C n .
This estimate together with Lemma

2 implies |v n (x n )| ≥ 1 -δ.

A corollary of Theorem 1

From Theorem 1 one may easily prove that the contribution of the modulus is negligible. Indeed we have Corollary 1. The following hold.

1. We have

Ω |∇|v ε || 2 + 1 ε 2 (1 -|v ε | 2 ) 2 → 0 as ε → 0. In particular, we have |v ε | → 1 in H 1 (Ω).
2. Assume that (possibly along some subsequence) we have α ε → κ in L 2 (Ω). Write g = e ıϕ 0 (see [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF]), where ϕ 0 ∈ H 1/2 (∂Ω, R). Write, for small ε, v ε = |v ε |e ıϕε , where ϕ ε ∈ H 1 ϕ 0 (Ω, R). Then

ϕ ε → ϕ * in H 1 (Ω), where ϕ * is the solution of -div(κ∇ϕ * ) = 0 in Ω ϕ * = ϕ 0 on ∂Ω .
The above statement implicitly uses two results on lifting, for which we refer to [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF][START_REF] Bourgain | H 1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg-Landau equation[END_REF]. The first one is that each zero degree map g ∈ H 1/2 (∂Ω; S 1 ) may be lifted as g = e ıϕ 0 for some ϕ 0 ∈ H 1/2 (∂Ω; R). The second is that each map in u ∈ H 1 g (Ω; S 1 ) may be written as u = e ıϕ , with ϕ ∈ H 1 ϕ 0 (Ω; R). Consequently, each map u ∈ H 1 g (Ω; R 2 ) such that 0 <essinf |u| ≤esssup |u| < ∞ may be written as u = ρe ıϕ , where ρ = |u| ∈ H 1 1 (Ω; R + ) and ϕ ∈ H 1 ϕ 0 (Ω; R).

Proof. We start by noting that b ≤ κ ≤ 1. Let v ε be a minimizer of F ε in H 1 g . By Theorem 1, we may write, for small ε ,

v ε = ρ ε e ıϕε , with 1/2 ≤ ρ ε := |v ε | ≤ 1 and ϕ ε ∈ H 1 ϕ 0 (Ω, R).
Recall that F ε (v ε ) ≤ C 0 (with C 0 depending only on g, Ω and b). Thus, for small ε, we have

Ω |∇ϕ ε | 2 ≤ 8C 0 b .
If we set w ε := e ıϕε ∈ H 1 g , then we have

F ε (v ε ) = 1 2 Ω α ε (ρ 2 ε |∇ϕ ε | 2 + |∇ρ ε | 2 ) + β ε 2ε 2 (1 -ρ 2 ε ) 2 ≤ F ε (w ε ) = 1 2 Ω α ε |∇ϕ ε | 2 .
Consequently,

Ω |∇ρ ε | 2 + 1 ε 2 (1 -ρ 2 ε ) 2 ≤ 2 b Ω (1 -ρ 2 ε )|∇ϕ ε | 2 ≤ 16C 0 b 2 1 -ρ 2 ε L ∞ (Ω) → ε→0 0.
We now prove 2. We start by noting that ϕ εϕ * satisfies

-div[α ε ρ 2 ε ∇(ϕ ε -ϕ * )] = div[(α ε ρ 2 ε -κ)∇ϕ * ] in Ω ϕ ε -ϕ * = 0 on ∂Ω .
By the Lax-Milgram theorem, we find that

∇(ϕ ε -ϕ * ) L 2 ≤ C (α ε ρ 2 ε -κ)∇ϕ * L 2 . (25) 
We will next use the following simple fact: if

|f n | ≤ C and f n → f in L 2 and if g n → g in L 2 , then f n g n → f g in L 2 . This implies that α ε ρ 2 ε -κ → 0 in L 2 as ε → 0. Finally, (25) implies that ϕ ε → ϕ * in H 1 .

More on the convergence of v ε

This part provides a more quantitative version of Theorem 1. Specifically, under some additional hypotheses on the boundary data g or on the behavior of the weight α ε , we derive estimates on the rate of convergence of |v ε | to 1 or derive better convergence of the phase ϕ ε of v ε respectively.

In what follows, we assume that g ∈ W 1-1/q,q (∂Ω, S 1 ) for some q > 2. Let ϕ 0 ∈ W 1-1/q,q (∂Ω, R) be such that e ıϕ 0 = g (for the existence of ϕ 0 , see, e. g., [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]). For a fixed measurable function

κ : Ω → [b, 1], let ϕ * ∈ W 1,q (Ω, R) be the solution of -div(κ∇ϕ * ) = 0 in Ω ϕ * = ϕ 0 on ∂Ω .
Proposition 3. There is p ∈ (2, q], α ∈ (0, 1), C > 0 (depending only on q, b, Ω and g) such that, for 0 < ε < 1 and v ε a minimizer of F ε in H 1 g , we have 1. {v ε } is bounded in W 1,p by a constant C which depends only on g, b and Ω.

2. {v ε } is relatively compact in C 0,α (Ω).

3. 1 -|v ε | ≤ Cε γ and Ω |∇|v ε || 2 + 1 ε 2 (1 -|v ε | 2 ) 2 ≤ Cε γ with γ = 2α 2 + α .
4. Furthermore, if (possibly after passing to a subsequence) we have α ε → κ in L 2 , then we have

ϕ ε → ϕ * in W 1,p .
Here, we write, for small ε and in virtue of Theorem 1, v ε = ρ ε e ıϕε , with

ϕ ε ∈ H 1 ϕ 0 , ρ ε := |v ε | ∈ [1/2, 1].
Proof. Let ϕ be any fixed W 1,q -extension of ϕ 0 . Then ϕ εϕ satisfies [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF] that there are p 1 ∈ (2, q] and C > 0 (depending only on b and Ω) such that

-div α ε ρ 2 ε ∇(ϕ ε -ϕ) = div(α ε ρ 2 ε ∇ϕ) in Ω ϕ ε -ϕ = 0 on ∂Ω . ( 26 
) Since α ε ρ 2 ε ∇ϕ L q (Ω) ≤ C, it follows from Theorem 1 in
∇(ϕ ε -ϕ) L p 1 (Ω) ≤ C. Thus {ϕ ε } is bounded in W 1,p 1 (Ω).
We next prove that 1ρ ε L p 1 /2 ≤ Cε 2 . For this purpose, we start with the equation satisfied by

ρ ε : div(α ε ∇ρ ε ) + β ε ε 2 ρ ε (1 -ρ 2 ε ) = α ε ρ ε |∇ϕ ε | 2 in Ω 1 -ρ ε = 0 on ∂Ω . (27) 
Let η ε := 1ρ ε and p 1 > 2 be as in the conclusion of Theorem 1 in [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF]. Set r := p 1 /2 and consider a sequence

{φ k } ⊂ C ∞ ([0, 1], [0, 1]) such that φ k is nondecreasing, φ k (0) = 0 and φ k (s) → |s| r-1 as k → ∞, ∀ s ∈ [0, 1]. Let A ε := β ε ρ ε (1 + ρ ε ), which satisfies, for small ε, 3b/4 ≤ A ε ≤ 2. Set B ε := α ε ρ ε |∇ϕ ε | 2 , which is bounded in L p 1 /2
. If we multiply (27) by φ k (η ε ), we find that

Ω α ε |∇η ε | 2 φ ′ k (η ε ) + 1 ε 2 Ω A ε η ε φ k (η ε ) = Ω B ε φ k (η ε ).
Consequently, we have

Ω η ε φ k (η ε ) ≤ Cε 2 Ω B ε φ k (η ε ). ( 28 
)
Note that, in (28), the constant C depends only on b. By letting k → ∞, we obtain, with s being the conjugate exponent of r, that

Ω η r ε ≤ Cε 2 Ω B ε η r-1 ε ≤ Cε 2 Ω η r ε 1 s B ε L r .
This implies that 1ρ ε L p 1 /2 ≤ Cε 2 which we wanted to prove. Going back to (27), we observe that η ε satisfies div(α ε ∇η ε ) = h ε , where h ε is bounded in L p 1 /2 (Ω). Using again [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF], we find that there is some p 2 > 2 such that ∇η ε is bounded in L p 2 (Ω).

It follows that v ε is bounded in W 1,p (Ω), with p := min(p 1 , p 2 ) > 2.

We next prove that |1ρ ε | ≤ Cε γ and

Ω |∇|v ε || 2 + 1 ε 2 (1 -|v ε | 2 ) 2 ≤ Cε γ , where γ := p -2 p -1 .
Indeed, let α := 1 -2 p , so that v ε is bounded in C α (Ω) and

Ω (1 -ρ ε ) ≤ Cε 2 . Let x 0 = x 0 (ε) be a minimum point of ρ ε in Ω.
Since Ω is smooth, for r > 0 sufficiently small we have

|B r (x 0 ) ∩ Ω| ≥ Cr 2 . It follows that Cε 2 ≥ Br(x 0 ) (1 -ρ ε ) ≥ C(1 -ρ ε (x 0 ) -Cr α )r 2 . With r := ε 2 α+2 , we find that 1 -ρ ε (x 0 ) = sup Ω {1 -ρ ε } ≤ Cε γ .
The above estimate together with the inequality F ε (v ε ) ≤ F ε (e ıϕε ) yield the bound on ∇ρ ε :

Ω α ε |∇ρ ε | 2 + β ε 2ε 2 (1 -ρ 2 ε ) 2 ≤ Ω α ε (1 -ρ 2 ε )|∇ϕ ε | 2 ≤ Cε γ .
Finally, 4. follows from the equation

-div α ε ρ 2 ε ∇(ϕ ε -ϕ * ) = div (α ε ρ 2 ε -κ)∇ϕ * in Ω ϕ ε -ϕ * = 0 on ∂Ω .
Indeed, since (α ε ρ 2 εκ)∇ϕ * → 0 in L p 3 (Ω) for a suitable p 3 such that ∇ϕ * ∈ L p 3 , we obtain, using again [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF], that ϕ ε → ϕ * in W 1,p 4 , for a suitable p 4 > 2. We conclude by choosing p := min{p 1 , . . . , p 4 }.

The Ginzburg-Landau functional with a periodic pinning term

In this part, we apply the results obtained in the previous section to the study of a GL energy with a discontinuous periodic pinning term. Inside unit square Y = [0, 1) 2 , consider a smooth subset ω ≺ Y , which will play a role of inclusion (or impurity). The relative size of this inclusion (with respect to the size of the square) will be controlled by some parameter λ > 0 in the following way: for x 0 ∈ ω, we set ω λ = λω + (1λ)x 0 . We now define the pinning term a = a(x, λ) so that it takes different constant values inside and outside of the inclusion:

a(x, λ) = b, if x ∈ ω λ 1, if x ∈ Y \ ω λ , (29) 
where b ∈ (0, 1) is a fixed (material) parameter. We extend a to a periodic function in R 2 . The analysis we develop here could apply to the more complicated situation where x 0 is allowed to depend on λ; however, we will not pursue in this direction here.

Let Ω ⊂ C be a smooth, bounded, simply connected domain. For 1 > δ > 0, denote {C δ n , n ≥ 1} a partition of R 2 into squares with side δ; for simplicity, we suppose that the origin is an edge of one of the squares. We may assume, with no loss of generality, that the squares that lie inside Ω are labelled

C δ n with 1 ≤ n ≤ N δ . Denote Ω δ := N δ n=1 C δ n .
We define the pinning term in Ω as

a ε (x) = a(x/δ, λ), if x ∈ Ω δ 1, if x ∈ Ω \ Ω δ ;
the notation a ε is justified by the fact that we will later let δ depend on the GL parameter ε. The following energy will be associated with this pinning term:

E ε (u) = 1 2 Ω |∇u| 2 + 1 2ε 2 (a 2 ε -|u| 2 ) 2 .
Under the Dirichlet condition tr ∂Ω u = 1, one has the existence of the unique minimizer U ε of E ε [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF].

The following lemma is straightforward.

Lemma 5. There exists a constant C (independent of ε ∈ (0, 1)) such that

E ε (U ε ) ≤ Cλ min 1 εδ , λ ε 2 and |∇U ε | ≤ C ε .
When ε < λδ, the above lemma is obtained by considering as a test function an ε-regularization of a ε . When ε ≥ λδ, it suffices to estimate the energy of the test function 1.

As explained in [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF], if u is of modulus 1 on ∂Ω and we set v := u/U ε , then the energy E ε decouples as follows:

E ε (u) = E ε (U ε ) + F ε (v),
where

F ε (v) := 1 2 Ω U 2 ε |∇v| 2 + U 4 ε 2ε 2 (1 -|v| 2 ) 2 .
We next note that, by the maximum principle, we have b ≤ U ε ≤ 1. Thus F ε satisfies the assumptions of Theorem 1, Corollary 1 and Proposition 3. Therefore, if we let u ε minimize E ε in H 1 g , where g : ∂Ω → S 1 is of zero degree, if U ε minimizes E ε in H 1 1 and if we decompose u ε = U ε v ε , then the conclusions of these results apply to v ε .

To be more specific, we fix g ∈ H 1/2 (∂Ω, S 1 ) such that deg ∂Ω (g) = 0. Then:

1. there is some

ϕ 0 ∈ H 1/2 (Ω, R) is such that g = e iϕ 0 2. we decompose a minimizer u ε of E ε in H 1 g as u ε = U ε v ε , where U ε minimizes E ε in H 1 1 and v ε minimizes F ε in H 1 g 3.
using Theorem 1 we have, for small ε, |u ε | ≥ b/2. Thus we may decompose, for small ε,

u ε = |u ε |e ıϕε with ϕ ε ∈ H 1 ϕ 0 (Ω, R)
4. consequently, for small ε we have

v ε = |v ε |e ıϕε with |u ε | = U ε |v ε |.
From Corollary 1, we know that |v ε | → 1 uniformly and in H 1 . Consequently, we will obtain the asymptotics of u ε from the one of U ε and of ϕ ε .

The remaining part of this section is devoted to the asymptotic analysis of U ε and v ε ; as a byproduct, this will give the asymptotics of u ε . It turns out that the analysis is governed by the relation between ε and δ, as well as by the size of λ. Possibly after passing to subsequences and rescaling, we may assume, with no loss of generality, that we are in one of the four following cases: Section 3.1: λ → 0, the dilute case, Section 3.2: λ = 1, δ = ε, the critical case, Section 3.3: λ = 1, ε ≪ δ, the physical case, Section 3.4: λ = 1, δ ≪ ε, the non-physical case.

3.1 The dilute limit λ → 0

Behavior of U ε

In this case, the energy bound given by Lemma 5 immediately implies Proposition 4. We have

U ε → 1 in L 2 (Ω). (30) 
3.1.2 Limit of ϕ ε Proposition 5. Let ϕ * be the harmonic extension of ϕ 0 in Ω. Then, as ε → 0,

1. ϕ ε → ϕ * in H 1
2. if, in addition, there is some q > 2 such that g ∈ W 1-1/q,q (∂Ω), then we have ϕ ε → ϕ * in W 1,p for some suitable p ∈ (2, q].

Proof. The first part is a direct consequence of Corollary 1 and of Proposition 4. The second part is a direct consequence of Propositions 3 and 4.

The case

λ = 1, δ = ε 3.2.1 Limit of U ε Recall that Y := [0, 1) 2 . Let H 1 per (Y, R) = {u ∈ H 1 (Y, R) | the extension by Y -periodicity of u in R 2 is in H 1 loc (R 2 )}.
We define similarly H 1 per (Y, C). For simplicity, we ignore the reference to R or C when irrelevant. Note that u ∈ H 1 (Y ) extends to a Y -periodic H 1 loc -map if and only if

tr {y 1 =0} u(0, •) = tr {y 1 =1} u(1, •) and tr {y 2 =0} u(•, 0) = tr {y 2 =1} u(•, 1) ⇔ y 1 (1 -y 1 ) [u(y 1 , y 2 ) -u(y 1 , 1 -y 2 )] + y 2 (1 -y 2 ) [u(y 1 , y 2 ) -u(1 -y 1 , y 2 )] ∈ H 1 0 (Y ).
Using these characterizations of H 1 per (Y ), we find that H 1 per (Y ) is weakly H 1 -closed. (For more properties of H 1 per (Y ), see, e. g., [START_REF] Cioranescu | An Introduction to Homogenization[END_REF], part 3.4.) It follows that there exists û which is a minimizer of

E(u) = 1 2 Y |∇u| 2 + 1 2 (u 2 -a 2 ) 2 in the class H 1 per (Y, R).
Theorem 2. The following hold:

1.

The functional E has a unique (modulo multiplication by ±1) minimizer û in H 1 per (Y, R). Among the (exactly) two minimizers, one is positive, the other one negative

2. If û is the positive minimizer of E in H 1 per (Y, R), then we have U ε ⇀ Y û in L 2 (Ω) as ε → 0.
Proof. We first investigate property 1. This is done via the following two lemmas.

Lemma 6. The energy functional E admits a positive global minimizer in H 1 per (Y, R). Furthermore, all global minimizer have constant sign and satisfy

-∆û = û(a 2 -û2 ) in Y, (31) b 
≤ |û| ≤ 1, (32) 
∂ ν û(0, y 2 ) = -∂ ν û(1, y 2 ) and ∂ ν û(y 1 , 0) = -∂ ν û(y 1 , 1). ( 33 
)
Proof. (31) is clear. In order to prove (32

), let u ∈ H 1 per (Y, R) minimize E. Let v :=      |u|, if b ≤ |u| ≤ 1 1, if |u| > 1 b, if |u| < b . It is clear that v ∈ H 1 per (Y, R).
On the other hand, we have

E(v) = 1 2 {b≤|u|≤1} |∇u| 2 + 1 2 (a 2 -u 2 ) 2 + 1 4 {|u|>1} (a 2 -1) 2 + 1 4 {|u|<b} (a 2 -b 2 ) 2 .
By the minimality of E(u), we find that b ≤ |u| ≤ 1 a. e. Noting that, if u is a minimizer, then u is continuous, we find that either u is either positive, or negative. In addition, either b ≤ u ≤ 1 or

-1 ≤ u ≤ -b.
We next prove that minimizers û satisfy (33). Indeed, for all

φ ∈ H 1 per (Y ) ∩ C(Ω) we have 0 = Y ∇û • ∇φ -ûφ(a 2 -û2 ) = - ∂Y φ ∂ ν û. ( 34 
)
We next note that

0 = ∂Y φ ∂ ν û = 1 0 (∂ ν û(0, t) + ∂ ν û(1, t)) φ(0, t) + 1 0 (∂ ν û(t, 0) + ∂ ν û(t, 1)) φ(t, 0) = T 1 (φ 1 (t)) + T 2 (φ 2 (t)),
with φ 1 (t) = φ(0, t) and φ 2 (t) = φ(t, 0). Since for each ψ ∈ C ∞ 0 ((0, 1), R) there is some φ ∈ H 1 per (Y, R) such that φ 1 (t) = ψ(t) and φ 2 ≡ 0, (34) implies that the map

T 1 : C ∞ 0 ((0, 1), R) → R ψ → 1 0 (∂ ν û(0, t) + ∂ ν û(1, t)) ψ(t) is identically zero. It follows that ∂ ν û(0, t) + ∂ ν û(1, t) = 0. A similar argument leads to ∂ ν û(t, 0) + ∂ ν û(t, 1) = 0. Lemma 7.
The energy E has a unique positive minimizer in H 1 per (Y, R).

Proof. Let u, v be two positive minimizers and let w := v/u ∈ H 1 per . By the energy decoupling formula [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] (which adapts to the periodic case), we have

E ε (u) = E ε (v) = E ε (u) + 1 2 u 2 |∇w| 2 + 1 2 u 4 (1 -w 2 ) 2 .
Thus w ≡ 1, which implies u = v.

As a next (and rather long) step in the proof of Theorem 2, we examine the asymptotic behavior of the energy carried by U ε . Proposition 6. We have lim

ε→ ε 2 E ε (U ε ) = |Ω|E(û).
Proof. We use the unfolding operator (see [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], definition 2.1). More specifically, we define, for p ∈

(1, ∞), T ε : L p (Ω) → L p (Ω × Y ) φ → T ε (φ)(x, y) = φ ε x ε + εy , if (x, y) ∈ Ωε × Y, 0 if (x, y) ∈ Λ ε × Y , Ωε := Y K ε ⊂Ω Y K ε =ε(K+Y ), K∈Z 2 Y K ε , Λ ε := Ω \ Ωε and x ε := x 1 ε , x 2 ε .
Here, for s ∈ R, [s] is the integer part of s.

We will use the following results: i) T ε is linear and continuous, of norm at most 1 ( [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], prop. 2.5);

ii

) T ε (uv) = T ε (u)T ε (v) and T ε u v = T ε (u) T ε (v) 1I Ωε×Y ([12], equation (2.2));
iii) "Unfolding criterion for integrals" (u. c. i., [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], prop. 2.6) : If

φ ε ∈ L 1 (Ω) is such that Λε |φ ε | → 0, then we have Ω φ ε - Ω×Y T ε (φ) → 0; iv) εT ε (∇φ)(x, y) = ∇ y T ε (φ)(x, y) for φ ∈ W 1,p (Ω) ([12], equation (3.1)).
As a first step in the proof of Proposition 6, we prove that lim sup

ε ε 2 E ε (U ε ) ≤ |Ω|E(û). Indeed,
we consider the test function

H ε ∈ H 1 1 defined by H ε (x) := ρ ε (x)û x ε + 1 -ρ ε (x), with ρ ε (x) := min 1, dist(x, ∂Ω) ε and x ε = x ε - x ε ∈ Y.
Then we have

T ε (H ε ) → û(y) in L 4 (Ω × Y ) and T ε (ε∇H ε )(x, y) → ∇ y û(y) in L 2 (Ω × Y ). (35) 
Indeed, the first convergence in (35) is a consequence of the fact that

T ε (H ε ) -û(y) is bounded in L ∞ (Ω × Y ) and that its support is contained inside {x ∈ Ω | dist(x, ∂Ω) < 3ε} × Y . This implies at once that T ε (H ε ) → û(y) in L 4 (Ω × Y ).
In order to establish the second convergence in (35), we start from the identity

T ε (ε∇H ε ) = T ε (ρ ε )T ε ε∇ û x ε + T ε (ε∇ρ ε )T ε û x ε -1 = ∇ y û(y)1I Ωε (x) + (T ε (ρ ε ) -1)∇ y û(y)1I Ωε (x) + ∇ y T ε (ρ ε )T ε û x ε -1 ≡ ∇ y û(y)1I Ωε (x) + R ε . Since ρ ε ≡ 1 in {x ∈ Ω | dist(x, ∂Ω) > ε} and since ε|∇ρ ε | is bounded in L ∞ (Ω), it is clear that the support of R ε is included in {x ∈ Ω | dist(x, ∂Ω) < 3ε} × Y and that R ε is bounded in L ∞ (Ω × Y ). Thus R ε → 0 in L 2 (Ω × Y ).
It then suffices to note that ∇ y û(y)1I Ωε (x) → ∇ y û(y) in L 4 (Ω × Y ) in order to obtain the desired convergence result. Similarly, we have

T ε (a ε )(x, y) → a(y) in L 4 (Ω × Y ).
Finally, lim sup

ε ε 2 E ε (U ε ) ≤ lim ε ε 2 E ε (H ε ) = lim ε 1 2 Ω |ε∇H ε | 2 + 1 2 (H 2 ε -a 2 ε ) 2 = with φ = |ε∇H ε | 2 + 1 2 (H 2 ε -a 2 ε ) 2 = lim ε 1 2 Ω×Y T ε (φ) = [here, we use u. c. i.] = lim ε 1 2 Ωε×Y |∇û| 2 + 1 2 (û 2 -T ε (a ε ) 2 ) 2 = 1 2 Ω×Y |∇û(y)| 2 + 1 2 (û(y) 2 -a(y) 2 ) 2 = |Ω|E(û).
In order to complete the proof of Proposition 6, it suffices to establish the inequality lim inf

ε ε 2 E ε (U ε ) ≥ |Ω|E(û).
In order to obtain this estimate, we perform the following change of functions: for u

∈ A := {u ∈ H 1 1 (Ω) such that b ≤ u ≤ 1}, we let v := u 2 . We clearly have v ∈ B := {v ∈ H 1 1 (Ω) such that b 2 ≤ v ≤ 1}.
Both A and B are convex and closed in H 1 1 . We have the following equivalences

u minimizes E ε in H 1 1 (Ω) ⇔ u minimizes E ε in {u ∈ H 1 1 (Ω) such that b ≤ u ≤ 1} ⇔ u = √ v minimizes E ε in { √ v ∈ H 1 1 (Ω) such that b 2 ≤ v ≤ 1} ⇔ v = u 2 minimizes G ε in {v ∈ H 1 1 (Ω) such that b 2 ≤ v ≤ 1} with G ε (v) := 1 4 Ω |∇v| 2 2v + 1 ε 2 (a 2 ε -v) 2 .
Let U ε be the minimizer of

E ε in H 1 1 . Then V ε := U 2 ε is the global minimizer of G ε in {v ∈ H 1 1 (Ω) such that b 2 ≤ v ≤ 1}. Let, for v ∈ C := {v ∈ H 1 per (Y, R) such that v ≥ b 2 }, G(v) := 1 4 Y |∇v| 2 2v + (a 2 -v) 2 .
It is clear that G has a unique minimizer in C, namely v := û2 . With these notations, we have

lim inf ε ε 2 E ε (U ε ) = lim inf ε ε 2 G ε (V ε ) = lim inf ε 1 4 Ω |ε∇V ε | 2 2V ε + (a 2 ε -V ε ) 2 = lim inf ε 1 4 Ω φε (V ε ), where φε (V ε ) := |ε∇V ε | 2 2V ε + (a 2 ε -V ε ) 2 . Using the bound |∇U ε | ≤ C ε [7], we see that Λε φε (V ε ) → 0.
This property, together with the properties i)-iv) of the unfolding operator, imply lim inf

ε Ω φε (V ε ) = lim inf ε Ω×Y T ε ( φ(V ε )), (36) 
where

T ε ( φε (V ε )) =    |∇ y T ε (V ε )| 2 2T ε (V ε ) + (T ε (V ε ) -T ε (a ε ) 2 ) 2 in Ωε × Y 0 in Λ ε × Y := φ y ε (T ε (V ε )). For W ∈ L 2 (Ω, H 1 (Y )) such that W ≥ b 2 a.e. in Ωε × Y , define φ y ε (W ) := |∇ y W | 2 2W + (W -T ε (a ε ) 2 ) 2 1I Ωε×Y . Similarly, for W ∈ L 2 (Ω, H 1 (Y, R)) satisfying W ≥ b 2 a.e. in Ω × Y , we denote φ y (W ) = |∇ y W (x, y)| 2 2W (x, y) + (W (x, y) -a(y) 2 ) 2 .
One may prove that φ y is a convex function of its argument W . Using the strong convergence in L 4 (Ω × Y ), as ε → 0, of the family of T ε (a ε ) to the map (x, y) → a(y), it is not difficult to prove that the assumptions

W ε ∈ L 2 (Ω, H 1 (Y, R)), W ε ≥ b 2 a.e. in Ω × Y and |W ε |, |∇ y W ε | ≤ C in Ω × Y imply Ω×Y {φ y ε (W ε ) -φ y (W ε )} → 0. ( 37 
)
Since ε∇V ε is bounded in L ∞ (Ω) [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] and since V ε is bounded in L 2 , Corollary 3.2 in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] implies that there exists some V ∈ L 2 (Ω, H 1 per (Y )) such that, up to a subsequence, we have

T ε (V ε ) ⇀ V in L 2 (Ω × Y ) and ∇ y (T ε (V ε )) ⇀ ∇ y V in L 2 (Ω × Y ). ( 38 
)
Let W ε := T ε (V ε )+1I Λε×Y , which satisfies the assumptions leading to (37) and, in addition, satisfies

W ε -T ε (V ε ) → 0 in L 2 (Ω × Y ) and ∇ y W ε = ∇ y T ε (V ε ).
To resume, the definition of W ε combined with (38) yields

W ε ⇀ V in L 2 (Ω × Y ), ∇ y W ε ⇀ ∇ y V in L 2 (Ω × Y ), |W ε |, |∇ y W ε | ≤ C and W ε ≥ b 2 (39) 
(here, weak convergence is obtained after possibly passing to a subsequence.)

We are now in position to prove that lim inf

ε ε 2 E ε (U ε ) ≥ |Ω|E(û)
. Indeed, using the fact that

T ε (a ε ) → a in L 4 (Ω × Y
) and the convexity of φ y , we obtain

lim inf ε ε 2 E ε (U ε ) = [from (36)] = lim inf ε 1 4 Ω×Y T ε (φ ε (V ε )) (40) = [since W ε = T ε (V ε ) in Ωε × Y ] = lim inf ε 1 4 Ω×Y φ y ε (W ε ) (41) 
= [using (37), (39)] = lim inf

ε 1 4 Ω×Y φ y (W ε ) (42) 
≥ [using (39) and the convexity of

φ y ] ≥ 1 4 Ω×Y φ y ( V ) (43) = Ω G( V (x, •))dx ≥ Ω G(v)dx = |Ω|E(û). (44) 
It follows that lim

ε ε 2 E ε (U ε ) = |Ω|E(û).
The proof of Proposition 6 is complete.

We are now in position to complete the proof of Theorem 2, point 2., by identifying the weak limit of U ε . From (40), it follows that, for a. e. x ∈ Ω, V (x, •) is a positive global minimizer of G. For such x, we have V (x, •) = v(•).

By combining the following facts:

lim ε 1 4 Ω×Y T ε ( φε (V ε )) = |Ω|E(û) = |Ω|G(v), T ε (V ε ) ⇀ v, ∇ y T ε (V ε ) ⇀ ∇ y v in L 2 (Ω × Y ), we obtain lim ε Ω×Y (T ε (V ε ) -T ε (a ε ) 2 ) 2 = lim ε Ω×Y (v -a 2 ) 2 .
The above equality implies

lim ε Ω×Y T ε (V ε ) 2 = lim ε Ω×Y v2 , which in turn implies T ε (V ε ) → v in L 2 (Ω × Y ). Since v = û2 and V ε = U 2 ε , we obtain Ω×Y (T ε (U ε ) -û) 2 ≤ 1 4b 2 Ω×Y (T ε (U ε ) 2 -û2 ) 2 → 0, that is, we find that T ε (U ε ) → û in L 2 (Ω × Y ).
This fact combined with Proposition 2.9 iii) in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] implies

U ε ⇀ M Y (û) ≡ Y û ( 
y)dy, which is the desired conclusion.

Limit of v ε in H 1

Recall that we are in the critical case λ = 1, δ = ε.

In order to state the main result of this section we recall the following standard existence result (see, e. g., Theorem 4.27 in [START_REF] Cioranescu | An Introduction to Homogenization[END_REF])

Proposition 7. Let f ∈ (H 1 per (Y )) ′ have zero average. Then there exists an unique solution h ∈ H 1 per (Y ) of div(û 2 ∇h) = f and M Y (h) = 0.
In view of this proposition, let χ j ∈ H 1 per (Y ) be the unique solution of div(û

2 ∇χ j ) = ∂ j (û 2 ) and M Y (χ j ) = 0. ( 45 
)
Recall that the homogenized matrix A of û2 x ε Id R 2 is given by

A = Y û2 1 -∂ 1 χ 1 -∂ 1 χ 2 -∂ 2 χ 1 1 -∂ 2 χ 2 (46) 
(see, e. g., [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF] chapter 1 or [13] chapter 6).

Proposition 8. Let ϕ * be the unique solution of

div(A∇ϕ * ) = 0 in Ω ϕ * = ϕ 0 on ∂Ω . ( 47 
)
Let g = e ıϕ 0 . Also, for small ε, represent a minimizer

u ε of E ε in H 1 g as u ε = U ε ρ ε e ıϕε , where ϕ ε ∈ H 1 ϕ 0 (Ω). Then ϕ ε ⇀ ϕ * in H 1 (Ω) as ε → 0.
Proof. This argument is an adaptation of the proof of Theorem 4 in [START_REF] Sauvageot | Periodic Unfolding Method and Homogenization for the Ginzburg-Landau Equation[END_REF].

First note that

T ε (U 2 ε )(x, y) → û2 (y) in L 2 (Ω × Y ) and |v ε | 2 = ρ 2 ε → 1 in L 2 (Ω) imply that T ε (ρ 2 ε U 2 ε )(x, y) → û2 (y) in L 2 (Ω × Y ).
Recalling that ϕ ε is the solution of

-div(ρ 2 ε U 2 ε ∇ϕ ε ) = 0 in Ω ϕ ε = ϕ 0
on ∂Ω , we find, using Proposition 6. iv) and the fact that

ρ 2 ε U 2 ε ∇ϕ ε ∈ H 1 loc (Ω), that 0 = εT ε -div(ρ 2 ε U 2 ε ∇ϕ ε ) (x, y) = -div y T ε (ρ 2 ε U 2 ε )(x, y)T ε (∇ϕ ε )(x, y) . (48) 
In order to prove that ϕ ε ⇀ ϕ * it suffices to prove that if, possibly up to a subsequence, we have ϕ ε ⇀ ϕ * , then ϕ * solves (47).

Using Theorem 3.5 in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], we have the existence of φ ∈ L 2 (Ω, H 1 per (Y )) such that

T ε (∇ϕ ε ) ⇀ ∇ϕ * + ∇ y φ in L 2 (Ω × Y ) and M Y ( φ) = 0. ( 49 
)
By inserting (49) into (48) and passing to the weak limits in L 2 (Ω, H -1 (Y )), we obtain

-div y û2 (y) (∇ϕ * (x) + ∇ y φ(x, y)) = 0 which is equivalent to -div y û2 (y)∇ y φ(x, y) = ∇ y û2 (y) • ∇ϕ * (x).
This equality combined with (45) implies that φ

(x, y) = -χ 1 ∂ x 1 ϕ * -χ 2 ∂ x 2 ϕ * .
Consequently, we have

∇ϕ * + ∇ y φ = 1 -∂ 1 χ 1 -∂ 1 χ 2 -∂ 2 χ 1 1 -∂ 2 χ 2 ∇ϕ * .
On the other hand, let ξ ∈ D(Ω). Then, for sufficiently small ε we have (cf Proposition 2.5. (i) in [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF])

0 = lim ε→0 Ω ρ 2 ε U 2 ε ∇ϕ ε • ∇ξ = lim ε→0 Ω×Y T ε (ρ 2 ε U 2 ε )T ε (∇ϕ ε ) • T ε (∇ξ) = Ω Y û2 (y)(∇ϕ * + ∇ y φ) • ∇ξ = Ω div x Y û2 (y)(∇ϕ * + ∇ y φ) ξ. Therefore one has div x Y û2 (y)(∇ϕ * + ∇ y φ) = div x Y û2 (y) 1 -∂ 1 χ 1 -∂ 1 χ 2 -∂ 2 χ 1 1 -∂ 2 χ 2 ∇ϕ * = div x (A∇ϕ * ) = 0
and consequently ϕ * solves (47).

3.3

The case λ = 1, ε ≪ δ Theorem 3. Assume that λ = 1, δ → 0 and ε/δ → 0. Then, as ε → 0, we have

1. ρ ε = |u ε | ⇀ M Y (a) in L 2 (Ω), 2. ϕ ε ⇀ ϕ * in H 1 (Ω), 3. ρ 2 ε ∇ϕ ε ⇀ A∇ϕ * in L 2 (Ω), where ϕ * solves the homogenized problem div(A∇ϕ * ) = 0 in Ω ϕ * = ϕ 0 on ∂Ω . (50) 
Here, A is the homogenized matrix of a 2 x δ Id R 2 .

Proof. Theorem 1 combined with Lemma 5 yields ρ εa ε → 0 in L 2 (Ω). On the other hand, we have a ε → M Y (a) weakly in L 2 (Ω) (see, e. g., [START_REF] Cioranescu | An Introduction to Homogenization[END_REF] Theorem 2.6), so that 1. follows.

In order to prove 2. and 3., we start from the equation

div(ρ 2 ε ∇ϕ ε ) = 0 in Ω ϕ ε = ϕ 0 on ∂Ω (51) 
satisfied by ϕ ε . In view of the fact that ρ

ε -a ε → 0 in L 2 (Ω), it is natural to compare ϕ ε to the solution φε of div(a 2 ε ∇ φε ) = 0 in Ω φε = ϕ 0 on ∂Ω . ( 52 
)
The difference

ψ ε := φε -ϕ ε is solution of div(a 2 ε ∇ψ ε ) = div (ρ 2 ε -a 2 ε )∇ϕ ε in Ω ψ ε = 0 on ∂Ω. ( 53 
)
We claim ψ ε ⇀ 0 in H 1 (Ω). Indeed, we first note that, by (51), ϕ ε is bounded in H 1 . Using the fact that b 2 ≤ a 2 ε ≤ 1 and (53) we obtain, via the Lax-Milgram theorem, that, with C, C ′ > 0 and p < 2 independent of ε, we have

∇ψ ε L 2 ≤ C (ρ 2 ε -a 2 ε )∇ϕ ε L 2 ≤ C ′ < ∞
and (with r := 2/(2p))

∇ψ ε L p ≤ C (ρ 2 ε -a 2 ε )∇ϕ ε L p ≤ C ρ 2 ε -a 2 ε L rp ∇ϕ ε L 2 .
Consequently, ψ ε is bounded in H 1 0 and converges strongly to 0 in W 1,p (Ω). It follows that ψ ε ⇀ 0 in H 1 (Ω). Now, using the classic periodic homogenization result (see, e. g., [START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF] chapter 1 or [START_REF] Cioranescu | An Introduction to Homogenization[END_REF] chapter 6), we know that φε ⇀ ϕ * in H 1 (Ω) and a 2 ε ∇ φε ⇀ A∇ϕ * in L 2 (Ω). These facts combined with the weak convergences ψ ε ⇀ 0 in H 1 (Ω) and (a 2 ε ∇ φερ 2 ε ∇ϕ ε ) ⇀ 0 in L 2 (Ω) complete the proof of the theorem.

The case λ = 1, δ ≪ ε

In this case, ε need not tend to 0. Up to subsequences, we may assume that either ε = 1 or ε → 0. Here, ϕ * denotes the harmonic extension of ϕ 0 .

Proof. In case 1., we start by noting that u δ H 1 (Ω) is uniformly bounded with respect to δ. Let û be such that, possibly after passing to a subsequence, u δ weakly converges to û in H 1 . In order to identify û, we let δ → 0 in the weak form of the GL equation satisfied by u δ , namely:

Ω ∇u δ • ∇ψ dx = Ω u δ (a 2 δ -u 2 δ )ψ dx, ∀ ψ ∈ C ∞ 0 (Ω)
and find that (54) holds. In order to prove 2., we consider a partition of R 2 by a family {C ε k } of δ × δ squares. We may assume that For C 0 > 0 (independent of ε) consider

{C ε k | C ε k ⊂ {x ∈ Ω | dist(x,
H C 0 ε = {w ∈ H 1 g | |∇w| ≤ C 0 ε in Ω ′ ε and |w| ≤ 1 in Ω}.
Recall [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] that, for ε < 1 and a suitable C 0 , each minimizer u ε of E ε in H 1 g belongs to H C 0 ε . For w ∈ H C 0 ε , we have

Ω (|w| 2 -a 2 ε ) 2 = Ω (|w| 2 -M Y (a 2 )) 2 + |Ω| M Y (a 4 ) -M Y (a 2 ) 2 + H ε (w). ( 55 
)
Here, the reminder H ε satisfies |H ε (w)| ≤ o ε (1), with o ε (1) independent of w. Indeed, we have

Ω (|w| 2 -a 2 ε ) 2 - Ω (|w| 2 -M Y (a 2 )) 2 = Ω a 2 ε -M Y (a 2 ) a 2 ε +M Y (a 2 ) Ω (a 2 ε -M Y (a 2 )) -2 Ω a 2 ε -M Y (a 2 ) |w| 2 .
We next note the three following facts. First, we have

Ω a 2 ε -M Y (a 2 ) a 2 ε = k C k ε a 2 ε -M Y (a 2 ) a 2 ε + O(ε) = |Ω| M Y (a 4 ) -M Y (a 2 ) 2 + O(ε).
Next, it holds that

Ω (a 2 ε -M Y (a 2 )) = O(ε) + k C k ε (a 2 ε -M Y (a 2 )) = O(ε).
Finally, we have

Ω a 2 ε -M Y (a 2 ) |w| 2 ≤ O(ε) + k C k ε a 2 ε -M Y (a 2 ) |w| 2 ≤ O(ε) + k C k ε a 2 ε -M Y (a 2 ) = o ε (1).
Thus (55) holds. Consequently, for u ∈ H C 0 ε , one has

E ε (u) = |Ω| 4ε 2 (M Y (a 4 ) -M Y (a 2 ) 2 ) + G ε (u) + o 1 ε 2 , (56) 
where

G ε (u) := 1 2 Ω |∇u| 2 + 1 4ε 2 Ω (M Y (a 2 ) -|u| 2 ) 2 .
We next claim that Ω (|u ε | 2 -M Y (a 2 )) 2 dx → 0. Indeed, we consider a test function in the spirit of [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF], more specifically we let w ε = |w ε |e ıϕ * , where ϕ * is the harmonic extension of ϕ 0 and 

|w ε |(x) =    1 - 1 -M Y (a 2 ) ε dist(x,
E ε (u ε ) ≤ E ε (w ε ) ≤ |Ω| 4ε 2 (M Y (a 4 ) -M Y (a 2 ) 2 ) + o(ε -2 ).
This estimate combined with (56) implies that |u ε | → M Y (a 2 ) strongly in L 2 (Ω).

Using the second part of Corollary 1, we obtain that ϕ ε → ϕ * in H 1 (Ω) where ϕ * is the harmonic extension of ϕ 0 .

The proof of Theorem 4 is complete.

)

  For θ ∈ [-π/6, π/6] we denote I θ := [z, w z ], where z = z(θ) is given by (23). Since |v n (z)| < 1-δ 10 3 and |v n (w z )| = 1 we have δ 2 10 6 ≤

Theorem 4 . 2 .

 42 The following hold.1. Assume that ε = 1 and that δ → 0, and denote the energy by E δ rather thenE ε . If u δ is a minimizer of E δ , then u δ ⇀ û in H 1 (Ω), where û solves-∆û = û(M Y (a 2 ) -û2 ) in Ω Assume that ε → 0 and that δ/ε → 0. If u ε = ρ ε e iϕε is a minimizer of E ε , then we have (i) ρ ε → M Y (a 2 ) strongly in L 2 (Ω),(ii) ϕ ε → ϕ * in H 1 (Ω).

  ∂Ω) > ε}} = {C ε k | k ∈ {1, ..., N ε }}. Clearly, we have N ε = |Ω|δ -2 + O(εδ -2 ). Denote Ω ′ ε

  ∂Ω), if dist(x, ∂Ω) < ε M Y (a 2 ), otherwise .Note that, for a suitable C 0 , we havew ε ∈ H C 0 ε . A straightforward computation yields G ε [w ε ] ≤

	Consequently, we obtain	C ε	.
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