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Abstract

We consider the problem of fitting an isotropic zero-mean stationary Gaussian
field model to noisy observations, when the model belongs to the Matérn family
with known regularity index ν ≥ 0, or to the spherical family. For estimating the
correlation range (also called “decorrelation length”) and the variance of the field,
two simple estimating functions based on the so-called “conditional Gaussian Gibbs-
energy mean” (CGEM) and the empirical variance (EV) were recently introduced.
This article presents an extensive Monte Carlo simulation study for problems with
around a thousand observations and settings including large, moderate, and even
“small”, correlation ranges. The known observation sites are either on a 2D grid
(including a case of “very non-uniform” grid spacings) or randomly uniformly dis-
tributed on a simple 2D region. Some experiments for a 256×256 grid with missing
values are also analyzed.

This study empirically demonstrates that, for all the (possibly random) uniform
designs, the statistical efficiency of CGEM−EV compared to exact maximum likeli-
hood (ML) is globally very satisfactory (except a degradation for the very extremal
ranges in some contexts) provided the signal-to-noise ratio (SNR) is strong enough
or ν is not too large (for the “very non-uniform” design, a simple weighting of EV
restores this efficiency). In the less favorable cases, the statistical loss remains in
fact acceptable : e.g. for the largest considered index (ν = 3/2) and a “not strong
enough” SNR, it may happen (in fact only for large ranges) that CGEM−EV al-
most doubles the mean squared error for the range parameter or for the widely used
combination of the two parameters known as microergodic-parameter. Furthermore
an important conclusion for computational efficiency is that the use of the natu-
ral fast randomized-trace version of CGEM−EV does not significantly degrade this
statistical efficiency.

keyword. Gaussian random fields, Kriging, Spatial data analysis, Covariance estima-
tion, Maximum likelihood, Estimating functions, Matérn autocorrelation, Large scale
problems, Preconditioned conjugate gradient, Randomized approximation

* The first version of this paper was titled “A fast, near efficient, randomized-trace based method for
fitting stationary Gaussian spatial models to large noisy data sets in the case of a single range-parameter”
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1 Introduction

We mainly consider the following statistical model which arises e.g. in remote sensing
image analysis: let Z(s), s ∈ R2, be a zero mean stationary Gaussian stochastic process
whose autocorrelation function is assumed to belong to the popular isotropic Matérn
family. One realization of this process is observed at n = n1×n2 regularly spaced (with
step-size δ1 in abscissa, δ2 in ordinate) sites sk, k = 1, · · · , n, of [0, (n1 − 1)δ1]× [0, (n2 −
1)δ2], with an additive Gaussian white noise whose variance is σ2

N (this noise can model
either suspected homoscedastic measurement errors or an additional nugget effect in Z,
see e.g. Zhang and Zimmerman (2007) and references therein). In this article, we restrict
ourselves to the case where σN is known, e.g. from previous calibration experiments (as
it is common when dealing with satellite data, see Tzeng, Huang and Cressie (2005)).
Using a standard lexicographic ordering, the observations thus form a vector y of size n
whose law is Gaussian :

y ∼ N (0, τ2
0Rθ0 + σ2

NIn) (1.1)

with In denoting the identity matrix and Rθ the autocorrelation matrix of the gridded
process i.e. the block Toeplitz matrix (with n2

1 Toeplitz square blocks, each of size n2×n2)
whose coefficients are given by

[Rθ]j,k := ρν,θ(||sj − sk||), j, k = 1, · · · , n,

|| · || being the Euclidean norm and ρν,θ the Matérn autocorrelation function

ρν,θ(x) =
(θx)ν

Γ(ν)2ν−1
Kν (θx), x > 0, θ > 0,

where Kν is the modified Bessel function of the second kind of order ν > 0. For more
details on these widely used autocorrelation functions see Guttorp and Gneiting (2006).
Note that

τ2
0 = E((Z(s))2) ≡ E(y2

k)− σ2
N

will be called the process (or signal) variance. When mentioned, we will also con-
sider another well known autocorrelation function, namely the spherical model ρS

θ . See
e.g. Zhang and Zimmerman (2007) for these definitions. Notice that a significant variant
of the above uniform grid, that we call “a very nonuniform Cartesian grid”, will also
be considered. We also consider a case of n = 1000 observation sites randomly but
uniformly distributed on a simple 2D region. And, to illustrate the “scalability” of the
proposed method, we will consider, albeit with less extensive simulations, a much larger
256× 256 grid with a few missing regions.

The order ν, which is often called the regularity (or differentiability) index, is as-
sumed to be known in this paper. Recall that ρ1/2,θ(x) = exp(−θx) is the very popular
exponential model, and that simple expressions also exist for ρν,θ(x) for ν = 3/2 and 5/2:
these ν’s correspond to models also often used (see e.g. Stein (1999), Rasmussen and
Williams (2006)). In the Monte-Carlo simulation study of this paper, we only consider
three contexts: the order ν will be either 1/6, 1/2 or 3/2.
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The parameter θ−1 is often called the “decorrelation length” or “the range parame-
ter”.

Estimation of the variance and range parameters in such autocovariance models is
needed for various tasks, for example for establishing confidence bands for the auto-
covariance function, for constructing statistically efficient prediction of the process at
unobserved location, or for optimally de-noising the observations.

It is generally of great interest to be able to “effectively reduce” the number of pa-
rameters, especially when computing the likelihood function is costly. Zhang and Zim-
merman (2007) recently proposed to use a simple variogram fitting classically known as
“the weighted least-squares method” (not statistically full-efficient but much less costly
than maximum likelihood (ML)) to estimate the range parameters (the θ here), next, to
plug-in these estimates in the likelihood which is then maximized only with respect to
τ2 and, possibly, with respect to σ2

N (the solution, say τ̂2
ML(θ), being typically obtained

iteratively, e.g. by Fisher scoring, even if σ2
N (> 0) is known). The idea underlying this

method is that, at least for the Matérn family and an “infill asymptotics” point of view,
even if θ is fixed at a wrong value θ1, the product τ̂2

ML(θ1)θ2ν
1 still remains an efficient

estimator of τ2
0 θ

2ν
0 which is the so-called microergodic parameter (see Du, Zhang and

Mandrekar (2009) and Wang and Loh (2011) for recent results of this type in the case
without additive white noise).

The method that is proposed in Girard (2011), firstly reverses the roles of variance
and range-parameter in the idea of Zhang and Zimmerman (2007): it is based on a very
simple estimate for the signal-variance τ2

0 , namely the following bias corrected empirical
variance τ̂2

EV, which in turn yields b̂EV as signal-to-noise (SNR) estimate:

τ̂2
EV := n−1yTy − σ2

N and b̂EV :=
τ̂2

EV

σ2
N

. (1.2)

Secondly the maximization of the likelihood w.r.t. θ is replaced by the following simple
estimating equation in θ : solve, with b fixed at b̂EV

yTAb,θ (In −Ab,θ)y = σ2
N trAb,θ where Ab,θ := bRθ (In + bRθ)

−1 . (1.3)

Note that the equation yTAb,θRθ
−1Ab,θy = σ2

N b trAb,θ, which is equivalent to (1.3)
(this is easily seen after simple algebra), can be numerically more stable in case of large
SNR since the “smoother” Ab,θ then comes close to the identity. In fact when σ2

N is very
small compared to τ2

0 , one can use simply

τ̂2
EV := n−1yTy and n−1yTRθ

−1y = τ̂2
EV (1.4)

in place of (1.2) and (1.3). This equation (1.3) in θ with b given by (1.2) is called
the “conditional Gibbs-energy mean and empirical variance”- based estimating equation
(CGEM−EV equation) in Girard (2011) (see Girard (2016) for the “σ2

N = 0” version
(1.4) for which a simple justification in the “infill asymptotics” regime can be deduced
from a result of Kaufman and Shaby (2013)) which gives details, heuristic justifications
and a large-n-small-δ justification for the one dimensional “time series” analog setting,
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stating that an asymptotic full-efficiency (as compared to ML) is reached as the sampling
step δ decreases to 0. This large-n-small-δ full-efficiency requires that ν stays “close” to
1/2 when it assesses the error in either the range parameter or the variance parameter,
but it holds for any ν when it concerns the microergodic parameter.

In the case of a nonuniform grid for the locations of the n observations, simple
weighted versions of the average yTy/n in (1.2) which are motivated by a Riemann-sum
type discretization of

∫
Ω Z

2(s) ds/
∫

Ω ds where Ω is a simple domain containing the data
locations, are suggested in Girard (2011). An example of such estimate of τ2

0 used in
place of τ̂2

EV (and denoted τ̂2
wEV) is detailled Section 2.5. Heuristics (mainly a “minimum

variance property” given for this example) and the simulation results of Section 3.7 will
give some support to this Riemann-sum approximation approach.

This article is structured as follows. We first give some comments in Section 2 which
supplement those in Girard (2011), notably about the computational gains which could
be expected for CGEM−EV as compared to ML or to the randomized-traces version of
the two classical likelihood equations which may be thought of as a computationally effi-
cient alternative along the lines of the recent study by Stein, Chen and Anitescu (2013).
This article presents (in Section 3) a rather extensive Monte Carlo simulation study for
problems with around a thousand observations and settings including large, moderate
and even “small” correlation ranges. It empirically demonstrates that the statistical
efficiency of CGEM−EV, even when using a fast randomized-trace approximation to
trAb,θ, is globally very satisfactory (there is a noticeable degradation in efficiency only
for extremal ranges in some contexts) provided the signal-to-noise ratio b0 is strong
enough or ν is not too large. If the observation grid is non regular and very nonuni-
form, this efficiency may be degraded; for a such simple case, the Riemann-sum version
of τ̂2

EV is demonstrated to be able to restore this efficiency. However, such a modifi-
cation is not always required; indeed for the case of a random but uniform design, a
good news, and somewhat surprising, is that, for very various range-parameter values,
the unweighted version of CGEM−EV is still quite statistically-efficient. For the ex-
periments with the 256 × 256 incomplete grid, since a complete comparison with the
approximate ML discussed Section 2.3 would have been quite difficult, we only refer to
the classical Cramer-Rao lower bounds for unbiased estimators of θ0 or of the micro-
ergodic parameter. The comparisons confirm the high level of the statistical efficiency
of CGEM−EV.

2 Some comments on the (randomized) CGEM-EV esti-
mating equation (or its weighted EV version) and its
computational advantages

2.1. A first comment is in order about the bias corrected empirical variance b̂EV defined
in (1.2) as an estimate of the signal-to-noise ratio. Of course it may happen, especially
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in case of large correlation range, that the observed b̂EV has a negative value, in case
of which (1.3) has no solution. However, it is easy to see that the probability of a such
pathological event tends to zero when the observation domain increases infinitly, possibly
with an “infill component” (see e.g. Lemma A.1 of Lahiri, Lee and Cressie (2002)); and
it is perhaps more important to observe that, even for “moderate” n, this probability
becomes very small as soon as the true b0 is large enough. Nevertheless, this entails
that, in fact, CGEM−EV is not expected to be suitable for contexts with very weak
signal-to-noise ratio.

2.2. The motivation behind our work is that clearly CGEM−EV, or its randomized
version, could enjoy a very easy implementation for very large scale problems for which
the exact ML method has a prohibitive computational cost (CPU time or memory size).
Indeed from works in the two previous decades, it is now known that a linear system
with block Toeplitz - Toeplitz blocks matrix can often be solved with about n log(n)
operations and a memory size of order n, by preconditioned conjugate gradient (PCG)
approaches. The number of operations is actually a multiple of n log(n) which depends
on the preconditioning method one employs for each particular application (see Chen,
Hurvich and Lu (2006) for certain time series problems, Stroud, Stein and Lysen (2016)
and the references therein for 2D or 3D problems). Once a fast solver is available to
compute Ab,θy, but does not form explicitly the matrix Ab,θ, one is tempted, since
Ab,θ may be seen as an instance of “influence matrices involved in regularization of
linear equations or data smoothing problems” (cf Girard (1989)), to try a randomized-
trace approximation (i.e. generate independent wr ∼ N (0, In), r = 1, · · · , nR, and use
(1/nR)

∑nR
r=1 w

T
r Ab,θwr/(w

T
r wr) in place of the exact (1/n)trAb,θ) when solving (1.3)

by e.g. a bissection search.
In this article we do not attempt to compare the various possible PCG solvers for

problems like those of the following simulations. In the following the contexts where
exact ML estimates are also simulated are restricted to relatively moderate data size
(around 1000) so that using such iterative solvers was not required. Classical “exact”
Cholesky or eigenvalues-eigenvectors decompositions were then used in these cases, even
to simulate randomized-trace versions of the CGEM−EV estimating equation.

Note that, in the following simulation study, we always chose the “reuse option”
(as in Girard (1989)) when computing the randomized-trace version of the CGEM−EV
criterion at different tried values of θ; it means that the nR simulated wr’s are kept
constant during the processing of each simulated data set. Each required numerical root
search can then be reliably done by standard routines; and thus the study of the impact
of the size nR is easier.

Recall that for lattice observations, exact ML computations require about n5/2 op-
erations (Zimmerman, 1989). Thus as long as the number of iterations required in each
product Ab,θy (or Ab,θw) remains reasonable, the computational gain in CGEM−EV
is a factor approximately equal to n3/2/ log n. It is well known today that an approxi-
mation of ML which also attains such a gain is the now classical tapered Whittle ML
(see Guyon (1982) and Dahlhaus and Künsch (1987)). But this approach has “an el-
ement of arbitrariness in implementation (specifically, the choice of a taper) in order
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to cope with the edge effect” as said by Robinson (2008). Furthermore, even with the
best taper, the estimation error can be still much less satisfactory (especially in terms
of bias) than ML. In the very recent years Stein, Chen and Anitescu (2013) studied
randomized-trace versions of the score equations (i.e. those obtained by setting to 0 the
gradient of the likelihood function and using randomized-trace approximations). Is is
demonstrated by these authors that this can really produce near-efficient estimates at
a cost close to n log n in some settings. It is clear that “the estimate converge to the
true score function as the Monte Carlo sample sizes goes (nR) to infinity” as is said
in Stroud, Stein and Lysen (2016), but how fast is this convergence is not still clear,
especially for contexts with large (or even moderate) correlation range. We analyze in
details a “typical” example in the following section.

2.3. Computational advantages over the method of randomized score equa-
tions. We consider in this section a probabilistic setting of Matérn field with regularity
index ν = 3/2, that we call “median” in the sense that it has parameters which are
median among those of the extensive study of Section 3. More precisely we chose a
range-parameter θ−1

0

√
3 = 0.3 (see Figure 3) and a SNR b0 = 30000 which is an in-

termediate value between the strong SNR of Section 3.2 and the “low” SNR of Section
3.4. We simulated 5 realizations of such a random field. More precisely, we generated
5 datasets of size n1 × n1 with n1 = 48 and δ1 = δ2 = 1/n1. This size still permits the
use of exact covariance-matrix decomposition and, above all, an accurate examination of
the performance of the randomized-trace versions when using large Monte-Carlo sample
sizes. Notice that Kaufman and Shaby (2013) consider settings quite similar to this one,
even though they use exact observations (while we here add a “small” white noise of
relative magnitude of about 0.5%, as compared to the standard deviation of the Matérn
field.

For each of these 5 y’s, consider the two score equations S1(b, θ) = 0 and S2(b, θ) = 0
obtained by setting to 0 the derivative of the likelihood function respectively w.r.t. b
and θ. In fact to have more readable plots (and unconstrained optimizations) we instead
consider the two arguments b̃ = log10(b) and θ̃ = log10(θ). Notice that it could be
easily checked that S1(b, θ) = 0 is equivalent to (1.3) (see the heuristical justification of
CGEM in Girard (2011) for an interpretation of this property: indeed S1(b, θ) = 0 is the
constraint which “adjusts” θ̂CGEM(b) to a given (well chosen) b and complementing (1.3)
with (1.2) is our proposal CGEM−EV, although other estimates of b0, like its weighted
version, could be used).

As is now well known (see e.g. Section 6.4 of Stein (1999) or Kaufman and Shaby
(2013)) an attractive property of the Matérn model (which is not always shared by the
spherical model) is that the maximization of the likelihood has typically a unique local
solution, which is thus global (although there is not yet a theoretical statement about
this, above the case ν = 1/2 in one-dimension (i.e. case of a AR1 series) as far as we
know). So it was not surprising to observe that for each y, for any fixed θ̃, arbitrarily
chosen in a rather large domain, numerically solving the first score equation w.r.t. b̃ has
a unique solution, that we denote by log10(b̂CML(θ̃)) (the C stands for “constrained by θ̃
fixed”); and for any fixed b̃ in a large domain, numerically solving the second score equa-
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tion w.r.t. θ̃ has a unique solution, that we denote by log10(θ̂CML(b̃)). Furthermore, well
in agreement with this strict unimodality property, we also consistently observed that the
two parameterized curves C1 : θ̃ 7→ (log10(b̂CML(θ̃)), θ̃) and C2 : b̃ 7→ (b̃, log10(θ̂CML(b̃)))
have well a unique intersection point which is the ML-estimator.

log
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`

EVL's of the five datasets

log
10
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`

MLL's of the five datasets

log
10
HΘ
`
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g

1
0
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Figure 1: n = 48×48. Results for 5 datasets from a Matérn model ρν,θ0 with ν = 3/2 and
median range (see Figure 3 for this autocorrelation) and a SNR = 30000. For example
for the fourth y, are plotted in green: the curve C1 (in continuous style) implicitly defined
by the first score equation, the curve C2 (in dotted style) defined by the second score
equation, the vertical continuous line is b̂EV, the horizontal continuous line is θ̂CGEM−EV,
similarly in dashed style for b̂ML and θ̂ML. The true parameter values are marked by
(purple) half-circles on the frame of the figure

However it is clear in Figure 1 that, for each one of the 5 y’s, the corresponding two
curves C1, C2 (which were computed on a grid of candidate θ̃ and a grid of b̃ respectively,
and plotted, both with a same color for each y, C1 being the continuous curve, C2

being in dotted style) appear to coincide along a whole half-line with implicit equation
“b̃+2νθ̃ = constant”, and that this constant seems rather invariant from one y to another
one. Actually, these two observations are in perfect agreement with the well known fact
that “the likelihood function can have long ridges along which it is nearly constant”
(p. 173 of Stein (1999)) and the further results by Zhang (2004) on the estimation of the
micro-ergodic parameter b0θ

2ν
0 . And thus the 5 unique intersection points can hardly be
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average of the 10 randomized-traces curves

Figure 2: Setting identical to Figure 1. Results for the fourth y. The first ten plots
are the results of using ten different seeds in the computation of the randomized-trace
(using the Hadamard-matrix based dependent sampling, with nR = 256) version of C1

and C2. The 11th plot (bottom) is equivalent to using nR = 2560. The vertical dashed
line indicates the exact b̂ML, the vertical continuous line is b̂EV. The horizontal line is
the true b0θ

3
0
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distinguished on this half-line in Figure 1. A simple way to remedy this is to replace
the b̃, θ̃ plot by using the affine transformation (b̃, θ̃) 7→ (b̃, b̃ + 2νθ̃), as we will do for
studying the impact of the randomized-trace approximation on the estimation of the
micro-ergodic parameter. But, before to do this, let us discuss the estimation of θ0 and
b0. The reasonable spread of the 5 replicates of log10(θ̂ML) (horizontal dashed arrows) in
Figure 1 is in agreement with the extensive simulations of Kaufman and Shaby (2013)
where it is concluded that “It is apparent in all cases that the data does indeed contain
information about the range parameter”. Now, recall that the construction of θ̂CGEM−EV

simply consists of intersecting the horizontal line b̃ = log10(b̂EV) with C1 in a b̃, θ̃ plot.
The first good news demonstrated in Figure 1 is that the log10(θ̂CGEM−EV)’s (horizontal
continuous arrows deduced from the 5 vertical continuous arrows) have a variability
around log10(θ0) very similar to that of the exact ML estimates. And a similar conclusion
holds for the related estimates of log10(b0) (vertical dashed arrows for ML and vertical
continuous arrows for EV). Nevertheless the extensive study of Section 3 (and theoretical
results as n → ∞) state that CGEM−EV is not rigorously fully-efficient as compared
to ML.

Now we are going to study the impact of using randomized-traces instead of exact
traces in both methods. Our finding is that, for this “median” setting, choosing nR = 1
is sufficient for CGEM−EV while a nR as large as several hundreds is un-sufficient to
give to the pair of randomized score roots an accuracy which permits to demonstrate the
potential statistical superiority of the exact ML estimtates over CGEM−EV. We only
present the analysis of one example of data set and nR = 256, but a similar behavior,
namely an issue of “serious unstability w.r.t. the Monte Carlo noise”, of “the” root of
the pair of randomized scores was consistently observed on other datasets similarly repli-
cated. To be fair, we used in this analysis the modification of the classical randomized
trace estimator (recalled in Section 2.2) which is advocated in Stein, Chen and Anitescu
(2013) when nR > 1. These authors replace each wr by a vector ur of iid centered
Bernouilli variables and, above all, use nR vectors ur’s drawn in a dependent way fol-
lowing a sampling constructed from the classical nR×nR Hadamard matrix. They indeed
show that, for nR fixed, this dependent sampling can be a significant improvement over
the independent sampling of the vectors ur’s. The dataset y used in the following is the
one which gave the curves in green in Figure 1. We chose this one because the exact ML
is seen to actually improve over exact CGEM−EV (this is not always the case since the
loss in efficiency is rather low). In Figure 2, all the plots are (b̃, b̃+ 2νθ̃)-plots which are
produced from this dataset. The first 10 plots are the results of using 10 different seeds
in the computations of the randomized-traces. Now the mentioned serious “unstability
issue” is clearly seen as the combination of the intrinsic “ill”-conditioning in the solve
of the exact score equations (even on a such (b̃, b̃+ 2νθ̃)-plot, the exact C1 and C2 would
still be nearly coincident over a large domain of b̃) and of the perturbation of the scores
due to using a finite nR: this combination creates a dramatic perturbation of the root.
Indeed in 2 cases among these 10 (the first and the last ones), the 2 curves seem to
become nearly tangential but they actually have no intersection; with the 2nd and the
5th seeds there are clearly at least 2 roots and for the seeds 8, 9 and particularly 3, the

9



2 curves really become tangential and a unique root is hardly distinguishable in such
a plot. Finally we averaged the 10 randomized-traces functions previously obtained :
this gave the 11th pair of randomized scores (which may be thought of as a randomized
approximation of the scores using nR = 2560) displayed in the bottom panel of Figure 2;
now a unique intersection point clearly appears, however it is not really an improvement
over CGEM−EV; in fact the obtained b̂ appears to be much closer to b̂EV than the exact
b̂ML (vertical line in dashed green).

Notice that it is also seen in Figure 2 that the “perturbation of the scores due to
using a finite nR” mentioned above actually concerns essentially only the curve C2. In
fact we observed that even with nR = 1 the curves “randomized C1” are not visually
perturbed in plots like Figure 2 by the randomization error whereas these plots have a
resolution sufficiently accurate to display the variability (from one y to another one) of
the estimates of the micro-ergodic parameter b̃0 + 2νθ̃0. The extensive Monte-Carlo of
Section 3 will confirm that this “finding” concerning CGEM−EV with nR = 1 typically
holds, although using nR = 20 may be sometimes useful, in the sense that it provides
a significantly better statistical accuracy, for settings where the true equivalent range is
much greater than this median value 0.3 and the SNR is weaker.

2.4. Although the available theoretical results for CGEM−EV are todays restricted to
regularly spaced locations, we are of course tempted to try to extend CGEM−EV to non
regular cases. For example, extensions to cases where the n locations form a subset of
the nodes of a regular grid (i.e. there are missing data on the grid) should be quite useful
since the PCG approach often remains appropriate to efficiently compute the product of
any vector of size n by the new “Ab,θ” matrix (see Fritz, Neuweiler and Nowak (2009)
and Stroud, Stein and Lysen (2016) for recent works on this subject). One finding of
our Monte-Carlo experiments is that the unmodified CGEM−EV still works very well
when the missing data are simply those located inside a small number of simple regions,
like 5 disks (see Section 3.9).

2.5. For the cases of “very” non-uniform locations for the observations, we suggest in
this section that weights which take this into account can really improve upon the equal
weights of yTy. To fix ideas, and for future reference, let us now describe the particular
design which has been chosen for the simulation experiment analyzed in the following
Section 3.7. Let S1 be the union of two juxtaposed uniform one-dimensional grids:

S1 := {x1, · · · , xn1} = {0.02, 0.03, · · · , 0.20} ∪ {0.25, 0.35, · · · , 0.95},

thus n1 = 19 + 8 and put
S := S1 × S1. (2.1)

The locations of the observations are thus assumed to be the points of the Cartesian prod-
uct S1×S1. With the choice of (2.1), the random field Z is much more densely observed
in the subregion [0, 0.20]×[0, 0.20]. This setting resembles the one already used by Zhang
(2004, Fig.1) except that our grid is Cartesian. The reason of our choice is simply that
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there then exists a very simple (and commonly used) Riemann-sum approximation, pre-
cisely, with the so-called mid-points defined by xi+1/2 := (xi+1 + xi)/2, i = 1, · · · , n1 − 1
and x1/2 := 0, xn1+1/2 := 1 :∫

[0,1]2
Z2(s) ds ≈

n1∑
i=1

n1∑
j=1

wi,jZ
2(xi, xj) with wi,j := (xi+1/2 − xi−1/2)(xj+1/2 − xj−1/2).

(2.2)
For such a Cartesian setting, denoting yi,j the observation of location (xi, xj), the
weighted version of τ̂2

EV will be thus defined (noticing that
∑n1

i=1

∑n1
j=1wi,j = 1 here) by

τ̂2
wEV :=

n1∑
i=1

n1∑
j=1

wi,j(y
2
i,j − σ2

N). (2.3)

The associated version of CGEM−EV (i.e. solve (1.3) with b fixed at b̂wEV := τ̂2
wEV/σ

2
N)

will be then denoted by CGEM−wEV.
Let us now attempt to justify the choice of such weights in the case (2.1) and to

suggest extensions to more general designs. Firstly, because we are dealing with the
spatial sampling of a (at least) continuous (in a mean square sense) field Z, it is intu-
itive (at least in the case of weak additive white noise) that the ordinary spatial average
yTy/n should be modified so that two observations which are at very close sites (hereby
two likely very close observations) be replaced by a single observation: the variance of
the spatial average should then decrease. More generally, we should reduce the weights
assigned to observations whose associated locations are in a “cluster”. To give a more
“quantitative” insight, we first come back to the equispaced case and we recall a rather
remarkable property of the equal weights in this case. Preliminarily, notice that the prob-
lem of estimating τ2

0 can be formulated as the estimation of the mean of the stationary
process Z2, so we can refer to the related literature. One of the statements of Shin and
Song (2000) (which generalizes a well known analogous result in one-dimension) says
that, for the estimation of τ2

0 + σ2
N in the model (1.1), under some “integrability” and

“invertibility” conditions on the correlation, the uniform weighting (yielding the ordinary
least square estimate or OLSE, linear in the squared observations) is asymptotically as
efficient as the optimal weighting (yielding the best linear unbiased estimate or Black)
which would require the knowledge of θ0 (there, the asymptotic frame is an “increasing
domain” regime where (n1, n2)→ (∞,∞) for fixed (δ1, δ2)). In one-dimension, it is well
known that, even with a “long memory” correlation, the OLSE of the mean often has
good properties compared to the Black; see, for example, Yajima (1991) and references
therein.

Now we return to a general design, except that we restrict ourselves to the one-
dimensional case and we assume σN = 0; a Matérn process is observed at 0 = t1,n < · · · <
tn,n = Tn. It is clear from the above, that a desirable property of the weights is that the
weighted sum should perform nearly as well as (or possibly better than) the time-average

Tn
−1
∫ Tn

0 Z2(t) dt which is the continuous-time version of “the asymptotically efficient
OLSE” mentioned above. Of course a natural approach to do this is to introduce a

11



cubature rule (like a simple Rieman sum) since an extensive numerical analysis literature
can furnish tools to control the (realized) integration error when

δn := max
i=1,···,n−1

|ti+1,n − ti,n| → 0

in the case of a bounded [0, Tn]. However it is insightful here to consider the case Tn →∞
since the OLS estimate is then a consistent estimate. Now an interesting propery of the
Rieman sum which corresponds to the integration of the “broken line” interpolation, is
the following proposition which is an easy consequence of one of the results of Elogne,
Perrin and Thomas-Agnan (2008). Preliminarily, let us recall (see for example Section 3
of the Appendix of Hannan (1970)) that under regularity and integrability conditions on
the squared correlation function (recall that Z being assumed centered and Gaussian,
the autocorrelation function of Z2 is simply ρ2

ν,θ0
) which are clearly satisfied for the

Matérn family, we have

Tn E

(∣∣∣∣ 1

Tn

∫ Tn

0
Z2(t) dt− τ2

0

∣∣∣∣2
)
→ 2τ4

0

∫ ∞
−∞

ρ2
ν,θ0(t) dt as Tn →∞.

Proposition 1. If Z is a stationary one-dimensional centered Gaussian process with
Matérn autocovariance τ2

0 ρν,θ0(t) with 1 < ν < 2, and if

τ̂2
wEV :=

1

Tn

n∑
i=1

(ti+1/2,n − ti−1/2,n)Z2(ti,n)

with the mid-points defined by ti+1/2,n := (ti+1,n+ti,n)/2, i = 1, · · · , n− 1 and t1/2,n := 0,
tn+1/2,n := Tn, then

E
(∣∣τ̂2

wEV − τ2
0

∣∣2) ≤ Tn−12τ4
0

∫ ∞
−∞

ρ2
ν,θ0(t) dt+O(δνn)

when δn → 0 and Tn →∞ as n→∞.

Proof To apply Theorem 2 of Elogne, Perrin and Thomas-Agnan (2008), it suffices to
check that X := Z2 is mean square differentiable (let X ′ its m.s. derivative) and satisfies:
there exists κ such that, for all abscissae s and t,(

E
(∣∣X ′(s)−X ′(t)∣∣2))1/2

≤ κ|s− t|γ ,

where γ = ν − 1 > 0. It is a relatively easy exercise to show this from the relation
between the above expectation and the behavior of the second derivative, near zero, of
the autocorrelation function of X (see e.g. Chapter 2 of Stein (1999)).

The condition ν > 1 is restrictive. We believe that one should be able to relax it
and, furthermore, establish bounds better than O(δνn), especially for ν ≥ 2, as is done
in Elogne, Perrin and Thomas-Agnan (2008) for an estimate that is less simple (briefly
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said, Z in place of Z2 is interpolated and the estimate is defined as the integral of the
squared interpolant; see their Corollary 1). An improved control of the accuracy of τ̂2

wEV

might also be useful to establish asymptotic properties of the resulting CGEM−wEV
estimates of the range and the microergodic parameters. This may deserve further study.

3 Monte-Carlo simulation study

In this study, the domain on which the observations are located at the vertices of a
regular grid (except in Sections 3.7-3.8), is a square (except in Sections 3.8-3.9 where
missing regions are considered).Thus in Sections 3.1-3.6 and Section 3.10, n1 = n2 =√
n and δ1 = δ2 =: δ. Of course, multiplying both δ and the range θ−1

0 by a same
constant, does not change the simulated observations. Thus we set δ = 1/

√
n everywhere

(except in Sections 3.7-3.9) so that the simulation settings be easily comparable with
those of previously published studies. Even though the known theoretical justification
(Girard, 2011) is given only for the case of very strong correlation between observations
at neighboring sites, the simulation study that we present here, was done with not
only “moderate” and “large” correlation ranges chosen for the true range, but also
rather “small” correlation ranges. To be more precise, if ν = 1/2 then θ−1

0 varies in
{0.02, 0.05, 0.09, 0.125, 0.2, 0.3, 0.5, 0.7, 1., 1.5, 3.}. Otherwise we used slight variants of
this set of values for θ−1

0 /2 (resp. θ−1
0

√
3) when ν = 1/6 (resp. ν = 3/2). Figure 2 is a plot

of the spherical autocorrelation model and the three considered Matérn autocorrelation
models corresponding to the median of these chosen values, that is, 0.3. Somewhat
arbitrarily we call a “very small (resp. large) correlation range”, a range ten times
smaller (resp. greater) than 0.3.

Recall that, in the case of no additive white noise (i.e. σN = 0 in (1.1)), the actual
value of τ0 has no influence on the relative accuracy of the ML estimates (e.g. Zhang
(2004)). Here if we assume σN > 0, it is then easy to see from (1.2) and (1.3) that, if
both the observations y and the given σN are multiplied by a same constant, then the
resulting τ̂EV will be multiplied by this constant and, b̂EV being thus unchanged, the
new estimating equation (1.3) will have the same root(s). And such an invariance can
also be easily seen for the ML method. Thus, denoting by b0 the SNR

b0 :=
τ2

0

σ2
N

,

it is only through b0 that τ0 and σN influence the respective performance of CGEM−EV
vs ML. Since we essentially consider cases with σN > 0 we almost always use in the
following b0 instead of τ2

0 as variance-parameter (equivalently, the following study, except
in Section 3.10, is a study of equivalent settings obtained by normalizing the observations
vector so that the noise level be 1). We present the obtained simulation results, firstly
in the case of either essentially no additive white noise or “very weak” noise (b0 = 1012),
next, for settings with “moderate” noise, thirdly, with “rather strong” noise (b0 = 4).
We come back to the case “very weak noise” in the settings discussed Sections 3.7-3.10.
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For all the experiments with b0 = 1012 the data might have been considered as exact
data. In such a case, the estimation approaches (both ML and CGEM−EV) have a
simpler form; see Girard (2011) for a brief discussion of the version (called Gibbs-energy
estimating equation) of the equation (1.3) for the case without additive noise. However
very ill-conditioned matrix inversions (especially in the case ν = 3/2 and θ−1

0 large)
would then have appeared. So we still chose a model with additive white noise (we come
back to this point in Section 3.10).

The first question is of course the one of the existence of a root for the CGEM−EV
estimating equation in θ and its unicity. The following simulation results exhibit a
quite satisfactory behavior of the CGEM−EV from this point of view: in “almost” all
the considered cases we observed a single root in a search interval (typically [0.05, 100.]
for θ) that might be considered by many readers as a “quite large” interval, while the
numerical search was a rather exhaustive grid search (typically 700 values for θ which
are equispaced in logarithmic scale). In fact, the “almost” term we use above, is only
due to settings where the true correlation range θ−1

0 is quite small. Indeed, it is only
for such ranges that it happened for a few percent of the replicates (see the results
marked with “*” in the following Tables) that the CGEM−EV estimating equation (or
its randomized-trace version) had no root.

Each displayed result (except for the case, Section 3.9, of the much larger size for the
datasets) is a summary over 1000 replicates. Recall that, if a random variable is normally
distributed, its observed standard deviation over 1000 replicates is an estimate of its true
standard deviation with a relative accuracy well approximated by

√
1/2000 ≈ 2%.

Note that in the following statistical summaries, we use a logarithmic transforma-
tion for the estimates of θ0 because it has often been observed that this is necessary to
produce “nearly” normal distribution (at least, the empirical distributions of log10(θ̂ML)
or of log10(θ̂CGEM−EV), are generally much more symmetric than the ones of θ̂ML or
θ̂CGEM−EV). Note that such a transformation was not necessary for the considered es-
timates of τ2

0 θ
2ν
0 . The term “inefficiency” of a particular estimator, for example the

randomized-trace version of the CGEM−EV (denoted randCGEM−EV) estimator of
log10(θ0), means here, as usual, the ratio of the observed mean squared error over 1000
replicates (denoted MSE) of this estimate to the MSE (same replicates) of the corre-
sponding ML estimator. The columns labelled “ineff1/2” display the square root of such
observed inefficiencies.

3.1. For ν = 1/6 and b0 = 1012 we first observe in Table 1 that the relative accuracy
of ML estimation for the microergodic parameter b0θ

2ν
0 is extremely close to

√
2/n =

0.047 (here n = 30 × 30) for any correlation range (θ−1
0 /2) between 0.09 and 3, and it

significantly (albeit moderately) departs from 0.047 only for the “very small” correlation
range 0.02. Now, the attractive property of the CGEM−EV estimation of b0θ

2ν
0 is that it

is practically as efficient as ML for θ−1
0 /2 between 0.05 and 2 (with scarcely perceptible

loss). Furthermore, the loss in efficiency is rather small for θ−1
0 /2 = 3 and reasonable

for θ−1
0 /2 = 0.02.

Concerning the range-parameter, its true magnitude is, as expected from the recent
literature (especially Zhang (2004)), much less easily estimable than b0θ

2ν
0 , especially for
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Figure 3: Spherical autocorrelation with range parameter θ−1 = 0.3 and the three
considered Matérn autocorrelation models ρν,θ with ν = 1/2 (resp. ν = 1/6 and ν =
3/2), here with θ−1 (resp. θ−1/2 and θ−1

√
3) equal to 0.3

large θ−1
0 . Nevertheless CGEM−EV performs also nearly as well as ML: neither the bias

of log10(θ̂) nor its standard deviation are significantly increased by using CGEM−EV
instead of ML.

3.2. For ν = 3/2 and b0 = 1012 we again see in Table 2 that the relative accuracy of
ML for the microergodic parameter b0θ

2ν
0 is still very close to

√
2/n but, this time, only

for correlation ranges (θ−1
0

√
3) greater than, say, 0.2. Otherwise the attained accuracy

decreases with θ−1
0 , e.g. the standard deviation is approximately two times

√
2/n when

the considered range is 0.04.
The attractive property of the CGEM−EV estimation is that its efficiency is still

quite good, although a small departure from 1 is now perceptible: CGEM−EV root-
inefficiency relative to ML is always between 1.05 and 1.10, except for θ−1

0

√
3 = 0.02. For

this “very small range” setting, a small degradation in efficiency is noticeable, together
with a (very) small probability that the estimating equation has no solution.

Concerning the estimation of log10(θ0) the performance of CGEM−EV, as compared
to ML, is also not as excellent as in Table 1. This is well in agreement with the theoretical
result of Girard (2011) which states that full-efficiency for θ0 is obtained as ν decreases.
Notice that all the observed square root inefficiencies are nevertheless bounded by 1.54
and smoothly decrease toward 1.10 as the correlation range decreases toward 0.04 (we
presently have no explanation for this behavior) and thus CGEM−EV may be of interest
also to users who would only target log10(θ0) .

3.3. For ν = 1/2 (i.e. exponential model) and b0 = 103 the results concerning the
estimation of b0θ

2ν
0 in Table 3 are rather similar to the ones in Table 1 (with a relative

accuracy for both estimates of the microergodic parameter rather close to
√

2/n = 0.052
although a slight biais is now present in CGEM−EV) except for θ−1

0 = 0.02 for which
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there were 48 replicates among the 1000 for which the CGEM−EV estimating equation
had no root. The results concerning the estimation of log10(θ0) are intermediate
between the corresponding results in Table 1 and Table 2.

A spherical model which can be thought “similar” to the previous one is considered
in Table 4 (except that n is here 20 × 20). Thus ν is chosen equal to 1/2 (as discussed
in Zhang and Zimmerman (2007)). The results are very similar to those of Table 3
although the efficiency of CGEM−EV is a little bit degraded.

3.4. For ν = 3/2 and b0 = 103 (and n = 30 × 30) we first see in Table 5 that the
previously observed accuracy of ML estimation for the microergodic parameter is much
decreased when the range θ−1

0 increases. Some theoretical studies have established that,
in the infill asymptotics framework, the relative accuracy of

√
2/n which holds in the

case of exact data (see Du, Zhang and Mandrekar (2009) and Wang and Loh (2011)) is
lost as soon as the observations are contaminated by a white noise (see Chen, Simpson
and Ying (2000)). These experiments, compared with those of Section 3.2, show that
decreasing the SNR from 1012 to 103 has a rather strong impact on the attainable
accuracies when ν = 3/2 whileas we have seen in Section 3.3 that, for ν = 1/2, a SNR
of 103 is large enough to attain accuracies near

√
2/n (this relatively weak impact of

the SNR for ν = 1/2 and for ν = 1/6 will be confirmed in the next section). Note that
we have also performed experiments with ν = 3/2 and b0 = 10 : even the microergodic
parameter was then very difficult to estimate by ML in case of large correlation range,
so we do not report the details of the comparison of ML and CGEM−EV here.

Now an important result from these simulations is that the efficiency of CGEM−EV
for the microergodic parameter remains quite good when the true range θ−1

0

√
3 is less

than, say, 0.7; otherwise is not as satisfactory as in all the previous settings (notice,
however, that the worst inefficiency is only 1.732 and corresponds to the largest θ−1

0 ).
By comparing Table 5 and Table 2, we conclude that the signal-to-noise may have a

noticeable impact on the efficiency of CGEM−EV. This is not in complete agreement
with the theoretical results of Girard (2011, Section 4); but let us remind that these
results only describe a particular asymptotic regime.

A second important result seen in Table 5 is that the replacement of the exact traces
in the CGEM−EV estimating equation by their randomized version, does not degrade
the performance of CGEM−EV provided at least about 20 replicates are used for each
randomized trace approximation (notice that the degradation is nevertheless “moderate”
with only nR = 1).

3.5. We next present cases with b0 = 10 or even b0 = 4 in Table 6, Table 7 and
Table 8. These three tables concern respectively ν = 1/2, ν = 1/6 and the spherical
model (akin to ν = 1/2 ). The displayed results show that for such ν the SNR has a
much weaker impact than for ν = 3/2. On the subject of the CGEM−EV efficiency
relatively to ML, the results are quite similar to the corresponding previous tables for
large b0 (resp. Table 3, Table 1 and Table 4). But as expected the relative accuracy of
the ML estimate of the microergodic parameter now deviates from the theoretical

√
2/n

especially for the large θ−1
0 ’s.
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Thus even in case of “rather strong” noise, the CEGEM-EV approach appears to be
very efficient (resp. rather efficient) to estimate the microergodic parameter (resp. the
range parameter) for Matérn model with ν not too large or for the spherical model.

3.6. On the subject of what is sacrificed by using randomized-traces instead of exact
traces, Table 5 and the previously discussed Table 6, Table 7 and Table 8 clearly demon-
strate that the CGEM−EV efficiency is practically never degraded with nR = 20. In fact,
even using nR = 1 induces a negligible degradation in the settings of Tables 1, 2, 3, 4, 7
and a moderate degradation for Table 8. Notice that the columns corresponding the
randomized CGEM−EV are not displayed in Tables 1, 2, 3, 4 because they would have
been equal, for this display using 3 digits, to the columns of the exact CGEM−EV. This
also holds for all the following contexts of Tables 9, 10, 11, 12 which all consider quite
strong (even infinite) SNR. However it is important to observe that increasing nR from
1 to 20 is justified in some contexts since this does increase the efficiency of CGEM−EV
for the microergodic parameter in the case of large correlation range and weak SNR (see
the lines corresponding to a range greater than .5, of Table 5, Table 6 and, although to
a lesser extend, of Table 8.

3.7. We now present obtained simulation results in the case of the “very” non-uniform
Cartesian grid (2.1) with the exponential model and b0 = 104, in Table 9. The dis-
played results clearly show that the CGEM−EV efficiency relatively to ML is degraded
as compared to the uniform grid case in Table 3, but the Riemann-sum based weighted
version CGEM-wEV (using definition (2.2) for the weights) restores it quite well, both
for the range parameter and the microergodic parameter. Note that the setting here
essentially differs from the setting analyzed in Section 3.3 only by the deformation of
the grid (however the noise-level is slightly different). It is interesting to observe that
the accuracies obtained by CGEM-wEV are very similar to those obtained in the equi-
spaced case (compare the penultimate column of Table 3 with the penultimate column
of Table 9).

3.8. Consider now another specific type of irregular design: one where the sites ran-
domly but uniformly fill the domain [0, 1] × [0, 1], with possibly a few simple missing
regions. The design actually used, with n = 1000, in this Section, is pictured Figure 3.
Since developing a weighted version is not a trivial task, one must first assess the perfor-
mance of the un-weigthed version. Simulations were made for the exponential model and
b0 = 1012. The results are displayed in Table 10. It is rather surprising that, in contrast
to the previous Section, the un-weigthed version is very nearly as efficient as ML. In
fact the result are very similar to the ones displayed in Table 3. Other random uniform
designs of this type were analyzed: a similar performance was consistently observed.

3.9. We have also considered a much larger data size, precisely n = 57592, and a
strong SNR (b0 = 1012). The sites are a regular 256 × 256 lattice in [0, 1] × [0, 1] with
five missing disks, those of the previous simulation. Notice that the linear solver used
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Figure 4: The used random design for the observation locations (n = 1000) drawn from
an uniform distribution over the relative complement of five disks in [0, 1]× [0, 1]
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here was the PCG preconditioned by a classical factored sparse approximate inverse
(FSAI) (see Girard (2015) for more details). Now only 200 replicates were analyzed for
each setting. They were simulated using the R-package fields (Nychka, Furrer and Sain,
2009). ML was not implemented. However, for the case when the data can be assumed
un-noisy, it is immediate to obtain the (Frechet-Darmois-)Cramer-Rao lower bound for
the unbiased estimators of the micro-ergodic parameter in a more favorable situation:
the one where θ0 would be known. Indeed the square root of this lower bound is simply√

2/nc0 = 0.00589c0. In fact, when σN > 0, the Fisher information for c0 when θ0 is
known, is easily shown to be trA2

b0,θ0
/(2c2

0). We also computed a 2-digit approximation
of this by averaging a sufficient number of randomized-trace approximations for each of
the 5 true ranges (θ−1

0 ) we tried: at this accuracy we have not observed a departure
from the no-noise value n/(2c2

0) (so the last column of Table 11 displays 0.0058 without
repeating it). Now an important observation in Table 11 is that for all the correlation
ranges considered, the standard errors of the CGEM−EV estimator of c0 clearly attain
this bound, and thus the statistical efficiency of CGEM-EV is very satisfactory, at least
with respect to the estimation of this parameter.

Concerning the estimation of θ0, we invested some computer time to also compute a
2-digit approximation of a Cramer-Rao type lower bound for this parameter. To avoid
the inversion of a 2×2 (“badly”) approximated (possibly ill-conditioned) information ma-
trix, we assume this time that c0 were known (the Cramer-Rao lower bound so obtained
will necessarily be a lower bound for the case b0 and θ0 both unknown); we also have to
compute a certain trace (see e.g. Gaetan and Guyon (2010) for deriving its expression)
and for this we were required to average several thousand of primary randomized-trace
estimates. Now the second important observation in Table 11 is that for all the cor-
relation ranges considered, the standard deviations of the CGEM−EV estimator of θ0

are clearly approximately equal to or lower than this bound, and in fact the column
of squared biases (which become relatively more and more important as θ−1

0 increases)
would have to be added to the squared standard deviations to obtain a column of values
similar to the CR lower bounds. Thus the statistical efficiency of CGEM-EV is quite
satisfactory also for the estimation of θ0.

3.10. We finally consider a setting for which CGEM−EV is compared with the “Hybrid
method”, that is, the method proposed by Zhang and Zimmerman (2007) described in
the Introduction. The setting is in fact exactly the first of those considered by these
authors in their simulation study. The correlation model was the exponential model and
four values of range parameter were chosen (we added a fifth value, precisely θ−1

0 = 1.5).
There was no additive white noise in the data. Since, in this paper, we maintain a model
(1.1) with a given σN > 0 in our estimates (thus a “slightly” misspecified model), the
problem of choosing σN arises. We have tried three values for σ2

N: two moderately small
values (.002 and .0005) and a very small one (10−8). Firstly, this simulation study with
“exact” data demonstrates that CGEM−EV is quite insensitive to σN over several orders
of magnitudes: indeed the results dispayed in the corresponding 3 columns of Table 12
are hardly distinguishable, the only exception is the case of large range (θ−1

0 = 1.5)
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where the largest of the three σ2
N’s yields a noticeable degradation of the performance of

CGEM−EV. Thus a simple rule which should prevent such degradation is the following:
if one suspects a strong correlation in the true model (and one knows that there is no
additive white noise), the (miss)specified σN must be chosen “small” enough, keeping an
eye on possible ill-conditioning in matrix inversions which may then require a “not too
small” σN.

Secondly, the summaries in Table 12, where the column labelled “Hyb” is in fact a
copy of the summaries displayed in Zhang and Zimmerman (2007, Table 1), demonstrates
that the Hybrid estimators are clearly less efficient than the CGEM−EV estimators (and
especially for the estimation of τ2

0 ) in this setting.
Thirdly, we also applied to the simulated data sets of this setting, the “estimation”

method which could be suggested by the infill asymptotic results mentioned in the In-

troduction: fix an arbitrary range θ1 and use τ̂2θ := τ̂2
ML(θ1)θ2ν

1 as estimate of τ2
0 θ0.

We chose here θ−1
1 = 0.4. The summaries of the produced estimates are also displayed

Table 12 in the column “fixed θ1- ML”, similarly as the other columns (except that this
method does not provide estimates of τ2

0 .) As expected, this method is more efficient
than ML (although not to a great extent) in the case θ−1

0 = 0.4. And one observes that
it is still slightly more efficient in the case θ−1

0 = 0.3. Now it is useful to note that it is
however less efficient than both ML and CGEM−EV for all the other cases, the loss in
efficiency (mainly due to bias) being quite large for θ−1

0 = 0.1, even when compared to
the Hybrid method. We also tried this “fixed θ1- ML” with the value 0.1 for θ−1

1 : as
seen in Table 12, its global performance was even worse than with the previous choice
θ−1

1 = 0.4.

4 Conclusion and discussion

A rather extensive simulation study was performed for Matérn random fields with ν ∈
{1/6, 1/2, 3/2} observed on a dense grid of [0, 1]2. A side remark is that, when both ν
and the correlation range are “large”, the magnitude of the SNR has a strong impact
on the results (even those of ML), at least from the inference point of view taken here.
Such a strong impact was not observed for the spherical autocorrelation model, for
which simulation results rather similar to those for the exponential autocorrelation model
(ν = 1/2) are reported.

Firstly, concerning the question of existence and unicity of the root, the CGEM−EV
method proved to be rather satisfactory for all the settings considered here.

Secondly, and perhaps more importantly for the usefulness of this approach, these
experiments demonstrate that the CGEM−EV variance and range-parameter estimators,
and, above all, the resulting estimate of the microergodic-parameter (b0θ

2ν
0 , or τ2

0 θ
2ν
0 in

the without-noise case), are nearly as efficient as the ML estimators for many various
settings provided ν is not too large or the SNR is not too weak. Notice that the precise
meaning of “not too weak” depends on ν since the CGEM−EV efficiency is still very
good for a SNR of 4 when ν = 1/6.
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Otherwise this efficiency may be degraded especially for the cases with very large
range-parameter. We do not know yet whether this somewhat disappointing behavior
could have been rectified by using, say, a data size 10 times larger. Anyway, in such
“unfavorable” settings, since the mentioned degradation remains moderate (indeed, the
worst observed value for the inefficiency was 1.732 in the Matérn case, and 2.092 in
the case of spherical autocorrelation), the CGEM−EV variance and range-parameter
estimates might nevertheless be a useful starting point for a classical one-Newton-step
based on the linearized likelihood equations. This may deserve a deeper investigation.

In all the considered settings, the replacement of the exact traces by their randomized
version, does not significantly increase the inefficiency, if any, of CGEM−EV provided at
least about 20 replicates are used for each randomized trace approximation. In fact by
using only a single replicate one observes an increase of inefficiency (compared to exact
CGEM-EV) which is always “moderate”, this degradation even being negligible in the
case of strong enough SNR. These particularly good performances deserve, of course, a
theoretical justification.

As is usual for any point-estimation method, it would be useful that this method be
supplemented by accuracy estimates, for example to build confidence band for the under-
lying correlation function. For all the contexts where numerically solving the CGEM−EV
equation is reasonably fast, it is tempting to consider “parametric bootstrap”-type con-
fidence bands. Further works are necessary to develop and assess such methods.

This work mainly concerned designs (for the locations of the observations) which
coincide with a uniform grid or with a simple variant of a uniform grid. It is clear that
for the considered variant (i.e. the experiment whose results are reported in Table 9),
the weighted version CGEM−wEV, based on (2.2), produced a rather impressive im-
provement on CGEM−EV. A first theoretical property for this weighting scheme is also
stated (Proposition 1) for one-dimensional Matérn models. The idea of using weights
based on a cubature rule which approximates the integral of Z2 is thus promising since
it can guide us to extend CGEM−wEV to other designs. The choice of a cubature rule
appropriate to any irregular designs which would combine computational efficiency and
(asymptotic?) statistical efficiency, is not straightforward and it deserves thus further
study. However, notice that the study of refined weights can be useless in some contexts.
Indeed a good news from our study is that the unweighted version still works very well
when the irregular observation locations are drawn from a uniform distribution over a
simple region.

The final experiment (reported in Table 12) demonstrates that, in the case of no
additive white noise, CGEM−EV can be much more efficient than the hybrid method
proposed by Zhang and Zimmerman (2007), and is very robust with respect to the
somewhat arbitrary choice of a “small” noise level (σN) in CGEM−EV. However in the
case of a non-negligible additive white noise, we made no comparison with the Hybrid
method since the present version of CGEM−EV requires that σN be known. It is clear
that it would be useful to extend CGEM−EV to the case of unknown noise level (and
to possibly heteroscedastic measurement errors).
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Table 1: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Matern model with ν = 1/6
and b0 = 1012

ML CGEM-EV

θ−1
0 /2 mean ± sd mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.02 0.00± 0.07 0.01± 0.09 1.29
0.05 0.00± 0.11 0.00± 0.11 1.04
0.09 0.00± 0.16 0.01± 0.17 1.04
0.125 0.01± 0.20 0.02± 0.21 1.05
0.2 0.02± 0.27 0.04± 0.28 1.05
0.3 0.04± 0.34 0.06± 0.36 1.06
0.5 0.09± 0.42 0.11± 0.46 1.09
0.7 0.13± 0.49 0.14± 0.53 1.09
1. 0.17± 0.55 0.18± 0.60 1.09
2. 0.26± 0.69 0.27± 0.74 1.07
3. 0.32± 0.77 0.33± 0.82 1.05

summary for the ratios b̂θ̂2ν/
(
b0θ

2ν
0

)
0.02 1.003± 0.057 1.007± 0.072 1.273
0.05 1.003± 0.049 1.003± 0.050 1.015
0.09 1.003± 0.047 1.004± 0.048 1.012
0.125 1.003± 0.047 1.004± 0.047 1.004
0.2 1.004± 0.046 1.004± 0.046 1.003
0.3 1.003± 0.046 1.005± 0.046 1.002
0.5 1.003± 0.046 1.005± 0.046 1.010
0.7 1.003± 0.046 1.004± 0.046 1.004
1. 1.003± 0.046 1.004± 0.046 1.005
2. 1.003± 0.046 1.004± 0.046 1.008
3. 1.003± 0.046 1.005± 0.049 1.068
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Table 2: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Matérn model with ν = 3/2
and b0 = 1012. Results with * are averages after removal of 1 “outlier” among the 1000
replicates

ML CGEM-EV

θ−1
0 3 mean ± sd mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.02 0.00± 0.03 0.00* ± 0.03* 1.13*
0.04 0.00± 0.02 0.00± 0.02 1.10
0.09 0.00± 0.03 0.00± 0.03 1.17
0.125 0.00± 0.03 0.00± 0.04 1.21
0.2 0.00± 0.05 0.01± 0.06 1.25
0.3 0.00± 0.06 0.02± 0.07 1.32
0.5 0.01± 0.08 0.04± 0.10 1.38
0.7 0.02± 0.09 0.06± 0.12 1.47
1. 0.02± 0.11 0.08± 0.15 1.50
2. 0.04± 0.14 0.12± 0.20 1.53
3. 0.05± 0.16 0.14± 0.22 1.54

summary for the ratios b̂θ̂2ν/
(
b0θ

2ν
0

)
0.02 1.017± 0.166 1.029* ± 0.189* 1.149*
0.04 1.005± 0.089 1.007± 0.096 1.082
0.09 1.003± 0.060 1.006± 0.066 1.096
0.125 1.002± 0.055 1.007± 0.061 1.113
0.2 1.003± 0.050 1.009± 0.054 1.080
0.3 1.002± 0.048 1.010± 0.051 1.083
0.5 1.003± 0.047 1.010± 0.050 1.080
0.7 1.003± 0.046 1.010± 0.049 1.069
1. 1.002± 0.046 1.010± 0.049 1.079
2. 1.002± 0.046 1.008± 0.048 1.049
3. 1.002± 0.046 1.008± 0.048 1.065
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Table 3: n = 27× 27. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for exponential model with b0 =
103. Results with * are averages after removal of 48 “outliers” among the 1000 replicates.

ML CGEM-EV

θ−1
0 mean ± sd mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.02 0.00± 0.04 0.01* ± 0.05* 1.18*
0.05 0.00± 0.05 0.00± 0.05 1.07
0.09 0.01± 0.07 0.01± 0.07 1.10
0.125 0.01± 0.08 0.01± 0.09 1.12
0.2 0.01± 0.12 0.02± 0.13 1.12
0.3 0.02± 0.15 0.04± 0.17 1.18
0.5 0.04± 0.21 0.07± 0.23 1.16
0.7 0.06± 0.25 0.10± 0.28 1.16
1. 0.08± 0.30 0.13± 0.32 1.14
1.5 0.12± 0.33 0.17± 0.38 1.17
3. 0.20± 0.43 0.25± 0.47 1.12

summary for the ratios b̂θ̂/(b0θ0)

0.02 1.006± 0.100 1.015* ± 0.114* 1.154*
0.05 1.002± 0.065 1.003± 0.066 1.023
0.09 1.001± 0.059 1.002± 0.060 1.015
0.125 1.000± 0.057 1.003± 0.058 1.024
0.2 1.000± 0.055 1.003± 0.056 1.020
0.3 1.000± 0.055 1.003± 0.056 1.018
0.5 1.000± 0.055 1.003± 0.055 1.013
0.7 1.000± 0.055 1.003± 0.055 1.019
1. 1.000± 0.055 1.003± 0.056 1.014
1.5 1.000± 0.055 1.002± 0.056 1.012
3. 0.999± 0.058 1.002± 0.059 1.024
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Table 4: n = 20× 20. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Spherical model with b0 = 103

ML CGEM-EV

θ−1
0 mean ± sd mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.2 -0.00± 0.03 0.01± 0.06 2.09
0.3 -0.01± 0.06 0.02± 0.09 1.68
0.5 -0.01± 0.08 0.03± 0.14 1.82
0.7 0.01± 0.10 0.05± 0.18 1.87
1. 0.07± 0.16 0.07± 0.23 1.41
1.5 0.11± 0.24 0.11± 0.29 1.17

summary for the ratios b̂θ̂/(b0θ0)

0.2 1.00± 0.07 1.02± 0.08 1.11
0.3 1.00± 0.07 1.03± 0.08 1.19
0.5 1.00± 0.07 1.02± 0.08 1.11
0.7 1.00± 0.07 1.02± 0.07 1.07
1. 1.00± 0.07 1.01± 0.07 1.04
1.5 1.00± 0.07 1.01± 0.07 1.04
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Table 5: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Matérn model with ν = 3/2 and b0 = 103

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1
0

√
3 mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.04 0.00± 0.02 0.00± 0.02 1.11 0.00± 0.02 1.11 0.00± 0.02 1.11
0.09 0.00± 0.03 0.00± 0.03 1.16 0.00± 0.03 1.16 0.00± 0.03 1.16
0.125 0.00± 0.03 0.00± 0.04 1.22 0.00± 0.04 1.21 0.00± 0.04 1.22
0.2 0.00± 0.05 0.01± 0.06 1.25 0.01± 0.06 1.25 0.01± 0.06 1.25
0.3 0.00± 0.06 0.02± 0.08 1.33 0.02± 0.08 1.33 0.02± 0.08 1.33
0.5 0.01± 0.08 0.04± 0.11 1.38 0.04± 0.11 1.39 0.04± 0.11 1.38
0.7 0.02± 0.10 0.06± 0.13 1.47 0.06± 0.13 1.49 0.06± 0.13 1.48
1. 0.02± 0.12 0.08± 0.16 1.50 0.08± 0.16 1.52 0.08± 0.16 1.51
2. 0.05± 0.16 0.13± 0.22 1.52 0.13± 0.22 1.55 0.13± 0.22 1.52
3. 0.06± 0.18 0.16± 0.25 1.53 0.16± 0.26 1.56 0.16± 0.25 1.53

summary for the ratios b̂θ̂2ν/
(
b0θ

2ν
0

)
0.04 1.00± 0.09 1.01± 0.10 1.09 1.01± 0.10 1.09 1.01± 0.10 1.09
0.09 1.00± 0.06 1.01± 0.07 1.09 1.01± 0.07 1.09 1.01± 0.07 1.09
0.125 1.00± 0.06 1.01± 0.07 1.11 1.01± 0.07 1.10 1.01± 0.07 1.11
0.2 1.00± 0.06 1.01± 0.07 1.09 1.01± 0.07 1.10 1.01± 0.07 1.09
0.3 1.00± 0.07 1.02± 0.08 1.11 1.02± 0.08 1.16 1.02± 0.08 1.11
0.5 1.01± 0.10 1.03± 0.11 1.13 1.03± 0.13 1.32 1.03± 0.11 1.15
0.7 1.01± 0.12 1.05± 0.14 1.22 1.05± 0.17 1.48 1.05± 0.14 1.24
1. 1.01± 0.15 1.07± 0.19 1.31 1.08± 0.24 1.65 1.07± 0.19 1.34
2. 1.03± 0.23 1.14± 0.32 1.47 1.18± 0.42 1.94 1.14± 0.32 1.49
3. 1.05± 0.30 1.22± 0.47 1.73 1.29± 0.64 2.32 1.22± 0.48 1.77
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Table 6: n = 27× 27. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Exponential model and b0 = 10. Results with * are averages after removal of 66
“outliers” among the 1000 replicates

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1
0 mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.02 0.00± 0.05 0.00* ± 0.05* 1.18* 0.00* ± 0.05* 1.18* 0.00* ± 0.05* 1.18*
0.05 0.00± 0.05 0.00± 0.05 1.08 0.00± 0.05 1.08 0.00± 0.05 1.08
0.09 0.01± 0.07 0.01± 0.08 1.10 0.01± 0.08 1.11 0.01± 0.08 1.11
0.125 0.01± 0.09 0.01± 0.10 1.12 0.01± 0.10 1.13 0.01± 0.10 1.12
0.2 0.01± 0.13 0.02± 0.14 1.12 0.02± 0.14 1.12 0.02± 0.14 1.12
0.3 0.02± 0.16 0.04± 0.18 1.16 0.04± 0.18 1.17 0.04± 0.18 1.16
0.5 0.04± 0.22 0.07± 0.25 1.15 0.07± 0.25 1.15 0.07± 0.25 1.15
0.7 0.06± 0.26 0.10± 0.29 1.17 0.10± 0.29 1.17 0.10± 0.29 1.17
1. 0.09± 0.31 0.13± 0.34 1.13 0.13± 0.34 1.14 0.13± 0.34 1.13
1.5 0.12± 0.35 0.18± 0.40 1.17 0.18± 0.40 1.18 0.18± 0.40 1.17
3. 0.20± 0.45 0.25± 0.50 1.13 0.25± 0.50 1.14 0.25± 0.50 1.13

summary for the ratios b̂θ̂/(b0θ0)

0.02 1.01± 0.11 1.01* ± 0.13* 1.17* 1.01* ± 0.12* 1.16* 1.01* ± 0.13* 1.17*
0.05 1.00± 0.08 1.00± 0.08 1.04 1.00± 0.08 1.04 1.00± 0.08 1.05
0.09 1.00± 0.08 1.00± 0.08 1.03 1.00± 0.08 1.04 1.00± 0.08 1.03
0.125 1.00± 0.08 1.00± 0.08 1.04 1.01± 0.08 1.06 1.01± 0.08 1.05
0.2 1.00± 0.09 1.01± 0.09 1.04 1.01± 0.09 1.07 1.01± 0.09 1.04
0.3 1.00± 0.10 1.01± 0.10 1.04 1.01± 0.11 1.09 1.01± 0.10 1.04
0.5 1.00± 0.12 1.01± 0.12 1.03 1.01± 0.13 1.13 1.01± 0.12 1.04
0.7 1.00± 0.13 1.02± 0.14 1.04 1.02± 0.15 1.18 1.02± 0.14 1.05
1. 1.01± 0.15 1.02± 0.15 1.04 1.02± 0.18 1.21 1.02± 0.16 1.05
1.5 1.01± 0.17 1.03± 0.18 1.06 1.03± 0.22 1.27 1.03± 0.18 1.07
3. 1.01± 0.22 1.03± 0.24 1.08 1.05± 0.30 1.40 1.04± 0.24 1.10
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Table 7: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Matérn model with ν = 1/6 and b0 = 4. Results with * are averages after removal
of 67 “outliers” among the 1000 replicates

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1
0 /2 mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.02 -0.00± 0.08 -0.01* ± 0.09* 1.11* -0.01* ± 0.09* 1.19* -0.01* ± 0.09* 1.12*
0.05 0.00± 0.11 0.00± 0.12 1.06 0.00± 0.12 1.07 0.00± 0.12 1.06
0.09 0.00± 0.17 0.01± 0.17 1.03 0.01± 0.17 1.03 0.01± 0.17 1.03
0.125 0.01± 0.20 0.02± 0.21 1.06 0.02± 0.21 1.06 0.02± 0.21 1.06
0.2 0.02± 0.27 0.04± 0.29 1.05 0.04± 0.30 1.11 0.04± 0.29 1.05
0.3 0.04± 0.34 0.06± 0.36 1.06 0.06± 0.37 1.10 0.07± 0.36 1.06
0.5 0.09± 0.43 0.11± 0.47 1.11 0.11± 0.47 1.12 0.11± 0.47 1.11
0.7 0.13± 0.49 0.14± 0.54 1.09 0.14± 0.54 1.10 0.14± 0.54 1.09
1. 0.17± 0.56 0.19± 0.61 1.08 0.19± 0.61 1.09 0.19± 0.61 1.08
2. 0.26± 0.70 0.28± 0.75 1.07 0.28± 0.75 1.07 0.28± 0.75 1.07
3. 0.32± 0.78 0.34± 0.82 1.06 0.33± 0.83 1.06 0.33± 0.83 1.06

summary for the ratios b̂θ̂2ν/
(
b0θ

2ν
0

)
0.02 1.00± 0.07 1.00* ± 0.08* 1.05* 1.00* ± 0.08* 1.10* 1.00* ± 0.08* 1.05*
0.05 1.00± 0.07 1.00± 0.07 1.00 1.01± 0.07 1.03 1.01± 0.07 1.03
0.09 1.00± 0.07 1.01± 0.07 1.00 1.01± 0.07 1.02 1.01± 0.07 1.01
0.125 1.01± 0.07 1.01± 0.07 1.00 1.01± 0.07 1.01 1.01± 0.07 1.01
0.2 1.01± 0.07 1.01± 0.07 1.01 1.01± 0.07 1.02 1.01± 0.07 1.01
0.3 1.01± 0.08 1.01± 0.08 1.00 1.01± 0.08 1.02 1.01± 0.08 1.01
0.5 1.01± 0.08 1.01± 0.08 1.01 1.01± 0.08 1.03 1.01± 0.08 1.01
0.7 1.01± 0.08 1.01± 0.08 1.01 1.01± 0.09 1.03 1.01± 0.08 1.01
1. 1.01± 0.09 1.01± 0.09 1.01 1.01± 0.09 1.03 1.01± 0.09 1.01
2. 1.01± 0.10 1.01± 0.10 1.01 1.01± 0.10 1.05 1.01± 0.10 1.02
3. 1.01± 0.10 1.01± 0.11 1.02 1.01± 0.11 1.10 1.01± 0.11 1.06
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Table 8: n = 20× 20. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Spherical model and b0 = 10

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1
0 mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.2 -0.00± 0.04 0.01± 0.06 1.58 0.01± 0.06 1.59 0.01± 0.06 1.57
0.3 -0.01± 0.07 0.02± 0.09 1.31 0.02± 0.09 1.33 0.02± 0.09 1.31
0.5 -0.01± 0.09 0.03± 0.14 1.54 0.03± 0.14 1.55 0.03± 0.14 1.54
0.7 0.01± 0.12 0.05± 0.18 1.59 0.05± 0.18 1.61 0.05± 0.18 1.59
1. 0.07± 0.17 0.07± 0.23 1.30 0.07± 0.23 1.32 0.07± 0.23 1.30
1.5 0.10± 0.24 0.11± 0.29 1.19 0.11± 0.29 1.20 0.11± 0.29 1.19

summary for the ratios b̂θ̂/(b0θ0)

0.2 1.00± 0.09 1.01± 0.09 1.05 1.01± 0.10 1.07 1.01± 0.09 1.05
0.3 1.00± 0.10 1.02± 0.11 1.08 1.02± 0.11 1.10 1.02± 0.11 1.08
0.5 0.99± 0.12 1.02± 0.13 1.07 1.03± 0.13 1.12 1.02± 0.13 1.07
0.7 0.99± 0.13 1.02± 0.14 1.06 1.02± 0.15 1.13 1.02± 0.14 1.06
1. 1.00± 0.15 1.02± 0.16 1.04 1.02± 0.17 1.12 1.02± 0.16 1.04
1.5 1.00± 0.18 1.02± 0.18 1.05 1.02± 0.21 1.18 1.02± 0.19 1.07
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Table 9: Nonuniform grid with n = 27 × 27. Simulation summary (mean, standard
deviation of ML, CGEM-EV and CGEM-wEV (using (2.2)) estimates, and respective
MSE inefficiency) for exponential model and b0 = 104

ML CGEM-EV CGEM-wEV

θ−1
0 mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.05 0.00± 0.06 0.01± 0.10 1.71 0.00± 0.07 1.18
0.09 0.01± 0.07 0.02± 0.13 1.82 0.01± 0.08 1.10
0.2 0.02± 0.12 0.05± 0.20 1.64 0.02± 0.13 1.10
0.3 0.02± 0.16 0.07± 0.23 1.49 0.03± 0.18 1.11
0.5 0.03± 0.22 0.10± 0.28 1.33 0.06± 0.24 1.11
0.7 0.05± 0.26 0.13± 0.32 1.30 0.09± 0.29 1.14
1. 0.09± 0.30 0.16± 0.36 1.27 0.12± 0.33 1.14
1.5 0.12± 0.34 0.20± 0.41 1.27 0.16± 0.38 1.16

summary for the ratios b̂θ̂/(b0θ0)

0.05 0.999± 0.058 1.009± 0.068 1.171 1.000± 0.061 1.047
0.09 0.999± 0.056 1.011± 0.064 1.167 1.001± 0.057 1.019
0.2 0.999± 0.054 1.010± 0.059 1.104 1.001± 0.055 1.015
0.3 0.999± 0.054 1.008± 0.058 1.079 1.001± 0.054 1.009
0.5 0.999± 0.054 1.006± 0.056 1.054 1.001± 0.054 1.010
0.7 0.999± 0.054 1.005± 0.056 1.046 1.002± 0.054 1.009
1. 0.999± 0.054 1.004± 0.055 1.031 1.001± 0.054 1.006
1.5 0.999± 0.054 1.004± 0.055 1.027 1.001± 0.054 1.011
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Table 10: n = 1000 : Randomly but uniformly distributed sites on [0, 1]× [0, 1] with five
missing disks (design pictured Fig.3). Simulation summary (mean, standard deviation
of ML, CGEM-EV estimates, and respective MSE inefficiency) for exponential model
and b0 = 1012

ML CGEM-EV

θ−1
0 mean ± sd mean ± sd ineff1/2

summary for the errors log10(θ̂/θ0)

0.05 0.00± 0.05 0.00± 0.05 1.09
0.09 0.00± 0.07 0.01± 0.07 1.09
0.2 0.01± 0.12 0.02± 0.13 1.08
0.3 0.02± 0.16 0.03± 0.17 1.09
0.5 0.03± 0.22 0.06± 0.23 1.10
0.7 0.05± 0.26 0.09± 0.28 1.11
1. 0.08± 0.30 0.13± 0.32 1.12
1.5 0.11± 0.34 0.17± 0.37 1.14

summary for the ratios b̂θ̂/(b0θ0)

0.05 1.002± 0.051 1.004± 0.053 1.039
0.09 1.002± 0.048 1.004± 0.049 1.030
0.2 1.002± 0.046 1.004± 0.046 1.019
0.3 1.002± 0.045 1.004± 0.046 1.015
0.5 1.002± 0.045 1.004± 0.045 1.013
0.7 1.002± 0.045 1.004± 0.045 1.012
1. 1.002± 0.045 1.004± 0.045 1.010
1.5 1.002± 0.045 1.003± 0.045 1.009

Table 11: n = 57592. Observation locations on a 256 × 256 grid with missing values
on 5 disks, the ones pictured Fig.3. Simulation summary (mean, standard deviation) of
CGEM-EV estimates for the exponential model and b0 = 1012. The CR bounds are the
classical Cramer-Rao lower bounds for the variances of regular unbiased estimators

CGEM-EV

mean ± sd of the errors log10(θ̂/θ0) (CR bound)1/2 mean ± sd of the ratios b̂θ̂/(b0θ0) (CR bound)1/2

θ−1
0 for log10(θ0), for c0 = b0θ0,

case c0 known case θ0 known

0.1 0.01± 0.07 0.065 1.000± 0.0059 0.0058
0.2 0.02± 0.13 0.13 0.997± 0.0056 ”
0.3 0.04± 0.17 0.17 0.997± 0.0056 ”
0.7 0.09± 0.28 0.29 0.998± 0.0057 ”
1.5 0.16± 0.36 0.41 0.998± 0.0055 ”
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Table 12: n = 20× 20. Same setting as in Zhang and Zimmerman (2007, Table 1). Sim-
ulation summary (mean and mean squared error (MSE) of ML estimates, Hyb, CGEM-
EV estimates -with misspecified σN, fixed θ1 -ML estimates) for Exponential model with
τ2

0 = 2 and without additive white noise

ML Hyb fixed θ1 -ML CGEM-EV
θ−1
1 = 0.1 θ−1

1 = 0.4 σ2
N = .002 σ2

N = .0005 σ2
N = 10−8

θ−1
0

mean of the errors τ̂2 − τ20

0.1 0.01 0.02 NA NA 0.0091 – 0.0111
0.2 0.03 0.2 NA NA 0.0029 – 0.0049
0.3 0.04 0.51 NA NA 0.0101 – 0.0121
0.4 0.05 0.38 NA NA 0.0150 0.0165 0.0170
1.5 0.12 – NA NA 0.0328 0.0343 0.0348

MSE of τ̂2

0.1 0.11 0.26 NA NA 0.1274 – 0.1274
0.2 0.35 1.84 NA NA 0.3822 – 0.3822
0.3 0.64 5.08 NA NA 0.7424 – 0.7425
0.4 0.87 6.19 NA NA 1.1396 1.1396 1.1396
1.5 3.68 – NA NA 4.2818 4.2819 4.2819

mean of the errors τ̂2θ − τ20 θ0

0.1 0.0209 0.28 -0.093 -2.113 -0.0026 – 0.0601
0.2 -0.0047 0.12 1.371 -0.380 -0.0272 – 0.0263
0.3 -0.0001 0.08 1.489 -0.107 -0.0317 – 0.0207
0.4 -0.0017 0.09 1.486 -0.024 -0.0367 0.0023 0.0163
1.5 0.0005 – 1.334 0.051 -0.0446 -0.0075 0.0051

MSE of τ̂2θ

0.1 2.5494 3.71 1.910 6.029 2.6038 – 2.6070
0.2 0.5561 0.75 2.627 0.602 0.5779 – 0.5788
0.3 0.2346 0.31 2.761 0.224 0.2463 – 0.2455
0.4 0.1299 0.18 2.747 0.123 0.1362 0.1350 0.1353
1.5 0.0085 – 3.242 0.0145 0.0106 0.0087 0.0087
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