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A fast, near efficient, randomized-trace based method for

fitting stationary Gaussian spatial models to large noisy

data sets in the case of a single range-parameter

D.A. Girard

CNRS and University J. Fourier, Grenoble

Abstract

We consider the inference problem of fitting to noisy gridded observations, a
isotropic zero-mean stationary Gaussian field model which belongs to the Matérn
family with known regularity index ν ≥ 0, or to the spherical family. For estimating
the correlation range and the variance of the field, two simple estimating functions
based on the so-called “conditional Gibbs energy mean” (CGEM) and the empirical
variance (EV) were recently introduced. This article presents a rather extensive
Monte Carlo simulation study for problems with around a thousand observations
and settings including large, moderate, and even “small”, correlation ranges. It em-
pirically demonstrates that the statistical efficiency of CGEM-EV is quite satisfying
provided the signal-to-noise ratio is strong enough or ν is not too large

1. Introduction

We consider the following classical inference problem: let Z(s), s ∈ [0, 1] × [0, 1],
be a zero mean stationary gaussian stochastic process whose autocorrelation function
is assumed to belong to the isotropic Matern family. One realization of this process is
observed at n = n2

1
regularly spaced sites si, i = 1, · · · , n, of [0, 1]× [0, 1] with an additive

white noise (this noise can model either suspected measurement errors or an intrinsic
nugget effect in Z). In this article, we restrict ourselves to the case where the additive
white noise has a known variance, that we set equal to 1 to simplify the notation. Using
a standard lexicographic ordering, the observations thus form a vector y of size n whose
law is

y ∼ N(0, b0Rθ0 + I) where b0 = E((Z(s))2) is the process variance, (1.1)
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with I denoting the identity matrix and Rθ the autocorrelation matrix of the gridded
process i.e. the block Toeplitz, with Toeplitz blocks, matrix whose coefficients are given
by

[Rθ]j,k = ρν,θ(||sj − sk||), j, k = 1, · · · , n,

with

ρν,θ(x) =
(θx)ν

Γ(ν)2ν−1
Kν (θx),

where Kν is the modified Bessel function of order ν. When mentioned, we will also
consider another well known autocorrelation function, namely the spherical model ρSθ(x).
See e.g. Zhang and Zimmerman 2007 for these definitions.

Recall that ρ1/2,θ(x) = exp(−θx) is the exponential model, and that very simple ex-
pressions also exist for ν = 3/2 and 5/2 : these ν’s correspond to models very commonly
used (see Stein 1999, Rasmussen and Williams 2006). The parameter θ−1 is often called
the range parameter.

Estimation of parameters in autocovariance models is needed for various tasks, for
exemple for establishing confidence band for the autovariance function, for constructing
statistically efficient prediction of the process at unobserved location, or for optimally
de-noising the observations.

It is often of great interest to be able to “effectively reduce” the number of parame-
ters, especially when computing the likelihood function is costly. Zhang and Zimmerman
(2007) recently proposed to use the classical weigthed least square method (not statisti-
cally full-efficient but much less costly than maximum likelihood (ML)) to estimate the
range parameters, next, to plug-in these parameters (the θ here) in the likelihood which
is then maximized with respect to b (the solution, say b̂ML(θ), being typically obtained
iteratively by Fisher scoring). The idea underlying this method is that, at least for the
infill asymptotics context, even if θ is fixed at a wrong value θ1, the product b̂ML(θ1)θ

2ν
1

still remains an efficient estimator of b0θ
2ν
0

which is called the microergodic parameter
(see Du et al. (2009) for recent results of this type).

The method we introduced in Girard (2009), firstly reverses the roles of variance and
range : it is based on a very simple estimate for the variance, namely the bias corrected
empirical variance, which is simply defined by

b̂EV := n−1yTy − 1. (1.2)

Secondly the maximization of the likelihood w.r.t. θ is replaced by the following esti-
mating equation in θ : solve, with b fixed at b̂EV

yTAb,θ (I −Ab,θ)y = trAb,θ where Ab,θ = bRθ (I + bRθ)
−1 . (1.3)

This equation in θ is called the “conditional Gibbs energy mean” and “empirical vari-
ance” based estimating equation (CGEM-EV equation) in Girard (2009) which gives
details, heuristic justifications and a theoretical result for the one dimensional “time
series” analog setting, stating that an asymptotic full-efficiency is reached as ν decreases
to 1/2 .
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We first give somme comments (Section 2) which complement those in Girard (2009).
This article presents (in Section 3) a rather extensive Monte Carlo simulation study for
problems with around a thousand observations and settings including large, moderate
and even “small” correlation ranges. It empirically demonstrates that the statistical
efficiency of CGEM-EV, even when using a fast randomized-trace approximation to
trAb,θ, is quite satisfying provided the signal-to-noise b0 is strong enough or ν is not too
large.

2. Somme comments on the CGEM-EV estimating equation

The motivation behind this work is that it should be possible to implement CGEM-
EV for very large scale problems. Indeed from works in the previous decades, it is
now known that a linear system with block Toeplitz - Toeplitz blocks matrix can of-
ten be solved with about n log(n) operations and a memory size of order n, by the
preconditioned conjugate gradient approach. The number of operations is actually a
multiple of n log(n) which depends on the preconditioning method one employs for
each particular application (see Chen, Hurvich and Lu, 2006, for certain time series
problems). Once a fast solver is available to compute Ab,θy which does not form
explicitely the matrix Ab,θ, one is tempted to try a randomized-trace approximation
((1/nR)

∑nR

r=1
wT

r Ab,θwr/(w
T
r wr) in place of the exact (1/n)trAb,θ. The particular ap-

plication of the preconditioned conjugate gradient approach to problems like those of
the following simulation is not the purpose of this article. Indeed in the following, we
consider settings with relatively small data size (less than 900) so that using such iter-
ative solvers is not mandatory. Classical “exact” Cholesky or eigenvalues-eigenvectors
decompositions are then used in the following, even to implement randomized-trace ver-
sions of the CGEM-EV estimating equation. Note that, in following simulation, one
chose to compute the randomized-trace version of the CGEM-EV criterion at different
tried values of θ by keeping constants the nR simulated wr’s during the processing of
each simulated data set.

A last comment is in order about the bias corrected empirical variance b̂EV defined
in (1.2) as an estimate of the signal-to-noise ratio. Of course, even with a data set of
large size, it may happen, especially in case of large correlation range, that the observed
b̂EV has a negative value. It is easy to see that the probability of a such pathological
event decreases when n increases and becomes very small as soon as the true b0 is large
enough. In fact this entails that CGEM-EV appears to be not suitable for contexts with
weak signal-to-noise ratios.

3. Monte-Carlo simulation study
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Even if the known theoretical justification (Girard 2009) only concerns settings where
the correlation between observations at neighbooring sites is close to 1, the simulation
study we present here, was done with not only moderate and large correlation ranges cho-
sen for the true range, but also rather “small” correlation ranges. Somewhat arbitrarily
we call a “small correlation range”, a range for which θ−1

0
is about 0.02 or less. If ν = 1/6

then the considered θ−1

0
varies in {0.02, 0.05, 0.09, 0.125, 0.2, 0.3, 0.5, 0.7, 1., 2., 3.}. Oth-

erwise we used slight variants of this set.
In contrast to the case without additive white noise (Zhan and Zimmerman, 2007) the

magnitude of the SNR (here the process variance b0) has a strong impact on the results,
at least from the inference point of view taken here. We present the obtained simulation
results, firstly in the case of either essentially no additive white noise or “weak” noise,
next, for settings with “moderate” noise, lastly, with “rather strong” noise.

Concerning the question of existence and unicity of the root, the CGEM-EV method
was quite good for the settings considered here: in “almost” all the considered cases one
observed a single root in the initial search interval we used (this interval was chosen quite
large in all settings, typically [0.05, 100.] for θ). This simulation study demonstrates that,
in fact, the “almost” term we use above, is only due to settings where the correlation
range θ−1

0
is quite small. Indeed, it is only for such ranges that it happened (for a few

percent of the replicates , see the results marked with * in the folowing Tables) that the
CGEM-EV estimating equation (or its randomized-trace version) has no root.

For b0 = 1012 the data could have been considered as exact data and the esti-
mation methods (both ML and CGEM-EV) could have been simplified. However very
ill-conditioned matrix inversions (especially in the case ν large) would then have occured.
So we chose to rather maintain a model with additive white noise. We have

For ν = 1/6 and b0 = 1012 we clearly see in Table 1 that the relative accuracy of ML
estimation for the microergodic parameter b0θ

2ν
0

is very close to
√

2/n = 0.047 for any
θ−1

0
between 0.02 and 3.
The attractive property of the CGEM-EV estimation of b0θ

2ν
0

is that it is practically
as efficient as ML for θ−1

0
between 0.05 and 2 (with negligeable loss). The loss in

efficiency is rather small for θ−1

0
= 3 and reasonable for θ−1

0
= 0.02. The magnitude,

in log-scale, of the range is, as expected, much less easily estimable, especially for large
θ−1

0
. Nevertheless CGEM-EV performs also nearly as well as ML: neither the bias of

Log10(θ̂ML) nor its standard deviation are significatively increased.
For ν = 3/2 and b0 = 1012 we again see in Table 2 that the relative accuracy

of ML estimation for the microergodic parameter b0θ
2ν
0

is almost always very close to
√

2/n with a noticeable small degradation for small θ−1

0
. The attractive property of

the CGEM-EV estimation is that its inefficiency is rather small, always between 1.05
and 1.10, except for θ−1

0
= 0.02. For this small range setting, a small degradation is

noticeable. Concerning the estimation of Log10(θ0) the performance of CGEM-EV, as
compared to ML, is not as excellent as in Table 1. This seems to be in agreement with
the theoretical result of Girard (2009) which states that full-efficiency is obtained as ν
decreases.

For ν = 1/2 (i.e. exponential model) and b0 = 103 the results concerning the estima-
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tion of b0θ
2ν
0

in Table 3 are rather similar to the ones in Table 1 except for θ−1

0
= 0.02

for which there were 48 replicates among the 1000 for which the CGEM-EV estimat-
ing equation had no root. The results concerning the estimation of Log10(θ0) are
intermediate between the corresponding results in Table 1 and Table 2.

A spherical model which can be thought “similar” to the previous one is considered
in Table 4 (except that n is here 20×20). Thus ν is chosen equal to 1/2 ( (as discussed in
Zhang and Zimmerman, 2007). The results are very similar to those of Table 3 although
the efficiency of CGEM-EV is a little bit degraded.

For ν = 3/2 and b0 = 103 (and n = 30×30) we first see in Table 5 that the previously
observed accuracy of ML estimation for the microergodic parameter is much decreased
when the range θ−1

0
increases. Some theoretical studies have established (essentially in

one-dimensional setting) that, in the infill asymptotics framework, the relative accuracy
of

√

2/n which holds in the case of exact data (Du, Zhang and Mandrekar 2009) is lost
as soon as the observations are contaminated by a white noise. An important result
is that the efficiency of CGEM-EV for the microergodic parameter remains quite good
when the true range θ−1

0
remains smaller than 0.7; otherwise is not as satisfying as in

all the previous settings.
By comparing Table 2 and Table 5, we conclude that the signal-to-noise may have

a large impact on the efficiency of CGEM-EV. This is not in complete agreement with
the theoretical result of Girard (2009, second part of Theorem 4.1); but recall that this
result describes a limit for a particular asymptotic regime.

A second important result seen in Table 5 is that the replacement of the exact traces
in the CGEM-EV estimating equation by their randomized version, does not degrade
the performance of CGEM-EV provided at least about 20 replicates are used for each
randomized approximation.

We finally presents cases with b0 = 10 or even b0 = 4 in Table 6, Table 7 and
Table 8. These 3 tables concern respectively ν = 1/2, ν = 1/6 and the spherical model
(akin to ν = 1/2 ). The displayed results show that for such ν the signal-to-noise has
a much weaker impact than for ν = 3/2. On the subject of the CGEM-EV efficiency
relatively to ML, the results are quite similar to the corresponding previous tables for
large b0 (resp. Table 3, Table 1 and Table 4). But as expected the relative accuracy of
the ML estimate of the microergodic parameter now deviates from the theoretical

√

2/n
especially for the large θ−1

0
’s.

Thus in the case of “rather strong” noise, the CEGEM-EV approach is still quite
efficient provided ν is not too large.

On the subject of what is sacrificed in using randomized-traces instead of exact traces,
the previously discussed Table 6, Table 7 and Table 8 also demonstrate that the CGEM-
EV efficiency is practically never degraded with nR = 20. In fact, even using nR = 1
induces a negligeable degradation in the settings of Tables 1, 2, 3, 4, 7, 8 (note that the
columns corresponding the randomized CGEM-EV are not displayed in Tables 1, 2, 3, 4
because they would have been equal, for this display using 3 digits, to the columns of
the exact CGEM-EV).
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Table 1: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Matern model with ν = 1/6
and b0 = 1012

ML CGEM-EV

θ−1

0
mean ± sd mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.02 0.00± 0.07 0.01± 0.09 1.29
0.05 0.00± 0.11 0.00± 0.11 1.04
0.09 0.00± 0.16 0.01± 0.17 1.04
0.125 0.01± 0.20 0.02± 0.21 1.05
0.2 0.02± 0.27 0.04± 0.28 1.05
0.3 0.04± 0.34 0.06± 0.36 1.06
0.5 0.09± 0.42 0.11± 0.46 1.09
0.7 0.13± 0.49 0.14± 0.53 1.09
1. 0.17± 0.55 0.18± 0.60 1.09
2. 0.26± 0.69 0.27± 0.74 1.07
3. 0.32± 0.77 0.33± 0.82 1.05

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.02 1.00± 0.06 1.01± 0.07 1.27
0.05 1.00± 0.05 1.00± 0.05 1.01
0.09 1.00± 0.05 1.00± 0.05 1.01
0.125 1.00± 0.05 1.00± 0.05 1.00
0.2 1.00± 0.05 1.00± 0.05 1.00
0.3 1.00± 0.05 1.00± 0.05 1.00
0.5 1.00± 0.05 1.00± 0.05 1.01
0.7 1.00± 0.05 1.00± 0.05 1.00
1. 1.00± 0.05 1.00± 0.05 1.00
2. 1.00± 0.05 1.00± 0.05 1.01
3. 1.00± 0.05 1.00± 0.05 1.07
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Table 2: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Matern model with ν = 3/2
and b0 = 1012. Results with * are averages after removal of 1 “outlier” among the 1000
replicates.

ML CGEM-EV

θ−1

0
mean ± sd mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.02 0.00± 0.03 0.00* ± 0.03* 1.13*
0.04 0.00± 0.02 0.00± 0.02 1.10
0.09 0.00± 0.03 0.00± 0.03 1.17
0.125 0.00± 0.03 0.00± 0.04 1.21
0.2 0.00± 0.05 0.01± 0.06 1.25
0.3 0.00± 0.06 0.02± 0.07 1.32
0.5 0.01± 0.08 0.04± 0.10 1.38
0.7 0.02± 0.09 0.06± 0.12 1.47
1. 0.02± 0.11 0.08± 0.15 1.50
2. 0.04± 0.14 0.12± 0.20 1.53
3. 0.05± 0.16 0.14± 0.22 1.54

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.02 1.02± 0.17 1.03* ± 0.19* 1.15*
0.04 1.00± 0.09 1.01± 0.10 1.08
0.09 1.00± 0.06 1.01± 0.07 1.10
0.125 1.00± 0.05 1.01± 0.06 1.11
0.2 1.00± 0.05 1.01± 0.05 1.08
0.3 1.00± 0.05 1.01± 0.05 1.08
0.5 1.00± 0.05 1.01± 0.05 1.08
0.7 1.00± 0.05 1.01± 0.05 1.07
1. 1.00± 0.05 1.01± 0.05 1.08
2. 1.00± 0.05 1.01± 0.05 1.05
3. 1.00± 0.05 1.01± 0.05 1.07
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Table 3: n = 27× 27. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Exponential model with b0 =
103. Results with * are averages after removal of 48 “outliers” among the 1000 replicates.

ML CGEM-EV

θ−1

0
mean ± sd mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.02 0.00± 0.04 0.01* ± 0.05* 1.18*
0.05 0.00± 0.05 0.00± 0.05 1.07
0.09 0.01± 0.07 0.01± 0.07 1.10
0.125 0.01± 0.08 0.01± 0.09 1.12
0.2 0.01± 0.12 0.02± 0.13 1.12
0.3 0.02± 0.15 0.04± 0.17 1.18
0.5 0.04± 0.21 0.07± 0.23 1.16
0.7 0.06± 0.25 0.10± 0.28 1.16
1. 0.08± 0.30 0.13± 0.32 1.14
1.5 0.12± 0.33 0.17± 0.38 1.17
3. 0.20± 0.43 0.25± 0.47 1.12

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.02 1.01± 0.10 1.01* ± 0.11* 1.15*
0.05 1.00± 0.06 1.00± 0.07 1.02
0.09 1.00± 0.06 1.00± 0.06 1.02
0.125 1.00± 0.06 1.00± 0.06 1.02
0.2 1.00± 0.06 1.00± 0.06 1.02
0.3 1.00± 0.05 1.00± 0.06 1.02
0.5 1.00± 0.05 1.00± 0.06 1.01
0.7 1.00± 0.05 1.00± 0.06 1.02
1. 1.00± 0.05 1.00± 0.06 1.01
1.5 1.00± 0.06 1.00± 0.06 1.01
3. 1.00± 0.06 1.00± 0.06 1.02
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Table 4: n = 20× 20. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates and respective MSE inefficiency) for Spherical model with b0 = 103.

ML CGEM-EV

θ−1

0
mean ± sd mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.2 -0.00± 0.03 0.01± 0.06 2.09
0.3 -0.01± 0.06 0.02± 0.09 1.68
0.5 -0.01± 0.08 0.03± 0.14 1.82
0.7 0.01± 0.10 0.05± 0.18 1.87
1. 0.07± 0.16 0.07± 0.23 1.41
1.5 0.11± 0.24 0.11± 0.29 1.17

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.2 1.00± 0.07 1.02± 0.08 1.11
0.3 1.00± 0.07 1.03± 0.08 1.19
0.5 1.00± 0.07 1.02± 0.08 1.11
0.7 1.00± 0.07 1.02± 0.07 1.07
1. 1.00± 0.07 1.01± 0.07 1.04
1.5 1.00± 0.07 1.01± 0.07 1.04
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Table 5: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Matern model with ν = 3/2 and b0 = 103

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1

0
mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.04 0.00± 0.02 0.00± 0.02 1.11 0.00± 0.02 1.11 0.00± 0.02 1.11
0.09 0.00± 0.03 0.00± 0.03 1.16 0.00± 0.03 1.16 0.00± 0.03 1.16
0.125 -0.00± 0.03 0.00± 0.04 1.22 0.00± 0.04 1.21 0.00± 0.04 1.22
0.2 0.00± 0.05 0.01± 0.06 1.25 0.01± 0.06 1.25 0.01± 0.06 1.25
0.3 0.00± 0.06 0.02± 0.08 1.33 0.02± 0.08 1.33 0.02± 0.08 1.33
0.5 0.01± 0.08 0.04± 0.11 1.38 0.04± 0.11 1.39 0.04± 0.11 1.38
0.7 0.02± 0.10 0.06± 0.13 1.47 0.06± 0.13 1.49 0.06± 0.13 1.48
1. 0.02± 0.12 0.08± 0.16 1.50 0.08± 0.16 1.52 0.08± 0.16 1.51
2. 0.05± 0.16 0.13± 0.22 1.52 0.13± 0.22 1.55 0.13± 0.22 1.52
3. 0.06± 0.18 0.16± 0.25 1.53 0.16± 0.26 1.56 0.16± 0.25 1.53

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.04 1.00± 0.09 1.01± 0.10 1.09 1.01± 0.10 1.09 1.01± 0.10 1.09
0.09 1.00± 0.06 1.01± 0.07 1.09 1.01± 0.07 1.09 1.01± 0.07 1.09
0.125 1.00± 0.06 1.01± 0.07 1.11 1.01± 0.07 1.10 1.01± 0.07 1.11
0.2 1.00± 0.06 1.01± 0.07 1.09 1.01± 0.07 1.10 1.01± 0.07 1.09
0.3 1.00± 0.07 1.02± 0.08 1.11 1.02± 0.08 1.16 1.02± 0.08 1.11
0.5 1.01± 0.10 1.03± 0.11 1.13 1.03± 0.13 1.32 1.03± 0.11 1.15
0.7 1.01± 0.12 1.05± 0.14 1.22 1.05± 0.17 1.48 1.05± 0.14 1.24
1. 1.01± 0.15 1.07± 0.19 1.31 1.08± 0.24 1.65 1.07± 0.19 1.34
2. 1.03± 0.23 1.14± 0.32 1.47 1.18± 0.42 1.94 1.14± 0.32 1.49
3. 1.05± 0.30 1.22± 0.47 1.73 1.29± 0.64 2.32 1.22± 0.48 1.77
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Table 6: n = 27× 27. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Exponential model and b0 = 10 . Results with * are averages after removal of 66
“outliers” among the 1000 replicates.

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1

0
mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.02 0.00± 0.05 0.00* ± 0.05* 1.18* 0.00* ± 0.05* 1.18* 0.00* ± 0.05* 1.18*
0.05 0.00± 0.05 0.00± 0.05 1.08 0.00± 0.05 1.08 0.00± 0.05 1.08
0.09 0.01± 0.07 0.01± 0.08 1.10 0.01± 0.08 1.11 0.01± 0.08 1.11
0.125 0.01± 0.09 0.01± 0.10 1.12 0.01± 0.10 1.13 0.01± 0.10 1.12
0.2 0.01± 0.13 0.02± 0.14 1.12 0.02± 0.14 1.12 0.02± 0.14 1.12
0.3 0.02± 0.16 0.04± 0.18 1.16 0.04± 0.18 1.17 0.04± 0.18 1.16
0.5 0.04± 0.22 0.07± 0.25 1.15 0.07± 0.25 1.15 0.07± 0.25 1.15
0.7 0.06± 0.26 0.10± 0.29 1.17 0.10± 0.29 1.17 0.10± 0.29 1.17
1. 0.09± 0.31 0.13± 0.34 1.13 0.13± 0.34 1.14 0.13± 0.34 1.13
1.5 0.12± 0.35 0.18± 0.40 1.17 0.18± 0.40 1.18 0.18± 0.40 1.17
3. 0.20± 0.45 0.25± 0.50 1.13 0.25± 0.50 1.14 0.25± 0.50 1.13

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.02 1.01± 0.11 1.01* ± 0.13* 1.17* 1.01* ± 0.12* 1.16* 1.01* ± 0.13* 1.17*
0.05 1.00± 0.08 1.00± 0.08 1.04 1.00± 0.08 1.04 1.00± 0.08 1.05
0.09 1.00± 0.08 1.00± 0.08 1.03 1.00± 0.08 1.04 1.00± 0.08 1.03
0.125 1.00± 0.08 1.00± 0.08 1.04 1.01± 0.08 1.06 1.01± 0.08 1.05
0.2 1.00± 0.09 1.01± 0.09 1.04 1.01± 0.09 1.07 1.01± 0.09 1.04
0.3 1.00± 0.10 1.01± 0.10 1.04 1.01± 0.11 1.09 1.01± 0.10 1.04
0.5 1.00± 0.12 1.01± 0.12 1.03 1.01± 0.13 1.13 1.01± 0.12 1.04
0.7 1.00± 0.13 1.02± 0.14 1.04 1.02± 0.15 1.18 1.02± 0.14 1.05
1. 1.01± 0.15 1.02± 0.15 1.04 1.02± 0.18 1.21 1.02± 0.16 1.05
1.5 1.01± 0.17 1.03± 0.18 1.06 1.03± 0.22 1.27 1.03± 0.18 1.07
3. 1.01± 0.22 1.03± 0.24 1.08 1.05± 0.30 1.40 1.04± 0.24 1.10
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Table 7: n = 30× 30. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Matern model with ν = 1/6 and b0 = 4. Results with * are averages after removal
of 67 “outliers” among the 1000 replicates.

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1

0
mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.02 -0.00± 0.08 -0.01* ± 0.09* 1.11* -0.01* ± 0.09* 1.19* -0.01* ± 0.09* 1.12*
0.05 0.00± 0.11 0.00± 0.12 1.06 0.00± 0.12 1.07 0.00± 0.12 1.06
0.09 0.00± 0.17 0.01± 0.17 1.03 0.01± 0.17 1.03 0.01± 0.17 1.03
0.125 0.01± 0.20 0.02± 0.21 1.06 0.02± 0.21 1.06 0.02± 0.21 1.06
0.2 0.02± 0.27 0.04± 0.29 1.05 0.04± 0.30 1.11 0.04± 0.29 1.05
0.3 0.04± 0.34 0.06± 0.36 1.06 0.06± 0.37 1.10 0.07± 0.36 1.06
0.5 0.09± 0.43 0.11± 0.47 1.11 0.11± 0.47 1.12 0.11± 0.47 1.11
0.7 0.13± 0.49 0.14± 0.54 1.09 0.14± 0.54 1.10 0.14± 0.54 1.09
1. 0.17± 0.56 0.19± 0.61 1.08 0.19± 0.61 1.09 0.19± 0.61 1.08
2. 0.26± 0.70 0.28± 0.75 1.07 0.28± 0.75 1.07 0.28± 0.75 1.07
3. 0.32± 0.78 0.34± 0.82 1.06 0.33± 0.83 1.06 0.33± 0.83 1.06

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.02 1.00± 0.07 1.00* ± 0.08* 1.05* 1.00* ± 0.08* 1.10* 1.00* ± 0.08* 1.05*
0.05 1.00± 0.07 1.00± 0.07 1.00 1.01± 0.07 1.03 1.01± 0.07 1.03
0.09 1.00± 0.07 1.01± 0.07 1.00 1.01± 0.07 1.02 1.01± 0.07 1.01
0.125 1.01± 0.07 1.01± 0.07 1.00 1.01± 0.07 1.01 1.01± 0.07 1.01
0.2 1.01± 0.07 1.01± 0.07 1.01 1.01± 0.07 1.02 1.01± 0.07 1.01
0.3 1.01± 0.08 1.01± 0.08 1.00 1.01± 0.08 1.02 1.01± 0.08 1.01
0.5 1.01± 0.08 1.01± 0.08 1.01 1.01± 0.08 1.03 1.01± 0.08 1.01
0.7 1.01± 0.08 1.01± 0.08 1.01 1.01± 0.09 1.03 1.01± 0.08 1.01
1. 1.01± 0.09 1.01± 0.09 1.01 1.01± 0.09 1.03 1.01± 0.09 1.01
2. 1.01± 0.10 1.01± 0.10 1.01 1.01± 0.10 1.05 1.01± 0.10 1.02
3. 1.01± 0.10 1.01± 0.11 1.02 1.01± 0.11 1.10 1.01± 0.11 1.06
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Table 8: n = 20× 20. Simulation summary (mean, standard deviation of ML estimates,
CGEM-EV estimates -with exact or randomized traces- and respective MSE inefficiency)
for Spherical model and b0 = 10.

ML CGEM-EV randCGEM-EV
nR = 1 nR = 20

θ−1

0
mean ± sd mean ± sd ineff1/2 mean ± sd ineff1/2 mean ± sd ineff1/2

summary for the errors Log10(
θ̂
θ0
)

0.2 -0.00± 0.04 0.01± 0.06 1.58 0.01± 0.06 1.59 0.01± 0.06 1.57
0.3 -0.01± 0.07 0.02± 0.09 1.31 0.02± 0.09 1.33 0.02± 0.09 1.31
0.5 -0.01± 0.09 0.03± 0.14 1.54 0.03± 0.14 1.55 0.03± 0.14 1.54
0.7 0.01± 0.12 0.05± 0.18 1.59 0.05± 0.18 1.61 0.05± 0.18 1.59
1. 0.07± 0.17 0.07± 0.23 1.30 0.07± 0.23 1.32 0.07± 0.23 1.30
1.5 0.10± 0.24 0.11± 0.29 1.19 0.11± 0.29 1.20 0.11± 0.29 1.19

summary for the ratios b̂θ̂2ν

b0θ2ν0

0.2 1.00± 0.09 1.01± 0.09 1.05 1.01± 0.10 1.07 1.01± 0.09 1.05
0.3 1.00± 0.10 1.02± 0.11 1.08 1.02± 0.11 1.10 1.02± 0.11 1.08
0.5 0.99± 0.12 1.02± 0.13 1.07 1.03± 0.13 1.12 1.02± 0.13 1.07
0.7 0.99± 0.13 1.02± 0.14 1.06 1.02± 0.15 1.13 1.02± 0.14 1.06
1. 1.00± 0.15 1.02± 0.16 1.04 1.02± 0.17 1.12 1.02± 0.16 1.04
1.5 1.00± 0.18 1.02± 0.18 1.05 1.02± 0.21 1.18 1.02± 0.19 1.07
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