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This paper proposes an efficient heuristic algorithm for solving a complex batching and scheduling problem in a diffusion area of a semiconductor plant. Diffusion is frequently bottleneck in the plant and also one of the most complex areas in terms of number of machines, constraints to satisfy and the large number of lots to manage.

The purpose of this study is to investigate an approach to group lots in batches and to schedule these batches on machines. The problem is modeled through a disjunctive graph formulation. A constructive algorithm is proposed and improvement procedures based on iterative sampling and Simulated Annealing are developed. Computational experiments, carried out on actual industrial problem instances, show the ability of the iterative sampling to significantly improve the initial solution. The Simulated Annealing enhances the results of the iterative sampling. The constructive algorithm has been embedded in a software and is currently being used.

Introduction

Semiconductor wafer fabrication can be described as a multistage process with re-entrant flows. The processing is done layer by layer. Each layer requires several steps of processing such as chemical-mechanical polishing, diffusion, film deposition, photolithography, implant (doping) and etching. For each of the product types, and depending on the technology, a wafer goes through more than 400 process steps over a period of a few weeks. Wafer fabrication planning and scheduling is a complex task due to the large number of products and machines involved. It is further complicated by additional constraints such as re-entrant flow of operations Kumar [START_REF] Kumar | Scheduling semiconductor manufacturing plants[END_REF], setup issues, preventive maintenances, random machine breakdowns, Ovacik and Uzsoy [START_REF] Ovacik | Decomposition methods for complex factory scheduling problems[END_REF], Sze [START_REF] Sze | Semiconductor devices: Physics and technology[END_REF], etc. The importance of scheduling on the performance of semiconductor wafer fabrication facilities (fabs) is known for many years see Wein [START_REF] Wein | Scheduling semiconductor wafer fabrication[END_REF] and Sze [START_REF] Varadarajan | A survey of dispatching rules for operational control in wafer fabrication[END_REF].

In this paper, we focus on an important part of the manufacturing process. Among the complex operations involved in the fabrication of a wafer, the diffusion phase is of critical importance since the batching decisions that are involved may affect the performance of the entire wafer fab Ibrahim et al. [ICN + 03] and Mönch and Habenicht [START_REF] Mönch | Simulation-based assessment of batching heuristics in semiconductor manufacturing[END_REF]. The processing time of the operations in the diffusion area can be large (10h) compared to other operations in the fab. Mehta and Uzsoy [START_REF] Mehta | Minimizing total tardiness on a batch processing machine with incompatible job families[END_REF] state that optimizing batching operations results in good performance measures of the whole production process. Lots regularly arrive in the diffusion area and the diffusion phase is primarily used to alter the type and level of conductivity of semiconductor materials. The purpose of this article is to develop efficient methods to partition lots in batches and to schedule batches on machines in the diffusion area of a semiconductor plant while taking into account numerous constraints and optimizing three main production criteria: maximize the number of operations (moves), maximize the batch sizes and minimizing the total tardiness.

The remaining sections of this paper are organized as follows. In Section 2, we provide some background on existing related batch and scheduling problems. In Section 3, the problem is stated. We present in Section 4, a disjunctive graph representation of the problem. The method for computing an initial solution and improvement procedures based on iterative sampling and Simulated Annealing are described in Section 5. Experimental results on real problem instances and comparison with a literature algorithm are given and discussed in Section 6. Section 7 concludes the paper with recommendations for further research.

Previous related work

The operations of batching and scheduling jobs is a common practice in a manufacturing system especially in semiconductor manufacturing systems, see Mathirajan et al. [START_REF] Mathirajan | A literature review, classification and simple metaanalysis on scheduling of batch processors in semiconductor manufacturing[END_REF]. For examples reasons for batching are the reduction of setups, the ability of machines to process several jobs simultaneously, etc. With the classification given by authors by Mathirajan et al. [START_REF] Mathirajan | A literature review, classification and simple metaanalysis on scheduling of batch processors in semiconductor manufacturing[END_REF], we notice that there is not much literature on scheduling batch problems taking into account the re-entrance features of the system as for example we can name Cigolini et al. [START_REF] Cigolini | A new dynamic look-ahead scheduling procedure for batching machines[END_REF], Mason and Oey [START_REF] Mason | Scheduling complex job shops using disjunctive graphs: a cycle elimination procedure[END_REF] [START_REF] Oey | Scheduling batch processing machines in complex job shops[END_REF]. The work proposed by Mönch et al. [MFDP + 09] presents a scheduling problems in semiconductor manufacturing. Typical scheduling problems found in semiconductor manufacturing are identified in particular batching problems. The problem addressed in this paper deals with:

• Multiple machines at each stage. The authors in Mehta and Uzsoy [START_REF] Mehta | Minimizing total tardiness on a batch processing machine with incompatible job families[END_REF] presented a problem of minimizing total tardiness on a batch processing machine with incompatible job families. They proposed a dynamic programming to solve the problem. The paper of Balasubramanian et al. [START_REF] Balasubramanian | Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness[END_REF] extends solutions of Mehta and Uzsoy [START_REF] Mehta | Minimizing total tardiness on a batch processing machine with incompatible job families[END_REF] to a batching problem with incompatible jobs on parallel machines which aims at minimizing weighted total tardiness. The authors in Kim et al. [START_REF] Kim | Scheduling wafer lots on diffusion machines in a semiconductor wafer fabrication facility[END_REF] focused on a problem of scheduling wafer lots on diffusion workstations in a semiconductor wafer fabrication facility. In their considered diffusion workstation, there are multiple identical machines, and each of them can process a limited number of wafer lots at a time. Their scheduling problem at the diffusion workstation is a problem of scheduling multiple job families on identical parallel batch-processing machines.

• Multiple stages. The described problem for the diffusion area takes into account all the different stages of this area which can reach 4. In the literature, the number of stages does not generally exceed 2. The author Su [START_REF] Su | A hybrid two-stage flow shop with limited waiting time constraints[END_REF] considered a hybrid two-stage flow shop with a batch processor in stage 1 and a single processor in stage 2. This is also the case in articles Sun and Min [START_REF] Sung | Scheduling in a two-machine flowshop with batch processing machines for earliness/tardiness measure under a common due date[END_REF] and Sung and Kim [START_REF] Sung | Minimizing due date related performance measures on two-batch processing machines[END_REF] which consider a batch problem on 2 stages. Oulamara et al. [START_REF] Oulamara | Flowshop scheduling problem with batching machine and task compatibilities[END_REF] studied a two-machine flow shop problem with conventional and batching machines in the first and second stage, respectively, and arbitrary job compatibilities.

• Multiple criteria. The goal of the paper is to simultaneously optimize three indicators. These indicators are the number of lots going through the line (to maximize), the number of wafer in a batch (to maximize) and the waiting time of lots (to minimize). Generally, articles in the literature tackled scheduling batch problems by considering one single indicator to optimize. Uzsoy in [Uzs95] tackled the problem with the objective of minimizing the completion time of jobs, Hung [START_REF] Hung | Scheduling of mask shop e-beam writers[END_REF] has an objective of maximizing the batch processing machine utilization. Perez et al. [START_REF] Perez | Minimizing total weighted tardiness on a single batch process machine with incompatible job families[END_REF] studied the problem of minimizing the total weighted tardiness on a single machine and Mathirajan and Sivakumar [START_REF] Mathirajan | Minimizing total weighted tardiness on heterogeneous batch processing machines with incompatible job families[END_REF] focused on the minimization of the total weighted tardiness on heterogeneous batch processing machines under condition of dynamic arrival of jobs, incompatible job families and nonidentical job sizes. Few articles deal with different criteria simultaneously. Furthermore, in our problem, setup times (loading and unloading) are not depending on the sequence and the complexity is added by the maximum times lags between batching operations.

Our problem is a complex variant of job shop problem. These types of problems can be found in Mason et al. [START_REF] Mason | A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops[END_REF] and Ovacik and Uzsoy [START_REF] Ovacik | Decomposition methods for complex factory scheduling problems[END_REF]. These problems are frequently analyzed using a method known as the shifting bottleneck (SB) procedure see for example Adams et al. [START_REF] Adams | The shifting bottleneck procedure for job shop scheduling[END_REF]. Several aspects, like identifying appropriate sub problem solution procedures can be found in Demirkol and Uzsoy [START_REF] Demirkol | Decomposition methods for reentrant flow shops with sequence dependent setup-times[END_REF] and Uzsoy and Wang [START_REF] Uzsoy | Performance of decomposition procedures for job-shop scheduling problems with bottleneck machines[END_REF]. In Mason et al. [START_REF] Mason | A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops[END_REF], a scheduling problem in semiconductor manufacturing close to the one tackled in this paper is solved by a modified SB heuristic. We propose to model solutions of the considered batching and scheduling problem through a variant of the disjunctive graph proposed in Mason et al. [START_REF] Mason | A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops[END_REF].

Problem description

The diffusion area defines a batching and scheduling problem of wafer lots on two types of equipment: cleaning and furnaces machines. These resources are able to perform several lots simultaneously. Each lot requires one or more consecutive operations on the equipment and each operation has a recipe (specification on a process on how it should be executed on a tool; This pertains to requirements of maintaining proper temperature, pressure, and metal composition, among others) which determines its duration and the set of machines that are able to process it. On a 24-hour basis, each operation has to be assigned to an equipment, and included into a batch, i.e. a set of operations of the same recipe that are processed simultaneously by the equipment. The constraints in the diffusion area are divided into three types: equipment constraints, process constraints and line management constraints.

Constraints

Some of these constraints are common to the two types of resources while others are dedicated to furnaces.

Equipment constraints

• Common constraints

Dedicated equipment: Any equipment is able to process a limited set of recipes. Maximum batch size: Any equipment defines a maximum batch size corresponding to the capacity of that equipment.

Loading and unloading times: A time may be needed to load and unload a batch on the equipment.

Unavailability periods: The equipment may be unavailable during some periods (defined by time windows) due to qualification, repair, maintenance etc.

In process jobs: The equipment may be occupied at the beginning of the time horizon by in-process operations that have to be completed before the equipment becomes available.

• Specific furnace constraints

Minimum time between two batches on an furnace: Furnaces must be inspected after completing each batch.

Process constraints

• Common constraints Precedence: Operations must be performed following the manufacturing process of the lot. The operations of a lot are chained and no operation can start before the end of its predecessor, except for the first operation of each lot. Minimum time lag: There is a fixed handling and transport time between every two successive operations of a lot.

Release dates: They correspond to the arrival times of lots at the cleaning machines and furnaces. A lot cannot be scheduled before its release date. Because the diffusion area is a stage of the complex global production process, release dates are estimated by a simulation tool. Fixed recipe: Each operation of a lot is associated with a recipe, i.e. the lot should be processed on resources that are qualified for the corresponding recipe. This implies that all lots in the same batch must be processed with the same recipe. Process time: The process time of a batch on an equipment depends on the recipe. Maximum time lag: A time limit is given for two successive operations x and y of a lot. The difference between the starting time of y and the completion time of x cannot exceed this limit. Maximum time lags depend on the operations x and y. They can correspond to the maximum time limit between cleaning and furnace equipment.

Line management constraints

• Specific furnace constraints Minimum time between two batches of same recipe: There is a minimum time between the beginning of two batches of the same recipe on two different furnaces.

Objective

In semiconductor fabs, several indicators are used to measure the performance. The interested reader can refer to [START_REF] Montoya-Torres | Manufacturing performance evaluation in wafer semiconductor factories[END_REF] for more details. We describe thereafter the indicators that are relevant in our study.

• Number of moves (to maximize): It corresponds to the number of completed operations on the planning horizon, which can be compared to the target number fixed by the production managers.

• Batching coefficient (to maximize): Defined on the planning horizon, it is calculated as the number of moves divided by the sum of the number of batches performed on each machine, times the maximum capacity of that machine. Note that the denominator is the number of lots that could be performed if the equipment was loaded up to their maximum capacities.

• X-factor (to minimize): This indicator is used to evaluate the waiting times of lots in the diffusion area in order to reduce the cycle times. For a given lot, this factor is calculated as the total staying time of the lot in the diffusion area over its processing time.

These three indicators will be used to evaluate solutions in the fab. Other indicators could be relevant. Among them, the Work-In-Process (WIP), is defined as the number of wafers being in the fab at a given period, either in a production state or in a non-production state (e.g. transport and waiting). The law of Little [START_REF] Little | A proof for the queuing formula l = λw[END_REF] establishes that if a system is stable and stationary then the average WIP is proportional to the average cycle time. The throughput is defined as the outgoing number of wafers of the fab per unit of time. The evolution of the throughput in time makes it possible to know if the system is stable i.e. to know if there is no accumulation of lots in the fab or if the system evolves according to forecasts. Glassey and Resende [START_REF] Glassey | Closed-loop job release control for vlsi circuit manufacturing[END_REF], observed that there is a relation between the increasing of the throughput and the output of a fab. The cycle time drastically increases when throughput is close to the maximal capacity of the fab. Hence for both WIP and throughput indicators, the X-factor indicator is adequate.

The goal is to optimize the various performance measures, while taking into account the numerous complex constraints. The next subsection described the mathematical formulation of the problem.

Problem formulation

The scheduling problem can be formulated as follows. For sake of clarity, the above-described Unavailability periods, In-process jobs and Minimum distance between batches of the same recipe constraints are not included. In Section 4, we describe how we tackle these characteristics.

A set of jobs (lots) J = {J i |i = 1, . . . , n} has to be processed on a horizon T by a set of machines M = {M k |k = 1, . . . , m}. Each job J i is made of n i operations such that each operation O ij has a duration p ij > 0 and a set M ij ⊆ M of machines (the furnaces or the cleaning machines) able to process it. Let O k = {O ij ∈ O|M k ∈ M ij } denote the set of operations that can be assigned to machine M k . The value of p ij and the elements of the set M ij are determined by the recipe of operation O ij denoted ρ ij . In general we have M ij ⊂ M since each machine cannot be configured for all recipes. Each operation O ij has to be included in a batch on a resource k ∈ M ij . Each machine has a finite capacity R k which gives the maximal number of lots in the same batch. On each machine k, S k denote the setup time needed before starting a new batch, D k denote the removal time needed after the completion of a batch and s k denote the constant setup time needed between two different batches. s 0 k denotes the initial setup time on machine k, depending on the state of the resource at time 0. Two consecutive operations O ij and O i(j+1) of the same job are linked by minimal and maximal time lags. Once the batch of O ij is completed and removed from k, the setup for the batch of O i(j+1) cannot start before a minimal time lag τ min ij and has to start before a maximal time lag τ max ij . Let O = {O ij |i = 1, . . . , n; j = 1, . . . , n i } denote the set of all operations. Each job J i has a relative priority c i (c i < c j means that J i is more urgent than J j ). Each job corresponds to a number w i of wafers produced when the job is completed.

Table 1 summarizes the notations used.

Notations Description J = {Ji|i = 1, . . . , n} Set of jobs (lots) T Horizon length M = {M k |k = 1, . . . , m} Set of machines ni Number of operations of lot Ji O = {Oij |i = 1, . . . n; j = 1, . . . ni} Set of operations Oij Operation j of lot Ji pij Duration of operation Oij Mij Qualified machines to process Oij O k
Operations that can be processed on the machine

M k ρij Recipe of Oij R k Capacity of machine M k (batch max. size) S k
Setup before the operation on machine Decisions D1-D3 can all be represented by a family of batches B = {B kq } k∈{1,...,m},q∈{1,...,ν k } where B kq is the batch sequenced at position q on machine M k . ν k ∈ {0, . . . , |O k |} denote the number of batches assigned to machine M k . Decision D4 lead to a family of start times T = {t ij } Oij ∈O assigned to the operations. Once a solution {B, T } is determined, we have a machine assignment {m ij } Oij ∈O where m ij denote the machine O ij is assigned to, i.e. verifying that ∃q ∈ {1, . . . , ν k } such that O ij ∈ B mij q . To be feasible, a solution {B, T } and its corresponding assignment {m ij } Oij ∈O have to satisfy the following constraints. The operations of the same batch must have the same recipe, i.e.

ρ ij = ρ xy ∀B ∈ B, ∀O ij , O xy ∈ B (1)
Each operation must be assigned to a machine able to process its recipe.

m ij ∈ M ij ∀O ij ∈ O (2)
The batch capacity cannot be exceeded and each batch includes at least one operation.

1 ≤ |B kq | ≤ R k ∀B qk ∈ B (3) 
An operation appears in only one batch, i.e.

B ∩ B = ∅ B, B ∈ B, B = B ( 4 
)
All operations are included in a batch

∪ B∈B B = O (5)
The start time of the first operation of each lot cannot exceed the lot release date:

t i1 ≥ r i ∀J i ∈ J (6) 
Each operation O ij , j > 1, cannot start before a minimal time lag after the end of its preceding operation O i(j-1) , which takes into account of the removal time of the batch of O i(j-1) , the minimal time lag τ min i(j-1)

and the setup time of batch of O ij :

t ij -t i(j-1) ≥ D m i(j-1) + p i(j-1) + τ min i(j-1) + S mij ∀i ∈ {1, . . . , n}, ∀j ∈ {2, . . . , n i } (7) 
Each operation O ij , j > 1, has to start before a maximal time lag after the end of its preceding operation O i(j-1) , which takes account of the removal time of the batch of O i(j-1) , the maximal time lag τ max i(j-1) and the setup time of batch of O ij :

t ij -t i(j-1) ≤ D m i(j-1) + p i(j-1) + τ max i(j-1) + S mij ∀i ∈ {1, . . . , n}, ∀j ∈ {2, . . . , n i } (8)
The start times of two operations of the same batch must be equal:

t ij = t xy ∀B ∈ B, ∀O ij , O xy ∈ B (9)
An operation of a batch which is not at the first position on its machine cannot start before the end of the preceding batch on the machine, plus the necessary removal time of the preceding batch, plus the minimal setup time on the machine between two batches, plus the necessary setup time for the next batch.

t ij -t xy ≥ p xy + D k + s k + S k ∀B kq,q>1 ∈ B, ∀O ij ∈ B kq , ∀O xy ∈ B k(q-1) (10) 
An operation of a batch in the first position on its machine cannot start before the initial setup time for this batch (we assume

S 0 k ≤ S k + D k + s k , ∀M k ∈ M): t ij ≥ s 0 mij ∀O ij ∈ O (11)
By definition, a feasible solution includes each operation inside a batch. In our problem, the scheduling horizon is limited to a scheduling horizon T . Hence only those batches released in the interval [0, T ] must be taken into account. Several criteria are used to measure the quality of a feasible solution. The number of moves is the number of wafers produced in [0, T ]:

f mov = θij ∈θ w i θ ij ( 12 
)
where θ ij = 1 when the job is completed before T and θ i ∈ [0, 1[ denotes the completion ratio of job i before time T , otherwise.

θ ij = Oij ,tij +pij <=T p ij + Oij ,tij <T <tij +pij (T -t ij ) ni j=1 p ij
The batching coefficient is the average ratio of the actual size of each batch divided by its maximal size. Let B T = {B ∈ B|t ij < T, ∀O ij ∈ B} denote the set of batches started before time period T .

Batching coefficient = k B kq ∈B T |B kq |/R k |B T | (13) f batch = k B kq ∈B T |B kq |/(R k + Z k 100 ) |B T | ( 14 
)
where Z k means the total number of qualified recipes on machine M k . The weighting of the batching coefficient by the number of qualified recipes on the concerned machine makes it possible to use the least general-purpose machines initially. The average X-factor is the average of the X-factor of each job weighted by the job priority. All the jobs do not have the same priority. Certain jobs are more important than others (important customers, tests to be carried out quickly, delay to catch up with, etc). Thus, a weight is assigned to the job to reflect its priority. Let

J T = {J i ∈ J |t ini + p ini ≤ T } denote the set of jobs completed before T . X-fac = Ji∈J T (t ini -r i )/p ini |J T | (15) f X-fac = Ji∈J T c i (t ini -r i ) |J T | (16) 
The choice made together with the decision makers of the production unit is to combine these different objectives into a single one by maximizing the following weighted sum:

f = αf mov + βf batch -γf X-fac (17)
where α, β and γ are adjustable weights allocated to each objective function. The objective functions have been designed to integrate some requests of managers. In the calculation of f X-f ac , the delay of each lot is multiplied by its priority, in order to accelerate the urgent lots. In the calculation of the total batching coefficient, the batching coefficient of each equipment is multiplied according to the number of qualified recipes on this equipment. This leads to choose in priority the machines that are able to process less recipes, and thus to maintain the availability of the most flexible equipment. The objective of the problem is to search for a feasible selection {B, T } such that f is maximized. Note that, given a (feasible) solution {B, T }, f can be computed in O(N ) time where N = n i=1 n i is the total number of operations.

The disjunctive graph representation

The considered problem can be seen as an extension of the job-shop problem and, consequently, the disjunctive graph model can be used for batching and scheduling problems as proposed by Mason et al. [START_REF] Mason | A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops[END_REF]. In their article, the authors consider a different objective function (total weighted tardiness). Sequence-dependent setup times and reentrant flows are also considered but there are no maximum time lags. Unfortunately, these constraints considerably increase the difficulty of the problem Gentner et al. [START_REF] Gentner | Batch production scheduling in the process industries[END_REF]. Let us explain how the problem is modeled using disjunctive graphs. We define the disjunctive graph G = (V, C, E) as follows.

• V is a set of nodes where there is one node per operation, denoted V ij , plus a dummy start node denoted 0.

• C is the set of conjunctive arcs representing the release dates and minimal and maximal time lags.

There is an arc from node 0 to node V i1 of each job J i . There is an arc from V ij to V i(j+1) and an arc from V i(j+1) to V ij , for each consecutive operations O ij and O i(j+1) of each job J i .

• Let B denote a partial or complete batching for the problem satisfying at least Constraints (1) through (4). B is a complete batching if Constraint (5) is also verified, otherwise it is a partial batching. Recall that B also defines the machine assignment m ij , for all

O ij ∈ ∪ B∈B B. We assume m ij = 0 if O ij is not batched in B, i.e. if O ij ∈ ∪ B∈B B.
B unambiguously defines a selection S as follows. For each distinct operations O ij and O xy such that • Each arc from 0 to the first operation O i1 is valued by max(r i , S 0 mij ), the maximal value between the release date of job i and the initial setup time for machine m i1 .

m ij = m xy = k = 0, select arc (V xy , V ij ) k if O xy is in a batch sequenced before the batch of O ij , select arc (V ij , V xy ) k if O ij is in
• Each arc from V ij and V i(j+1) is valued by

D mij + p ij + τ min ij + S m i(j+1)
, the value of the minimal time lag between O ij and O i(j+1) plus the setup and removal times linked to the assignment of the operations.

• Each arc from O i(j+1) and O ij is valued by -(D mij + p ij + τ max ij + S m i(j+1)
), the (negative) value of the maximal time lag between O ij and O i(j+1) plus the necessary setup and removal times.

• Each arc (V ij , V xv ) k is valued either by p ij + D k + s k + S k if the opposite arc is not selected or by 0 if the opposite arc is selected. Indeed, in the first case this arc represents the decision to sequence O xy after O ij on machine k whereas in the second case, both arcs (V ij , V xv ) k and (V xv , V ij ) k represent the synchronization of the operations included in the same batch.

We can state that the (partial) solution represented by the (partial) batching B and its selection S is feasible if and only if longest path problems from node 0 to each node V ij in G(S) have a solution. In the positive case and if B is complete, a feasible schedule T can be obtained by setting t ij to the length of the longest path from 0 to V ij . Furthermore T is the best schedule compatible with B one can obtain when the objective is to maximize f . The problem can be formulated as follows: Find the batching B verifying Constraints (1) through (5) such that the corresponding selection S is feasible and maximizes f .

As stated in the previous sections, the actual data issued from the fab have other characteristics that have been tackled, such as in-process jobs and machine down times. We can model easily these characteristics thanks to the disjunctive graph formulation. They can be both represented by operations with fixed start times on the involved machine. A start time t can be fixed by linking the node with node 0 by two opposite arcs valued by t and -t. As stated in Section 3, the actual problem also includes an important line management constraint: a minimum time between the start time of two batches of the same recipe scheduled on two different batches has to be respected. This can also be tackled through the disjunctive graph representation. A fictitious machine can be associated to each recipe and disjunctive arcs linking two operations of the same recipe can be defined. Then, whenever the two operations are batched on two different machines (furnaces), the disjunctive arc has to be oriented. Once oriented the arc is valued by the minimum required distance.

Solution Methods

We propose a two-phase heuristic method and a metaheuristic to solve the problem. The first phase of the heuristic is a constructive heuristic based on successive job insertions. The second phase is a local search method which aims at improving the initial solution. Both phases are based on the evaluation of a (complete or partial) selection through longest path calculations. For the metaheuristic, we propose a Simulated Annealing algorithm.

Evaluation of a partial or complete batching

Any partial or complete batching B and its selection S can be evaluated through the calculation of start time t ij , equal to the longest path from 0 to V ij in G(S) of each operation O ij . To compute such longest paths, since the graph includes arcs with negative weights, we use the Bellman-Ford algorithm which has a O(N |S ∪ C|) time complexity. If the algorithm finds a path of positive length, then the partial or complete solution is unfeasible. Otherwise the algorithm returns start times t ij and the objective function value f can be determined.

Computing an initial solution by a priority rule-based constructive heuristic

The initial solution (selection) is computed by a job insertion method. The jobs are first sorted in a list L according to the order: jobs involving maximal time lags first, then increasing release dates, then job priority.

The method starts with an empty batching. Then, the jobs are taken in the order given by the list and inserted one by one in the current batching. The insertion of J i is made as follows. Let B = {B kq } k∈M,q∈1,...,ν k denote the current batching including jobs located before J i in L. For each operation O ij of J i and for each resource k ∈ M ij , there are 2ν k + 1 insertion positions of O ij in the batch sequence of machine M k : indeed, for each batch B kq , we may insert O ij inside batch B kq or create a new batch at any position. Each of these insertion positions is evaluated with the algorithm described in the previous section and the one that maximizes f is kept to update B. If none of the insertion positions is feasible for an operation O ij , then all these partial solutions violate a maximal time lag and there exists insertion positions that violate only maximal time lag between O i(j-1) and O ij (the last position on each resource of M ij , for instance). Hence we have to remove O i(j-1) from B, the previous operation of job J i , and insert it at a later insertion position. If this is not feasible, they are not scheduled and delayed from the list of operations. Note that at most ni j=1 k∈Mij 2ν k + 1 insertion positions are tested per inserted lot. Thereafter, we will call by Priority-rule Based Insertion Algorithm (PBIA), the algorithm described above.

Improving the initial solution by iterative sampling

Iterative random sampling consists in iteratively applying the constructive algorithm presented in Section 5.2 and randomly changing each time the input operation list. Two different iterative sampling methods are proposed. In the first random sampling method the input list is initialized at each iteration as a random permutation. We call this algorithm Random Iterative Algorithm by Priority-rule Based Insertion (RIA-PBIA). In the second random sampling method, the list is changed by making few random modifications on the sorted list. It consists in dividing the list into intervals and, for each interval, in making a random modification following a uniform law. We call this algorithm Pseudo-Random Iterative Algorithm by Priority-rule Based Insertion (PRIA-PBIA).

Simulated Annealing

Simulated annealing (SA) belongs to the class of randomized local search algorithms and has been developed by [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] to handle hard combinatorial problems. The use of simulated annealing supposes the definition of neighborhood. The neighborhood we consider is defined by the following moves: 1. "Batch move". A batch is moved randomly (both equipment and position can change).

"Operation move". An operation is moved randomly in an existing batch or a new batch is created

(both equipment and position can change).

3. "Operation switch". Two batches with the same recipe are randomly selected. Then two randomly selected operations are switched.

In our implementation, 50% of the considered moves are batch moves, 25% are operation moves and 25% are operation switches. According to randomly generated moves, we proceed as follows. All random selections are made according to the uniform law. If a move is impossible due to a violation of a constraint, we restore the previous solution and try another move. Each neighbor solution is evaluated by means of the longest path computations presented in Section 5.1.

The algorithm starts with an initial solution s0 and then tries to find better solutions by searching in its neighborhood (obtained by the moves described above), and applying a stochastic acceptance criterion. When a neighbor (a solution s) of the current solution is selected we compare the difference ∆f = f (s) -f (s0). If the difference ∆f is negative, the neighbor replaces the current solution. Otherwise, the neighbor is accepted with a probability based upon the Boltzmann distribution P accept (∆f ) ≈ exp( -∆f kT ) where k is a constant and the temperature T is a control parameter. This temperature is gradually lowered following a geometrical law function g(T ) : g(T ) = αT with α < 1.

Computational experiments

We coded the proposed algorithms in Java and we tested them on a 1 GigaOctet RAM and 3.4 gigahertz processor computer. We conducted two types of experiment tests: the first type of tests is conducted on actual fab data and compared to the constructive initial solution obtained by PBIA solutions, with pseudo and random lists and the Simulated Annealing (SA) solutions. In the second type of tests, we compared the proposed heuristic PBIA to an algorithm for scheduling jobs on parallel batch processors with incompatible job families and unequal ready times problem proposed by Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF] as it is close to the one tackled in this paper.

Experimental tests on actual fab data

These tests have been performed on actual instances issued for two months of production. There are 700 jobs yielding a total number of 1400 operations with about 50 different recipes to schedule on 70 furnaces and 12 cleaning machines. Each furnace has a capacity of 4 or 6 lots and each cleaning machine of 2 or 4 lots. The time needed to load and unload a batch varies between 10 and 30 minutes. The minimum and maximum time lags varie from 10 minutes to 4 hours. The target time horizon is 24 hours. The weights of the components of the objective function have been computed both to normalize the different indicators and to take account of the user preferences. For the experiments, we selected α = 601, β = 1500001, γ = 41.

The number of replications is 5 for the simulated annealing and 20 for the pseudo and random lists. The computational time of the simulated annealing for one instance does not exceed 5 minutes and the constructive heuristic and the random and pseudo lists is limited to 1 minute. The percentage is calculated on the average relative improvement brought on the considered method over the reference solution obtained by the constructive heuristic (initial), i.e. M ethod solution-Initial list

Initial solution

From Table 2 and Table 3, we displayed the objective function solution values (note), the number of moves (f mov ), the batching coefficient (f batch ) and the X-factor (f X-f ac ) obtained from the three methods: Simulated Annealing (SA), Pseudo (PRIA-PBIA) and Random (RIA-PBIA) algorithms on the basis of solutions obtained by PBIA (Initial). It is important to note that the Simulated Annealing starts from the best solution of (PRIA-PBIA) and (RIA-PBIA).

We can notice that on average we improve solutions with the simulated annealing algorithm on the two considered months. An improvement of 47,05% on the number of moves f mov is noticed (resp. 6,6% for the second month), the batching coefficient f batch of 33,04% (resp. 4,15% for the second month), the f X-f ac increases by 41% (resp. is improved of 4,07% for the second month) and the objective value (note) is improved of 11,13% for the first month (resp. 12,61% for the second month). We improve on average initial solutions with PRIA-PBIA (Pseudo-Random) of 38,32% on the number of moves (resp. slightly deteriorated of 0,95% on second month), the batching coefficient of 28,23% (resp. 0,70% on the second month) and X-factor increases of 47,07% (resp. improved of 0,26% on the second month) and the objective function slightly decreases of 1,71% (resp. 1,42% on the second month). For the Random solutions (RIA-PBIA), the number of moves is improved of 37,26% (resp. decreased of 2,05% on the second month), the batching coefficient is improved of 29,96% (resp. 1,17% on the second month), the X-factor is deteriorated of 48,93% (resp. 1,16% on the second month) and the note slightly decreased of 3,86% (resp. 6,30% on the second month). In the Pseudo and random cases, we can notice that some indicators are sometimes slightly deteriorated (more in the case of Random lists) due to the fact we have a larger search space when using random lists than pseudo-random lists and then there is a capability of reaching better solutions but also worse see Table 4. (PBIA) has been implemented in this area and is actually running. We summarize some results obtained after the algorithm has been implemented. The comparison is done before and after using our algorithm. For confidential reasons, we are not allowed to describe the real values of the fab. This is why, with the agreement of the staff, we give results on equipment Type 1 and Type 2. They are respectively clean equipment and furnace equipment. Two indicators are presented: the X-factor and the batching coefficient. For the first month, the X-factor on the Type 1 equipment (resp. the Type 2 equipment) is improved of 26% (resp. 17% for the Type 2 equipment). The batching coefficient is also improved by 20% for the Oxidation and 29% for the Deposition equipment. For the second month, the X-factor is improved by 36% for the Type 1 and 23% for the Type 2 equipment. On the other hand, the batching coefficient is deteriorated by 6% for the Oxidation equipment and an improvement of 2% is noticed on the Deposition equipment. Substantial productivity improvements have been achieved in the diffusion area of the plant thanks to Priority-based Insertion algorithm (PBIA).

6.2 Experimental tests on data issued from Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF] We want to compare our algorithm (PBIA) to an algorithm proposed in the literature for a close problem. We decided to compare it to a scheduling of jobs on parallel machines with incompatible job families and unequal ready times Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF].

We show through experimental tests that the constructive heuristic PBIA we designed for the specific problem of batching and scheduling in a diffusion area can be easily adapted to solve the problem described by Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF]. Furthermore, our proposed heuristic outperforms the heuristic described in their article on some instances for the problem of minimizing Total Weighted Tardiness (TWT).

The aim of the problem tackled in Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF] consists in scheduling of parallel batch processing machines with incompatible job families and unequal ready times of jobs to minimize TWT include:

• Jobs of the same family have the same processing time.

• All the batch processing machines are identical in nature.

• Once a machine is started, it cannot be interrupted, i.e. no preemption is allowed.

To solve this NP-hard problem the authors proposed two different decomposition approaches. The first approach constructs fixed batches, then assigns these batches to the machines using a genetic algorithm (GA), and at last, sequences batches on each machine. The second approach first assigns jobs to machine using a GA, then constructs the batches on each machine for the jobs assigned to it and at last, sequences these batches. In conclusion, among the tested algorithms, the authors proved on their tests that the algorithm GA 2 BATC-II which is in the second type of approach provides in average better results. As the authors used a genetic algorithm, the After taking the 162-instances (randomly generated) from the authors, we have conducted experiment tests on the same computer as one described in the subsection 6.1. Let us recall that in this subsection the objective function is the TWT and the goal is to compare the TWT obtained from our proposed heuristic (PBIA) to algorithm GA 2 BATC-II proposed in Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF]. As it is known, the input of our proposed algorithm is a list. Then, to give a list to PBIA, we retain the best one list between two considered lists as follows. The first list is ordered by increasing order of due date and the second one is ordered by decreasing order of the priority of jobs. As the evaluation of a list does not require much time (less than 3 minutes), for each of the two lists we calculate the TWT and we retained the minimum one. With the solution obtained by the minimum one, we apply local search improvement (see Subsection 5.3). We have reported in Table 6 the assessment of this comparison.

From Table 6, we notice that on average as well as for the case of m = 3, m = 4 and m = 5, our heuristic (PBIA)is better in terms of objective function and computational times. In the considered article, the

M k D k Setup after the operation on machine M k s k Delay inter batch s 0 k

 0 Initial setup time τ min ij Min. delay between Oij and Oij+1 τ max ij Max delay between Oij and Oij+1 ci Priority of lot Ji wi Number of wafers of Ji B = {B kq } k∈{1,...,m},q∈{1,...,ν k } Batch at position q on machine M k ν k Number of batches on machine M k T = {tij } O ij ∈O Set of start times mij Machine which processes Oij θi Completion ratio of Oij B T Batches started before T Z k Number of qualified recipes on machine M k θ T Operations started before T N = n i=1 ni Total number of operations

Finding a feasible solution

  for the problem lies in making four types of decisions: D1 -Partition the operations into batches, D2 -Select a resource to process each batch, D3 -Order the batches on each resource, D4 -And assign a start time to each batch.

  E is the set of disjunctive arcs which represent the decisions of the problem. There are two opposite conjunctive arcs (V ij , V xv ) k and (V xy , V ij ) k for any machine k ∈ M and for any pair of operations O ij , O xy ∈ O k , O ij = O xy . These arcs represent the sequencing or the batching decision concerning O ij and O xy on machine k.

  a batch sequenced before the batch of O xy , and select both arcs (V ij , V xv ) k and (V xy , V ij ) k if O ij and O xy are assigned to the same batch. Once a selection is computed, we define a graph G(S) = (V, C ∪ S) where arcs C ∪ S are valued as follows (we assume s 0 0 = s 0 = S 0 = D 0 = 0):

  Table 2: Results on instances issued of the first month of the fab Table 3: Results on instances issued of the second month of the fab One objective of this study was to develop and propose an efficient scheduler algorithm to support fabrication operators and improve the principal indicators in the diffusion area. Our proposed algorithm

Table 1 :

 1 Summary of notations used to formalize the problem

Table 4 :

 4 Standart deviation values on the first and second month

Table 5 :

 5 Table5summarized the different parameters used in their algorithm (see Mönch et al.[START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF]). Parameter settings GA for approach 2 Mönch et al.[START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF] 

	Parameter	Value
	Population	200
	Crossover probability	0.80
	Mutation probability	0.01
	Replacement probability	0.60
	Diversity	0.03
	Number of generations	1000
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We have used a heuristic which was not originally designed for the problem of minimization of TWT on parallel batch machines with incompatible job families and unequal ready times of jobs. The results of the tests showed that our heuristic outperformed in the majority of the cases the GA 2 BATC-II: we had better objective function values and less computation times.

Concluding remarks

We proposed a model and a method based on a disjunctive graph for batching and scheduling problem in a semiconductor manufacturing factory while taking into account complex constraints and optimizing multiple measures. A constructive algorithm has been proposed to solve the problem, local search improvements based on the disjunctive graph representation have been defined and a simulated annealing algorithm has been developed. The computational tests made on real instances of the factory plant showed that we obtain quality solutions in fast calculation times. For the industry, very substantial productivity improvements have been achieved in the diffusion area and also on the overall fab thanks to the use of the proposed algorithm named Priority rule-Based constructive algorithm (PBIA). With adjustments, the Priority-rule Based Insertion Algorithm (PBIA) has been embedded in a software used by the industry. The use of a disjunctive graph brings significant improvements for interactive scheduling at the fab level. A prototype software gives the graphical user interface of the software. It includes the off-line batching and scheduling phase and also an interactive module that allows the decision-makers to make modifications and to test options directly on the proposed plan.

Regarding, the simulated annealing algorithm, the procedures significantly improve the different criteria (number of moves, batching coefficient and X-factor) in comparison with a local search method. We also compared our algorithm to an algorithm designed for a problem of scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times Mönch et al. [START_REF] Mönch | Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times[END_REF] as it is close to the one tackled in this article. The computational tests showed that for more than half of the instances our heuristic called Priority-rule Based Insertion (PBIA) outperforms the algorithm proposed by Mönch et al. [MBFP05]. This research can be extended in many ways. Other types of moves such as the simultaneous move of two jobs linked by a maximum time lag should be tested. The maximal time lags are currently hard constraints. However in practice some of them can be relaxed and treated as soft constraints or objectives. Another important issue can be in a multicriteria analysis study. Computing several Pareto optimal solutions are useful particularly when the situation frequently changes as it is usually the case of semiconductor manufacturing.